機械走査式ハイパースペクトルイメージングにおける環境光変動補償 Compensation for Temporal Inconsistent Illumination on Whisk-broom Hyperspectral Imaging

小川 岳大[†] 船富 卓哉[†] 田中 賢一郎[†] 久保 尋之[†] 向川 康博[†]

Takehiro Ogawa[†] Takuya Funatomi[†] Kenichiro Tanaka[†] Hiroyuki Kubo[†] and Yasuhiro Mukaigawa[†]

*奈良先端科学技術大学院大学 * Nara Institute of Science and Technology

E-mail: † {ogawa.takehiro.ol1, funatomi, ktanaka, hkubo, mukaigawa }@is.naist.jp

1.はじめに

コンピュータビジョンの分野における近年のセン シング技術の著しい発展により、ヒトの目を超えた知 覚の情報処理が行われている.例えば、人間が知覚す る赤青緑の波長情報を拡張したハイパースペクトルイ メージングは農作物などのモニタリングや生医学工学, バイオメトリクスおよび顔認識などのアプリケーショ ンで活用されている.

RGB 画像から分光画像を推定するいくつかの手法 [1, 2, 3, 4]が提案されているが,任意のシーンに対す る精度を保証するものではない.そこで我々は正確な 分光画像を取得するため,図 1(a)に示すように高分解 能分光計と高速回転ミラーシステムで構成される計測 システムを構築した.このシステムでは高速回転ミラ ーによってシーンを1行ずつ走査しながら分光計によ って計測を行い,その結果を画像として合成する.図 1(b)の青い矢印は走査方向を示している.このような システムは何千バンドもの分光画像の取得を可能にす るが,シーン全体を走査するため計測が長時間になる という欠点もある.従って環境光の時間的変動がある と,顕著にその影響を受けてしまう.

そこで本稿では,計測システムが持つ自由度の高い 走査性と環境光の分光分布における低ランク性に基づ き,環境光変動を補償する手法を提案する.具体的に は,空間の走査方向に対し垂直な1ラインの走査を追 加し,これと分光分布の低ランク性によって分光画像 における環境光変動を補償する.実環境ならびに実験 室環境における実験を通して,提案手法の有効性を確 認した.

2. 分光画像の数理モデル

分光画像は一般的に,空間方向の2次元に加え,波 長方向の1次元での値を持つ3次元データである.本 稿では,環境光の時間的変動に関しても考察を行うた め,分光画像を空間座標(*u*,*v*)および波長λに加えて,時 間*t*も合わせた4次元変数を持つ関数*S*(*u*,*v*,*t*,*λ*)として 表す.

計測対象が動かないような静的シーンを計測する

際,環境光に時間的変化があると仮定した場合,分光 画像*S(u,v,t,λ)*は次のように分解できる.

 $S(u,v,t,\lambda) = L(t,\lambda)R(u,v,\lambda)$ (1) ここで,式中の $L(t,\lambda) \ge R(u,v,\lambda)$ はそれぞれ,空間的に 均一な環境光と時間的に不変なシーンの反射率あるい は透過率である.本稿では,環境光の変動を受けた分 光画像 $S(u,v,t,\lambda)$ を時間 t_r における一定の環境光 $L_r(\lambda) =$ $L_r(t_r,\lambda)$ 下での分光画像に変換することを目標とする. これは次のように定義される,

 $S_r(u, v, \lambda) = L_r(\lambda)R(u, v, \lambda)$ (2)

機械走査式のシステムでは,図1(b)に示すように,分 光画像は複数の行から構成される.各行の走査は数秒 で終了するため,その間の環境光変動が無視できるほ ど小さいと仮定すると,計測時刻は画像の行の関数 t(u)として表され,計測される分光画像Swb(u,v,t(u),λ) は次のように定式化される.

$$S_{wb}(u, v, t(u), \lambda) = L(t(u), \lambda)R(u, v, \lambda)$$
(3)

3. 提案手法

3.1 補償のための一列走査の追加

*Swb*の各行は時間的な環境光変動の影響を受けており、その影響を補償するための情報が不足している. そこで、複数行の走査からなる通常の計測に加え、図 1(b)の赤い矢印に対応する単一列の走査を追加する. この一走査中の環境光変動は各行と同様に無視できる と仮定すれば、追加の一走査の計測結果*Sr*(*ur*,*v*,*λ*)は次 のように定式化される.

