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Abstract— In this paper, we present a regression for predict-
ing 3D rigid transformations from real-valued vectors. We use
a unit dual quaternion to represent the transformation. The
regression is formulated as blending unit dual quaternions. To
formulate it in a closed form, we introduce an approximation
based on error metrics according to geometric algebra. Finally,
we take an articulated motion and an elastic deformation as
examples to present the descriptive power of our method in
modeling the motion and the deformation.

I. INTRODUCTION AND RELATED WORK

Linear models and linear regression techniques are funda-
mental statistical tools commonly used in a broad array of
fields. Even for state-of-the-art nonlinear techniques, most
have their roots in linear models. Linear techniques are still
popular since they are simple, interpretable, and solvable in
closed form. They also require fewer observations than recent
nonlinear techniques, which can present a significant advan-
tage over nonlinear techniques for many applications. For
example, deep learning techniques are popular recently but
they usually require millions of data for training. Meanwhile,
simple linear techniques work well even if much a smaller
number of data is available.

Most regression techniques predict a single real number
from a vector of real numbers, i.e. R

P �→ R, where P
denotes the dimension of the vector. Meanwhile, some tasks
in robotics field need to process geometric variables such as
motion. For instance, some techniques have been proposed
to predict three-dimensional (3D) rotation [14], [17], [16],
[15] and 3D rigid transformations [1], [11], [12]. Further, in
[1] and [14], support vector regression (SVR) is generalized
to predict 3D rotation and 3D rigid transformations. In [11],
[12], Lang et al. proposed an extension of Gaussian processes
(GPs) to predict 3D rigid transformations from a time series
of 3D rigid transformations, i.e. a mapping from {SE(3)}t
to SE (3). Here, key techniques include defining the kernel
function in SVR or the covariance function for GPs such that
the distance measure for the two transformations is properly
expressed. Although these methods stand on well-known
and powerful techniques, as far as we know, no methods
have been proposed that correspond to the basis of “linear
regression”.
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The above geometric variables can be represented in
several ways, such as by a unit quaternion or a homogeneous
transformation matrix. Although these representations seem
to be common multi-dimensional vectors, the elements are
mutually dependent, e.g. , the norm/determinant are restricted
to be 1. When we focus on each component independently,
it seems to become nonlinear. However, when we treat all
elements simultaneously based on geometric algebra, a linear
approach will be still promising.

In this paper, we suppose a problem of 3D motion capture
and study a method of predicting 3D rigid transformation
SE (3) from a vector of real numbers RP . In order to utilize
geometric algebra, we represent a 3D rigid transformation as
a single number, which inherently has the mutual dependen-
cies in its algebra, and propose a regression technique on the
number. As the number, we adopt unit dual quaternion Ĥ to
represent a 3D rigid transformation, which Kavan et al. have
adopted in [10], and discuss the formulation of a regression
of unit dual quaternions. In our formulation, the independent
variable is a real vector x ∈ R

P and the dependent variable
is a unit dual quaternion Ĥ. Since the input space is common
such as a sensor output, our formulation will be applicable
to a large number of problems.

Further, in this paper, we will show the descriptive power
of the proposed method by applying it to model an articulated
motion and an elastic deformation. As for an articulated
motion, we suppose a finger with two rotational joints.
As far as the joint angles are given, the regression of the
unit dual quaternion can accurately predict the position and
orientation of the fingertip (i.e. the distal phalanx) relative
to its root (i.e. the proximal phalanx) without its kinematic
model. To construct the regressor, we suppose that a few
observations are given as pairs of joint angles x and 3D
rigid transformations ŷ ∈ SE (3) of the fingertip relative
to the root. As for an elastic deformation, we observe 3D
rigid transformations of markers on a balloon while it is
squashed. In order to model the deformation, we define two
and one independent variables for a coordinate on the surface
of the balloon and a degree of squashing, respectively. Then,
we construct a regressor of 3D rigid transformations of the
marker. We will show that this regressor represents a 3D
shape of the balloon with its deformation as a result.

