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The latest robust estimators usually take advantage of density estimation,
such as kernel density estimation, to improve the robustness of inlier detection.
However, the challenging problem for these systems is choosing the suitable
smoothing parameter, which can result in the population of inliers being over-
or under-estimated, and this, in turn, reduces the robustness of the estimation.
To solve this problem, we propose a robust estimator that estimates an accurate
inlier scale. The proposed method first carries out an analysis to figure out the
residual distribution model using the obvious case-dependent constraint, the
residual function. Then the proposed inlier scale estimator performs a global
search for the scale producing the residual distribution that best fits the residual
distribution model. Knowledge about the residual distribution model provides
a major advantage that allows us to estimate the inlier scale correctly, thereby
improving the estimation robustness. Experiments with various simulations
and real data are carried out to validate our algorithm, which shows certain
benefits compared with several of the latest robust estimators.

1. Introduction

Robust parameter estimation is fundamental research in the fields of statistics
and computer vision. It can be applied in many estimation problems, such as
extracting geometric models in intensity images and range images, estimating mo-
tion between consecutive image frames in a video sequence, matching images to
find their similarity, and so on. In these problems, the data contains explanatory
data, which also includes leverage elements, and a large number of outliers. The
explanatory data points are usually affected by noise with an unknown bound.
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For example, noise on images depends on the specific sensor, the sensor setting,
and the resolution or motion blur on the captured images. The data may also
contain several structures, such as various lines or planes that appear in pictures
of buildings or range images, and the estimator has to extract inliers correctly to
prevent multiple structures from merging into one or one structure from being
divided into several smaller structures. Therefore, the common requirements for
a modern robust estimator in computer vision are: robustness to various high
outlier rates (high breakdown point 1)), good detection of inliers (or good inlier
bound), and the ability to work with data containing multiple structures.

Although RANSAC 2) is an attractive robust estimator because it is simple and
can tolerate more than 50% outliers, it requires the inlier noise scale from the
user. Several robust estimators also based on random sample consensus have been
proposed to avoid the need for user-defined parameters. These robust estimators
can be classified into two groups according to whether or not they make use
of residual density estimation. The first group consists of estimators 3)–5) that
search the sorted residuals for the boundary between inliers and outliers without
using density estimation. On the other hand, the estimators 6)–9) in the second
group detect the inliers using the residual density estimation. A problem for
the first group is that the estimators are sensitive to small pseudo-structures
in the data and are less robust in real applications. The methods used in the
second group apply a smoothing parameter to estimate the residual density, and
they are therefore not so sensitive to small structures, but instead they have to
deal with the well-known problem of density smoothness. Since the smoothing
parameter for the density estimation is computed before the inlier scale is known,
the density of the residual is usually over- or undersmoothed, which results in
a corresponding over- or under-estimate of the proportion of inliers. On the
contrary, in the experiments with the robust estimator we understand that the
robustness of the estimator depends on the size of the proportion of inliers, that
can be detected by the inlier scale estimator. If the inlier scale estimator detects
only a few inliers or too many inliers, the robustness of the estimator is reduced,
as is shown in the simulation in Fig. 1.

In this paper, we present a new robust estimator, an improvement for RANSAC,
that relies on a novel inlier scale estimator. The proposed inlier scale estimator
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Fig. 1 Estimation error curves in simulation for line fitting with different Gaussian noise
levels. The graph shows the statistical relation between the estimation error and the
ratio between the inlier scale used and the true inlier scale. The results confirm that a
robust estimator should use an inlier scale estimate as close to the true inlier scale as
possible. Too small or too large an inlier scale estimate results in less robustness.

does not detect the inliers directly from the roughly estimated density using a
smoothing parameter. Instead, we apply a matching method to detect inliers by
globally searching the estimated density of the residual to find the most likely
inlier residual distribution. The inlier residual distribution is modeled using a
case-dependent but known constraint, the residual function, which importantly
constrains the inlier residual distribution. This has not been used in any previous
works. In our method, the inlier scale is estimated correctly, thus improving the
estimation robustness.

The structure of our paper is as follows. First, we briefly review previous
works in Section 2, and then we give an overview of the proposed method in
Section 3. Section 4 states the definitions used in the paper. In Section 5, we
carry out a residual distribution analysis for several estimation problems. In
Section 6, we introduce the proposed inlier scale estimate based on the analysis
of the residual distribution and describe the objective function to evaluate the
estimate. Thereafter, various experiments are presented in Section 7 and the
results compared with several popular robust estimators. Finally, we give our
conclusions.