$$S_r(u_r, v, \lambda) = L_r(\lambda) R(u_r, v, \lambda)$$
(4)

3.2 単純な環境光変動補償手法

図 1(b)の青矢印と赤矢印の交点に対応する画像内 の任意の行と追加の一走査の列は1画素を共有する. したがって、*SwbとSr*の対応画素を比較することで、各 行の波長方向における環境光変動の補償係数*Cn(v, \lambda)*を 次式のように計算できる.

$$C_n(v,\lambda) = \frac{S_r(u_r, v, \lambda)}{S_{wb}(u_r, v, t(u), \lambda)} = \frac{L_r(\lambda)}{L(t(u), \lambda)}$$
(5)

この計算された係数を同一行の画素値に乗算し, *S_r*が 計測された時刻の環境光下の行のスペクトルを推定で きる.単純な手法として,環境光変動に対する補償を 以下に示す.

$$S_n(u,v,\lambda) = C_n(v,\lambda)S_{wb}(u_r,v,t(u),\lambda)$$
 (6)
ここで, $S_n(u,v,\lambda)$ は単純な手法によって補償された分
光画像である.

共有画素が反射率や透過率を標準白色板のような 均一な分光特性を持つ場合,単純な手法であっても高 精度に環境光変動を補償することができる.しかし, 画素が捉えた物体が偏った分光分布を持つ場合,*Swbと Sr*の両方において,特定の波長で強度が小さくなる可 能性がある.このような波長に対する補償係数は,分 子と分母の両方が小さくなるため,不安定になる.

任意のシーンを計測した場合,行内の別の画素が異 なる分光特性を持つ物体を捉えることは十分にありう る.しかし,そのような物体の分光分布を不安定な係 数によって補償した場合,大きな誤差を生む可能性が ある.

3.3 環境光の低ランク性を利用した補償

そこで不安定な係数の影響を抑制するために,提案 手法では係数推定に制約を加える.環境光の分光特性 が低ランク性を持っていることが一般に知られており [5],以下のように少数基底を用いて環境光の分光分布 を近似できる.

$$L(t,\lambda) \simeq \sum_{k} w_{k}(t) l_{k}(\lambda)$$
(7)

ここで、 $l_k(\lambda) \ge w_k(t)$ は基底となる分光分布とその重み である. $L_r(\lambda)$ は定数として扱うことができるので、式 (2)を以下のように近似する.

$$C_{n}(v,\lambda) \simeq \sum_{k} w_{k}(t(v)) \frac{L_{r}(\lambda)}{l_{k}(t(v),\lambda)} l_{k}(\lambda)$$
$$= \sum_{k} w'_{k}(v) l'_{k}(\lambda)$$
(8)

ここで, $C_n(v, \lambda)$ は少数の基底 $l'_k(\lambda)$ の線形結合で表現で きると仮定した.

ー般的に求める補償係数 $C_n(v, \lambda)$ はその逆数である $\frac{1}{C_n(v,\lambda)}$ であればより正確に少数の基底 $l_k(\lambda)$ の線形結合 として表せるが,式(6)の計算で数値計算的に不安定に なるため, $C_n(v, \lambda)$ を直接近似することとした.

ここで、 $C_n(v, \lambda)$ は理想的には $\sum_k w'_k(v)l'_k(\lambda)$ と近似 されるが、 $S_r(u_r, v, \lambda)$ の誤差による外れ値も一部存在す る.そこで式(5)のように、ランクkの低ランク係数行列 $C_l(v, \lambda) = \sum_k w'_k(v)l'_k(\lambda)$ とスパースな外れ値成分 C_s の和 として $C_n(v, \lambda)$ を表す.

$$C_n(\nu,\lambda) = C_l(\nu,\lambda) + C_s \tag{9}$$

低ランク行列を抽出するために Robust PCA [6]を使用 した.

$$\min_{C_l(\nu,\lambda),A} \|C_l(\nu,\lambda)\|_* + \mu \|C_s\|_1$$
(10)

subject to $C_n(v, \lambda) = C_l(v, \lambda) + C_s$

ここで $\|\cdot\|_{*}$ と $\|\cdot\|_{1}$ はそれぞれ核ノルムと L₁ ノルムを 表し、定数 μ はスパース性を課す第二項の重みを決め るパラメータである、本稿の実験では $\mu = 10^{-6}$ に設定 した.