The major contribution of our paper is the formulation of a
regression model of a unit dual quaternion with a closed-form
approximation. This approximation makes the formulation
easier to understand, easier to implement, and more com-
putationally efficient. Through our experiments, we present



that our regressor achieves significantly better accuracy and
has more descriptive power; further, the approximation is
negligible in many cases.

The remainder of our paper is organized as follows. We
introduce the unit dual quaternion in Section II and our pro-
posed method in Section III. In Section IV, we present and
discuss our experiments and corresponding results. Finally,
we provide a conclusion and avenues for future work in
Section V.

II. REPRESENTING A 3D RIGID TRANSFORMATION BY A
UNIT DUAL QUATERNION

There are several ways to represent 3D rigid transforma-
tions. It is common to use a 4 × 4 homogeneous transfor-
mation matrix or decompose such a matrix into rotational
and translational components. For the rotational component,
there are many choices for representation, including the Euler
angle, Cardan angle, Rodrigues formula, and unit quaternion.
The translational component is commonly represented as a
3D real vector, but its values depend on the decomposition
(e.g. , RT , TR, and TRT−1, where R and T represent
rotational and translational transformation, respectively). For
a given transformation, we can use any of these for repre-
sentation and can convert one to another; however, we need
to pay close attention to the selected representation when we
consider multiple transformations. Even if two transforma-
tions are geometrically similar, the distance between them
can be large in some representations. For example, “gimbal
lock” is a well-known problem in Euler angle representation.

In the context of geometric skinning for a CG character,
Kavan et al. [10] discussed the representations of 3D rigid
transformations and blending, pointing out that the transla-
tion should not be treated independently from the rotation.
They adopted the unit dual quaternion as a representation and
proposed an algorithm that calculates a weighted average
of such transformations. Although this paper explains an
overview of dual quaternion below, refer [10] for further
details on dual quaternion and its connection to SE (3).

Originally proposed by Clifford [5] in the nineteenth
century, a dual quaternion can be considered as a quaternion
whose elements are dual numbers. Similar to complex num-
bers, any dual number â ∈ R̂ can be written as â = a0+εaε,
where a0 is the non-dual part, aε is the dual part, and ε
is a dual unit satisfying ε2 = 0, ε �= 0. Its conjugate is
â∗ = a0 − εaε.

Multiplication of two dual numbers is given as ââ′ =
(a0 + εaε) (a

′
0 + εa′ε) = (a0a

′
0) + ε (a0a

′
ε + aεa

′
0). Dual

quaternion q̂ ∈ Ĥ can be written as the sum of two ordinary
quaternions, i.e. q̂ = q0 + εqε, where q0, qε ∈ H. This can
also be written as q̂ = â+ b̂i+ ĉj + d̂k, where â, b̂, ĉ, d̂ ∈ R̂

and i, j, k are the usual quaternion units.
As arithmetic operations, scalar multiplication, addition,

multiplication, exponential and logarithm mapping of a dual

quaternion are given as follows [6].

sq̂ = sq0 + εsqε (1)
q̂ + q̂′ = (q0 + q′0) + ε (qε + q′ε) (2)
q̂q̂′ = (q0q

′
0) + ε (q0q

′
ε + qεq

′
0) (3)
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⎞
⎠ , (5)

where s ∈ R, θ = b0bε + c0cε + d0dε, φ =
√
b20 + c20 + d20,

and ψ = arctan φ
a0

.
Since the dual quaternion is defined as a combination of

dual number and quaternion, there are multiple definitions
for the conjugate of a dual quaternion, i.e. q∗0 + εq

∗
ε , q0− εqε,

and q∗0 − εq∗ε , where q∗0 and q∗ε are the quaternion conjugate
of q0 and qε, respectively. In this paper, we use q̂∗ to denote
the first type of conjugate of dual quaternion q̂. The product
q̂q̂∗ generally becomes a dual number with its square root
called the magnitude, ‖q̂‖ =

√
q̂q̂∗1. The dual quaternion that

represents any rigid transformation with a magnitude of 1 is
called a unit dual quaternion. When the unit dual quaternion
q̂ represents a rigid transformation, q̂∗ corresponds to the
inverse transformation of q̂. Since the magnitude of any unit
dual quaternion equals to 1, it can be intuitively interpreted
that the unit dual quaternions form a hypersphere in Ĥ.
Then, the logarithm mapping for a unit dual quaternion can
be interpreted as the projection onto the tangent space of
the hypersphere at identity, which equals to 1 ∈ Ĥ. The
exponential mapping corresponds to the back projection as
well.

It is well-known that any 3D rotational transformation
is represented by a unit quaternion. The dual quaternion
can also represent pure rotation in the same manner as a
quaternion by setting the dual part to zero. From angle θ
and unit axis n = (nx, ny, nz), the rotational transformation
is represented by

(
cos θ

2 + sin θ
2 (nxi+ nyj + nzk)

)
+ε(0+

0i+ 0j + 0k).
As for a pure translation of t = (tx, ty, tz) with no

rotation, the corresponding dual quaternion is (1 + 0i +

0j + 0k) + ε
(
0 + tx

2 i+
ty
2 j +

tz
2 k

)
. According to these

expressions, a general rigid transformation can be converted
into the corresponding dual quaternion by decomposing it
into its rotational and translational components. For example,

1The square root of dual number R̂ is
√
a0 + εaε =

√
a0 + ε aε

2
√

a0
.



suppose that a 3D rigid transformation is decomposed as
rotational component r̂ followed by translational component
t̂; here, the corresponding dual quaternion is represented by
their product, i.e. t̂r̂.

III. REGRESSION OF A UNIT DUAL QUATERNION ON A
REAL-VALUED VECTOR

In this paper, we propose a formulation of a regression
model for the relationship between a 3D rigid transformation
and a real-valued vector. Let x ∈ R

P and ŷ ∈ Ĥ be a P -
dimensional real vector and the unit dual quaternion of a
3D rigid transformation, respectively. Suppose we have the
problem of predicting a 3D rigid transformation ŷ from real-
valued independent variables x = (x1, · · · , xP ), where N
observations of {ŷn,xn}Nn=1 are given.

As supposed in the traditional linear regression method, we
assume that the dependent variable is predicted as a linear
combination of the independent variables with an intercept.
In this problem, each of the independent variables is a real
value and the dependent variable is a unit dual quaternion.
Thus, the linear combination can be considered as a linear
blending of (P + 1) unit dual quaternions as

ŷ′n = f(x̃n, b̂), (6)

where ŷ′n is the predicted dependent variable, x̃n =

(1, xn1, · · · , xnP )� ∈ R
P+1, b̂ =

(
b̂0, b̂1, · · · , b̂P

)�
∈

Ĥ
P+1 is a vector of unit dual quaternions, which corresponds

to the coefficients of the traditional linear regression model,
and f(x̃, b̂) : RP+1 × Ĥ

P+1 �→ Ĥ is a blending of unit dual
quaternions b̂ with weights x̃n. Given this, the problem is
then formulated as the problem of obtaining b̂ that minimizes
prediction error

∑
n |ŷn − ŷ′n|.

Algorithms for blending dual quaternions, i.e. dual quater-
nion linear blending (DLB) and dual quaternion iterative
blending (DIB), have been proposed in [10] as described in
Algorithm 1. In brief, DLB computes the linear combination
of unit dual quaternions simply, and then normalizes it to
ensure the magnitude equals 1. The computation here is
simple, but the results may not be theoretically optimal. Con-
versely, DIB is an iterative algorithm that finds theoretically
optimal blending result q̂ with sufficiently small error ‖ê‖
in the same manner as that proposed in [8]. According to
geometric algebra, the error is defined as the weighted sum
of log(q̂∗b̂i), which is the distance from q̂ to b̂i on the tangent
space at q̂ (see Fig.1–a). Since the error here is not defined
in a closed form, it is not trivial to solve it analytically. This
is why DIB takes an iterative approach in finding the optimal
solution numerically.