 $C_n(v,\lambda)$ を低ランク係数 $C_l(v,\lambda)$ とスパース行列 C_s に分解 し、補償には低ランク係数を利用することで、十分な 精度で補償係数を復元できる.復元された係数は他の 画素における環境光変動を効果的に補償すると期待さ れる.環境光変動に対する補償は以下の通りである.

 $S_{es}(u, v, \lambda) = C_l(v, \lambda)S_{wb}(u_r, v, t(u), \lambda)$ (11)

4.実験

本研究では分光計測のために一点計測の分光計と 高速回転ミラーシステムからなる計測システムを構成 した.図 1(a)にシステム構成を示す.分光計は Maya2000 Pro (Ocean Optics, Inc.)であり,波長 200~ 1200 nm を約 0.5 nm の分解能で 2,068 バンドの計測が 可能である.ミラーシステムは RobotEye REHS25 (Ocular Robotics Ltd.)で,水平方向に 360°, 鉛直方 向に 70°の範囲を最大 0.01°の空間分解能で計測が可 能であり,これらの装置は光ファイバを用いて接続さ れている.

4.1 実験室環境実験

環境光が制御された室内で、補償手法を評価する実 験を行った.本実験では出力が可変なハロゲン光源と 2つのLEDを用いた.図2に示すようなシーンにおい てハロゲン光の強度を手動で時間的に変化させ、光源 変動下での計測環境を再現する.

まず、LED だけが点灯している一定の環境光下で 分光画像を計測した.この結果を真値 $S_{gt}(u_r,v,\lambda)$ として 評価に用い、補償のためにこの画像の任意の一列を式 (2)の $S_r(u_r,v,\lambda)$ として使用した.また、ハロゲン光源の 出力を変化させることで環境光変動が起きている分光 画像 $S_{wb}(u_r,v,t(u),\lambda)$ の計測も行った.それぞれの手法 による補償結果を真値の分光画像と比較することで評 価した.

環境光変動補償の精度を定量的に評価するために,

画像電子学会 The Institute of Image Electronics Engineers of Japan

図2 実験環境

図4 各手法の誤差評価

比較

以下の式によって計算される波長方向の絶対誤差の平 均を計算した.

$$err(u,v) = \frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} \left\| S(u,v,\lambda) - S_{gt}(u,v,\lambda) \right\|$$
(12)

式中の|Λ|は画素のバンド数である.

図3は3つの波長(λ=435.8, 546.0, 635.8nm)を 用いて環境光変動が生じている分光画像を RGB 画像 として示している.両手法の補償結果は,時間的な環 境光変動下で計測された分光画像よりも真値に非常に 近いことが定性的にわかる.

図4は両手法の結果について式(12)の誤差を用いて 比較したものである.図からわかるように提案手法に よる補償結果が画像全体でより誤差の小さい結果を示

図6 参照列選択に対する頑健性の比較

している.図5は,ある点(POI)と対応する補償のた めに参照した点での分光分布を示している.どちらの 補償結果も真値に近いが,単純な手法の結果はλ=419 ~424,868~875nmのようないくつかの波長において 大きな誤差が生じている.また,これらの波長におい て,参照点のスペクトルは非常に小さい信号を持つこ とがわかった.一方で,提案手法は低ランク性とスパ ース性を用いたことにより他の波長における分光分布 と同様に計測を補償することできた.

これまでに示した一連の結果は一例に過ぎず,補償 結果は参照列に依存すると考えられる.そこで,補償 のために参照した列の選択に対し,両手法がどれだけ 頑健であるかを検証した.参照列の選択に関する画像 全体の誤差の変化を図6に示す.なお,ここでは補償 係数として $\frac{1}{C_n(v,\lambda)}$ と $C_n(v,\lambda)$ を用いた場合でそれぞれ単 純な手法と提案手法の誤差を評価した.単純な手法で はいずれの場合も差がないが,提案手法では明らかに $C_n(v,\lambda)$ を用いたほうが良い性能を示した.また,図7 は選択した参照列を画像と比較できるように示したも のである.単純な手法では参照列が暗い色の部分を含 む時に結果が悪化することが見て取れるが,提案手法 はそれよりも一貫して優れており,提案手法の頑健性 を示していると言える.