In [2], Buss et al. discussed the convergence rate of such
iterative blending algorithms (though not for dual quaternion,
rather for points on a d-dimensional sphere in R

d+1), assum-
ing that the blending weight is non-negative and the sum of
the weights equals 1. These assumptions are also satisfied
in the context of [10]; however, in our case, x̃n can be an
arbitrary (P+1)-dimensional real vector that does not satisfy
these assumptions. This means that there is no guarantee of

Algorithm 1: Dual quaternion Iterative Blending (DIB)
in [10]

Input: Unit dual quaternions b̂ = (b̂0, · · · , b̂P ),
convex weights x = (x0, · · · , xP ), desired precision d
Output: Blended unit dual quaternion q̂

ê = 0, q̂ = DLB(x, b̂) =
∑P
i=0 xib̂i

‖∑P
i=0 xib̂i‖

repeat
q̂ = q̂ exp (ê)

ê =
∑P

i=0 xi log
(
q̂∗b̂i

)
until ‖ê‖ < d
return q̂

b̂i

      ^  ^log q* bi
q̂

^(a) tangent space at q

b̂i

q̂1

      ^log q       ^log bi

(b) tangent space at identity

Fig. 1. Distance between unit dual quaternion â and b̂, with (a) and
(b) presenting the mathematically ideal distance adopted by DIB and our
relaxation, respectively.

convergence for the iterative algorithm. Hence, we explore
another way to approximately solve this problem.

In DIB, error ‖ê‖ was formulated as the norm of the
weighted sum of log(q̂∗b̂i) . Since q̂ is unknown, it becomes
difficult to evaluate the error in the closed form; thus, the
iterative algorithm is adopted to solve the problem. There-
fore, we introduce the following two approximations. First,
we approximate this error by evaluating the distance from q̂
to the weighted sum of b̂i on the tangent space at identity, not
at q̂, as illustrated in Fig.1–b. This approximation is known
as the first order approximation through Baker–Campbell–
Hausdorff (BCH) formula in Lie algebra [18]. This changes
the error in blending to ê = log q̂ −∑P

i=0 xi log b̂i. Second,
we modify the blending algorithm so as to initialize q̂ by
identity, not via DLB, as in algorithm 1. Accordingly, we
formulate the blending in linear regression as

f(x̃, b̂) := exp
(
x̃� log b̂

)
, (7)

where log b̂ =
(
log b̂0, · · · , log b̂P

)�
. This is analytically

solvable regardless of whether the assumptions on the
weights are satisfied. Equation 6 can then be rewritten as

log ŷ′n = x̃�
n log b̂. (8)

The above simply becomes a linear combination through the
logarithm map, so we regard this as a usual linear regression
problem.

For the given observations, b̂ is obtained by minimizing
the residual |ŷn − ŷ′n|. By following the same approxi-
mations introduced above, the residual is also defined by
evaluating the distance on the tangent space at identity.



Eventually, the error term is formulated as∥∥∥ê(b̂)∥∥∥ =
∑
n

∥∥∥log ŷn − x̃�
n log b̂

∥∥∥ (9)

Next, the formulation becomes quite similar to the linear
regression of a real variable and can be solved as

log b̂ =
(
X̃

�
X̃

)−1

X̃
�
log ŷ, (10)

where X̃ = (x̃1, · · · , x̃N )
�, and log ŷ =

(log ŷ1, · · · , log ŷN)
�. Using the obtained log b̂, the

formula below provides a prediction of the 3D rigid
transformation represented by unit dual quaternion ŷ′ for
arbitrary independent variables x.

ŷ′ = exp
(
x̃� log b̂

)
(11)

IV. EXPERIMENTS

A. Modeling Articulated Motion

Here, we present a calibration problem of a simple wear-
able motion capture device. Suppose a finger with two rota-
tional joints, as illustrated in Fig.2–a and a sensor is attached
along the finger to capture the degree of bending. For such a
device, the calibration can be achieved via regression analysis
where the joint locations are unknown. In particular, we solve
the calibration problem that maps the joint angles x to a 3D
rigid transformations ŷ ∈ SE (3) of the end-effector (i.e. the
distal phalanx) relative to its root (i.e. the proximal phalanx)
from a few observations {ŷn,xn}Nn=1. If the joint locations
are given, this was easily solvable as forward kinematics. If
the end-effector is directly connected to the root via single
joint, its location can be estimated with some methods [3],
[4]. However, these methods are not applicable since there
are multiple joints between the end-effector and the root.

First, we will show the stability and the robustness of
the proposed method with synthetic data by controlling the
number of training samples and the level of additive noise.
Then, we will show the actual use of the proposed method
to real data using a simple equipment.

1) Generating Synthetic Data: To simulate actual obser-
vations, we suppose that the distal phalanx has four markers.
For M kinds of joint angles xm, we generate 3D position of
markers Pm = (p1m, · · · ,p4m). We set 26 steps for both
x1 and x2 independently, so totally M = 676 sets of data
are generated. Figure 2–b presents examples of the data.

In this experiment, we choose a subset of the data as
observations {ŷn,xn}Nn=1 for training and use whole dataset
for accuracy evaluation. We add Gaussian noise on both P n

and xn with various noise levels, σ = 10−3, 10−2, 10−1, 100.
Here, the unit is mm for P n. We define ŷn as the 3D rigid
transformation from P 0 to P n by the algorithm proposed in
[9]. Here, P 0 is the marker position of a reference posture,
which corresponds to x0 = (120, 120).

x
2

x
1

rigid transformation y

joint angles

(a)

x
1

x
2

0 120 250

250

120

0

(b)

Fig. 2. Synthetic data: (a) Kinematic model of a finger. (b) Examples
of synthetic data; although the phalanges are displayed for reference, the
3D position of the markers (displayed as green dot in the images) and
corresponding joint angles are the only data provided by the dataset.

2) Comparisons with Other Methods: To present the ad-
vantages of our proposed method, we compare the accuracy
with several methods listed in Table I.

In addition to our proposed method, we evaluate two types
of regression methods in our experiments. The first one uses
DIB or DLB to substitute for Eq.7 in the regression of a
unit dual quaternion, which can be addressed as the direct
extension of [10]. For example, a regression with DLB can
be formulated as

b̂DLB
i =

{(
X̃

�
X̃

)−1

X̃
�
ŷ

}
i∥∥∥∥

{(
X̃

�
X̃

)−1

X̃
�
ŷ

}
i

∥∥∥∥
(12)

ŷDLB =
x̃�b̂

DLB∥∥∥x̃�b̂
DLB

∥∥∥ . (13)

The second type of method uses multiple real-valued
regressors to predict the transformation parameters. There
are many choices for representing 3D rigid transformations



TABLE I
THE METHODS EVALUATED IN THIS EXPERIMENTS.

ID Regression methods
(a) the proposed method
(b) DIB based regression of unit dual quaternion
(c) DLB based regression of unit dual quaternion
(d) SVRs for elem. of quaternion and translation
(e) SVRs for elem. of unit dual quaternion
(f) Ridge regressions for elem. of quaternion and translation
(g) Ridge regressions for elem. of unit dual quaternion

and the regressors, including nonlinear approaches. As an
example, method (d) represents a 3D rigid transformation as
the combination of the unit quaternion and the translation.
This method has seven (i.e. four for quaternion and three
for translation) regressors independently trained from the
given observations. At the prediction stage, each element is
predicted independently. Since the norm of the quaternion
must be 1, the predicted elements of the quaternion are
normalized to ensure that they represent a 3D rotational
transformation. We also used the same approach for a unit
dual quaternion with eight regressors. As for the regression
method, we used ridge regression and a support vector
regression (SVR) with a radius basis function kernel. Since
these methods have some parameters to be tuned, e.g. λ for
ridge regression, we adopted grid search over a parameter
grid.