4.2 実環境実験

実環境での実験を兼ねたデジタルアーカイブのた

図8 実環境実験での定性的評価

図9 実環境実験での補償後分光分布の比較 めの研究の一環としてフランス・アミアンにある大聖 堂のステンドグラスを透過した太陽光を計測した. RobotEye は最大 25 ポイント/秒の高速スキャンが可能 であるが,高い空間解像度で分光画像を計測するには とても時間がかかる.例えば,300×300の解像度で計 測するには約1時間かかる.この計測は自然の太陽光 下で行われるので,雲や地球の自転などの自然によっ て引き起こされる環境光強度の時間的変動の影響を受 ける.ステンドグラスの計測は次のように複数回実施 した.

・シーン全体を 400×200 解像度, 3217.7 秒で計測

・補償のための追加の一走査を15.6秒で計測

計測したステンドグラスの分光画像に両手法を適 用した. 図8に RGB 画像と両手法による補償結果を 示す. 図9に,ある点 (POI) での分光分布と,それに 対応する参照点の分光分布を示す. 真値がないため定 量評価はできないが,単純な手法による補償では,実 験室環境での実験と同様,いくつかの波長において外 れ値のような不自然に大きな値があった. 提案手法で は単純な手法より良い補償ができていると考えられる.

5.まとめ

本稿では、機械走査式ハイパースペクトルイメージ ングに向けた環境光の時間的変動を補償する手法を提 案した.この手法は、環境光の変動が1ラインの走査 の間では無視できると仮定し、ハイパースペクトル画 像の行間の変化を補償する.標準的な2次元の走査に 加えて, 走査方向に直交する追加の走査を実施するこ とを提案した.参照から直接推定された補償係数は不 安定になる場合があるが,環境光の分光特性に低ラン ク性を利用することでその不安定性を抑制できること を示した.制御可能な照明環境を用いた室内環境での 実験を通して補償手法を定量的に評価し,自然光下で 行われた実験での結果を示した.

謝辞

本研究の一部は, 独立行政法人日本学術振興会とフラ ンス MAEDI との二国間交流事業(共同研究), および JST CREST JPMJCR1764 の助成を受けた. Amiens 大 聖堂での実験をご支援頂いた El Mustapha Mouaddib 教授, Guillaume Caron 教授(Picardie Jules Verne 大 学), Ce'dric Demonceaux 教授(Burgundy 大学), Nicolas Ragot 博士(ESIGELEC)に謝意を表します. また Robust PCA の実装をご提供頂いた松下康之教授 および竹村 朋華氏(大阪大学)に感謝申し上げます.

文 献

- Jia, Y., Zheng, Y., Gu, L., Subpa-Asa, A., Lam, A., Sato, Y., Sato, I.: From rgb to spectrum for natural scenes via manifold-based mapping. In: 2017 IEEE International Conference on Computer Vision(ICCV), pp. 4715-4723 (2017). doi:10.1109/ICCV.2017.504
- [2] Choi, I., Jeon, D.S., Nam, G., Gutierrez, D., Kim, M.H.: High-quality hyperspectral reconstruction using a spectral prior. ACM Transactions on Graphics(Proc. SIGGRAPH Asia 2017) 36(6), 218– 113 (2017). doi:10.1145/3130800.3130810
- Baek, S.-H., Kim, I., Gutierrez, D., Kim, M.H.: Compact single-shot hyperspectral imaging using a prism. ACM Transactions on Graphics(Proc. SIGGRAPH Asia 2017) 36(6), 217-112 (2017). doi:10.1145/3130800.3130896
- [4] Chi, C., Yoo, H., Ben-Ezra, M.: Multi-spectral imaging by optimized wide band illumination. International Journal of Computer Vision 86(2), 140 (2008). doi:10.1007/s11263-008-0176-y
- [5] Judd, D.B., MacAdam, D.L., Wyszecki, G., Budde, H.W., Condit, H.R., Henderson, S.T., Simonds, J.L.: Spectral distribution of typical daylight as a function of correlated color temperature. J. Opt. Soc. Am. 54(8), 1031-1040 (1964). doi:10.1364/JOSA.54.001031
- [6] Cande's, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11– 11137 (2011). doi:10.1145/1970392.1970395