3) Experimental Results and Discussion: We compared
the methods via accuracy of the prediction. For independent
variables x, we used (x1, x2, x1x2)

�. We evaluated the
accuracy with various noise levels on different sizes of
observations, i.e. N = {32, 92, 262}. To evaluate accuracy,
we predicted marker positions and compared them with
noise-free data by calculating mean distances. Figure 3 shows
the results in log scale.

Overall, our proposed method (a) achieved the best accu-
racy for all cases. Especially when the noise level is low, the
accuracy was less than 0.5 mm and significantly better than
the others. This indicates that our proposed regression model
can describe the given motions well.

Conversely, our results show that method (b) could not
model the motions at all since DIB failed to converge despite
it has precise error metric. Even method (c) achieved worse
results than ours. Although the difference between methods
(a) and (c) lies only in blending function f(x̃n, b̂), the
accuracy was significantly different. This supports that our
approximation was appropriate.

From the results of methods (d)–(g), it is indicated that
the SVRs could model the motions better for closed test
(N = 676) when the noise level is small. When the number
of samples is limited, method (g) seems the best among them.
Meanwhile, our proposed method (a) always outperforms
the others by successfully handling the motion through
geometric algebra.

4) Limitations due to Approximations: Our formulation
currently approximates the blending function as Eq.7. Obvi-
ously, this approximation is based on the assumption that ŷ
to be predicted is close to the identity transformation, which

corresponds to no rotation and no translation.
As mentioned in Section IV-A.1, we defined the reference

posture, which corresponds to the identity transformation, as
the posture of x0 = (120, 120), where x1, x2 ∈ [0, 250].
Since x0 was defined in the middle of the range, the
dependent variable was naturally supposed to have a 3D rigid
transformation close to the identity.

To validate this approximation, we attempted to break the
above assumption by taking x′

0 = (0, 0), which corresponds
to a limit of the range. Figure 4 presents the accuracy
comparison among the different settings of the reference
posture. Results show that the accuracy of using x′

0 was sig-
nificantly degraded because the observations contained large
transformations that were rotationally over π. Conversely,
when the observations are limited (N = 9), the accuracy
degradation was small, in which the observations did not
contain such large transformations. In the dual quaternion
representation, the rotation of angle θ > π is treated as
that of angle 2π − θ, breaking the linear relationship in
the regression model; thus, the accuracy was significantly
degraded. If such large transformations are included in the
observations, additional care for them will be required, which
is a goal of our future work. Excepting that, our results show
that the approximation slightly affects accuracy.

5) Experiments using Real Data: We also demonstrated
the given problem using real data in which we predicted
the position and orientation of the fingertip from the output
of a flex sensor. Although an index finger potentially has
2DOF, the joint angles are strongly correlated and it can be
approximately treated as 1DOF [13]. Thus, we used single
flex sensor to measure the degree of bending. Figure 5
presents the setup used for this experiment. In general, a flex
sensor increases its resistance when it is bent. To observe the
degree of flexion of a finger, we attached the sensor along
the index finger by a fingerstall and fastener tape. We used
this output s to make the independent variable of regression
as x = (s, s2)�. We also defined the dependent variable
as the 3D rigid transformation of the fingertip relative to the
proximal phalanx. To measure it, we placed two AR markers
on the distal and proximal phalanges in the observation stage,
capturing 3D rigid transformations of them by a camera [7].

In the prediction stage, we removed the marker on the
distal phalanx. Using the constructed regressor, we obtained
3D rigid transformation ŷ′ from the output of the flex sensor.
We measured the AR marker on the proximal phalanx and
predicted the position and orientation of the fingertip by
multiplying by ŷ′. In Fig.5, the prediction result is illustrated
by an arrow in the captured image. Although the flex sensor
does not accurately provide the joint angles, instead only
showing how the finger flexes, our regressor also achieved
good prediction in this experiment from only a few observa-
tions.

B. Modeling Elastic Shape Deformation using Real Data

1) Problem Settings: Next, we present a problem of mod-
eling elastic deformation of a real object. In order to apply
the regression approach, we need to suppose some observable
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Fig. 3. Accuracy evaluation for various methods with various noise levels and the sizes of observations on the dataset. We add noise with four kind of
levels onto both P n and xn of the dataset. Each chart presents the relationship between the size of observation and the prediction accuracy.
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Fig. 4. Comparison between the reference postures, with “center” and
“limit” adopting postures x0 = (120, 120) and x′

0 = (0, 0) as reference
postures, respectively, with i = 1, 2.

independent variables that control the deformation. As an
example of such deformation, we use a motorized vertical
stage to squash a balloon as illustrated in Fig.6–a. Using the
apparatus, the deformation is accurately controlled by the
height of the stage w.

Although there are many ways to represent a deformation
of an object, we represent the deformation as the 3D rigid
transformation of a small patch on the object surface. If we
can track the small patches on the balloon surface from the
observations while the balloon is squashed, the deformation
of the balloon can be acquired. Since the deformation is
elastic, the transformation will smoothly varies along the
surface. In order to model this variety, we also define local
coordinate system (u, v) along the surface as illustrated in
Fig.6–b, and use them as independent variables as well.

In short, the independent variables x = (u, v, w) and the
dependent variable ŷ is defined as the 3D rigid transformation
of a small patch on the surface of the balloon. For measuring
them, we put some AR markers [7] on the surface of the
balloon in a grid. We can assign (u, v) for each marker
according to the grid and track the 3D rigid transformation
of them. In order to accurately acquire the transformation,
we used two cameras to measure the 3D position of the

flex sensor

AR marker

Camera

observation stage

x=79
x=179

x=207

x=219

x=64 x=142

x=190y^

x

prediction stage

Fig. 5. Settings for the experiment with real data and some results of
the proposed method. The green triangles in the prediction stage show the
estimated position and orientation of the marker that placed on the fingertip
in the observation stage. See the video as well for qualitative evaluation.

corners of the markers using stereo technique. Then, the 3D
rigid transformation is calculated by the algorithm proposed
in [9] as well as in Section IV-A.

2) Experimental Results and Discussions: We built an
apparatus Fig.6–a and observed a deformation of a squashed
balloon. The size of the balloon was about 200mm in
diameter, 20 markers of 15mm square were put on the
balloon, and two cameras were set about 1.5m away. The
displacement of the vertical stage for squashing the balloon
was 140mm. The cameras captured images with an interval
of 2.5mm of the displacement. Figure 7–a presents examples
of captured image. Although we put 20 markers, only 15 of
them were used since the rest could not be detected on one
of the cameras. As the result, M = 15×(140/2.5+1) = 855
samples of xm = (u, v, w) and ŷm were captured in total.
Here, we use the marker of x = (50, 50, 50) as a reference
marker and ŷn is defined with respect to it.

As well as Section IV-A, we compare the accuracy of the
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Fig. 6. Experimental setup for modeling elastic deformation by regression
using real data. (a) shows the setup for the experiment. Two cameras are
used to perform 3D measurement. A motorized vertical stage is used to
control the deformation. (b) shows the independent variables (u, v, w).
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0mm 140mm

(a) Captured images

Fig. 7. Observation of a squashed balloon deformation. Totally, 57 frames
are captured and 3D position and orientation of 15 markers are measured for
each frame. Some input images and corresponding value of w are presented
in (a). For training the regressor, we choose 15 samples from 57 × 15 =
855 samples using k-means clustering. (u, v, w) and corresponding marker
position and orientation is presented in (b).

proposed method with other methods with various number
of training samples. For training, we choose N samples out
of M observations. Here, k-means clustering algorithm is
applied for xm and the center of each cluster is selected to
simply perform uniform sampling in the parameter space of
x. Figure 7–b visualizes the training samples when N = 15.
Each square represents the marker in 3D and xn is also
indicated.

We made several training datasets of N =5, 10, 15, 20, 30,
and 855, and trained the regression methods as enumerated
in Table I. For (a)–(c) and (f)–(g), we prepared three types
of explanatory variables that are the permutations of p
independent vectors x̃ to emulate polynomial regression2.
For (a)–(c), we also modified Eq.10 to make it as ridge
regression with l2 regularization. As a result, these methods
also have p and λ as parameters of regressor as well as other
methods. Thus, we also adopted grid search over a parameter
grid of p = {1, 2, 3} and λ = {10−5, 10−4, 10−3, 10−2} for
(a)–(c). For the trained regressor, the prediction accuracy is
evaluated using the 3D position of the corners of the markers
of M samples.

Figure 8 presents the results of the methods (a)–(g) for

2p = 1 : (1, u, v, w), p = 2 : (1, u, v, w, uv, vw,wu, u2, v2, w2), and
so on.
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Fig. 8. Errors on predicting the corners position of the markers of various
methods. Only the proposed method achieved the meaningful results. All
of the other methods obviously failed to model the elastic deformation.

various size of training samples in log scale. Similar to
the results in Fig.3, the proposed method obviously out-
performs the other methods. As the errors imply, only the
proposed method could model the deformation well and
the results of the other methods were meaningless. We
also visualize these results to show it. Figure 9–b are the
results of the proposed method trained from 15 samples,
which are depicted in Fig.6–b. Here, the viewpoint of this
figure is slightly changed from the original image to show
that the markers are predicted in 3D. This shows that the
proposed method successfully models the changes on the
3D rigid transformation of the markers. Since the proposed
method models the deformation along the coordinate (u, v)
continuously defined along the surface, it can also recover the
continuous shape. Figure 9–c presents upsampled shapes. On
the contrary, even the best results among the others in Fig.8,
e.g. (e) and (g) with N = 855, form completely different
shape deformation as shown in Fig.9–d and e, respectively.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a regression method of
predicting 3D rigid transformations on real-valued vectors.
By introducing an approximation on error metric for the
blending of unit dual quaternions, our regression model is
formulated in the closed form. This approximation makes
the formulation easy to understand, easy to implement, and
computationally efficient. We have used articulated motion
and elastic deformation as examples and experimentally
demonstrated that geometric algebra can help to formulate
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(a) Observed image

(b) Predicted markers by the proposed method with 15 samples

(c) Interpolated surface deformation by the proposed method

(d) Interpolated surface deformation by (e) with all samples

(e) Interpolated surface deformation by (g) with all samples

Fig. 9. Visual results of the regression. The proposed method appropriately
describe the deformation of the balloon as presented in (b) and (c). The
squares in (b) correspond to the markers on the balloon. (c) shows the
smooth surface defined by the regressor along (u, v). Meanwhile, SVR
approaches obviously fail to model the deformation as shown in (d) and
(e) even if all the samples are used. Note that the same variables are used
as the independent variables for the regressors. See the video as well for
qualitative evaluation.

the transformation in simple form even if each parameter of
the representation has nonlinearity. Our results have shown
that our proposed method is applicable to accurately model
both articulated motion and elastic deformation from a small
number of observations. Especially, the achievement of the
proposed method opens up new possibilities in the modeling
3D shape and its deformation of a real object.

In future work, we will consider more accurate approx-
imation by taking higher order terms in the BCH formula
into account. Also, we plan to extend our method to support
more advanced statistical methods.
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