2. Related Works

The least squares (LS) method 1) is a simple basic method for parameter estima-
tion. It has been extended in the M-estimators 1) by replacing the square function
of the LS by a flexible symmetric function with a unique minimum at zero. The
drawback of the simple LS method and M-estimators is the very low breakdown
point. Improved algorithms for the LS method and M-estimators are available
such as the least median squares (LMS) or reweighted LS, reweighted and re-
descending M-estimators 1), and these can achieve a higher breakdown point, up
to 50% of the outliers. However, in a real estimation problem, such as extracting
lines from an intensity image or extracting planes from a range image, where
the outlier rate is much higher than 50%, the LS method and the M-estimators
cannot function properly. Another drawback of the LS method and M-estimators
is the initialization: as a result of improper initialization, the global minimum
may not be obtained. This problem can however, be solved effectively using ran-
dom sampling, as is the case in the well-known solutions LMedS, MSAC 17) and
MLESAC 13).

Some estimators can tolerate higher outlier-rate than 50%. The RANSAC 2)

and Hough transform 10) are the most popular in this category. If the scale of
inliers is supplied, RANSAC can reach a very high breakdown point. However,
the drawback of RANSAC and its subsequent improvements 11)–14) is that they
need a user-defined threshold to distinguish inliers. The Hough transform can
also achieve a very high breakdown point so long as it is able to manage its large
voting space. Certain extensions of LMS, such as MUSE (minimum unbiased
scale estimate) 3) or ALKS (adaptive least kth order squares) 4), can be applied
with high outlier rates, however these have a problem with extreme cases, such
as those with very low or high outlier rates, and are sensitive to small pseudo
structures. Another extension of LMS is MINPRAN (minimize probability of
randomness) 5), which makes an assumption of the outlier distribution. This as-
sumption seems to be strict since outlier distribution is assumed with difficulty.
RESC (residual consensus) 6) computes a histogram of the residuals, then uses
several parameters to compress the histogram, and finally the histogram power
is computed as the score for the putative estimate. It is claimed that RESC can
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tolerate single structure data containing up to 80% outliers, however, it needs
many user-defined parameters to compress the histogram and to detect the inlier
residual distribution, which reduces its adaptiveness. The pbM (projection-based
M-estimator) 7),15),16) is an extension of the M-estimator that uses projection pur-
suit and kernel density estimation (KDE), and can provide a breakdown point
greater than 50%. However, it only works for linear (or linearized) residual func-
tions, such as in linear regression. Another robust estimator that uses KDE is
ASSC (adaptive scale sample consensus) 8). ASSC assumes that the inliers are
located within some special structure of the density distribution; it practically
detects a first peak from zero and a valley next to the peak to locate the inliers.
ASSC can provide a very high breakdown point, around 80%, when applying
the proper bandwidth for the KDE. ASSC has subsequently been improved as
ASKC (adaptive scale kernel consensus) 9). ASKC improves the objective func-
tion of ASSC and the robustness in the case of a high outlier rate. However,
in our experiments, ASKC and ASSC usually underestimated the population of
inliers. The estimated inlier scale for these estimators correlates with their KDE
bandwidth. Therefore, the objective function does not evaluate the estimate pre-
cisely, thus reducing the robustness of the estimators. More information about
the robust estimators can be found in some reviews 17)–19).

3. Overview of Proposed Estimator

In contrast to the pbM, ASSC or ASKC, our proposed method does not com-
pute the inlier scale directly from the estimated residual density, since this only
roughly describes the true distribution and the location of a local peak, global
peak or local valley in the density estimation depends on a smoothing parameter
(bandwidth or binwidth). We estimate the inlier bound by globally searching the
inlier scale estimate that results in the best fit of the residual density to a residual
distribution model. The low density tail of the residual distribution model is not
used for the fitting and is assumed to come from outliers.

In previous methods, the residual distribution of inliers was typically assumed
to be a Gaussian distribution. In our method, we carefully analyze the distri-
bution of inliers using the residual function which constrains the distribution of
residuals. The residual distribution model is determined statistically or mathe-

matically using the residual function. This means that the distribution model of
inlier residuals varies when we apply different residual functions. This analysis
helps the proposed estimator correctly estimate the inlier scale, thereby improv-
ing the robustness.

4. Preliminaries

In this section, we describe the estimation problem and some definitions that
are used in the paper.

Assume the estimation of a structure model with the constraint:
g(θ,X) = 0, (1)

where θ is the parameter vector of the structure, and X is an explanatory data
point. Our estimation problem is then described as:
• Input : N observed data points Xi, i = 1 . . . N , including both inliers and

outliers.
• Output : Parameter θ that describes the data.

In a real problem, each inlier Xt is affected by an unknown amount of noise n:
X = Xt + n. (2)

Therefore, the actual parameters θ cannot be recovered, and some approximation
of θ needs to be estimated. A robust estimator based on random sampling like
RANSAC solves the problem by trying many random trial estimates θ̂, with
the best estimate θ̂∗ being the approximation of θ. In evaluating whether an
estimate θ̂ is good or bad, the estimator can only rely on the statistics of the
error for each data point; this error is called the residual, which is a non-negative
measure in the proposed method. For each model estimation problem, there
are numerous ways of defining the residual function, including using the original
constraint function (1). Generally, however, the residual is defined as:

rθ̂ = f(θ̂,X). (3)
A good definition of the residual is that proposed by Luong, et al. 21):

rθ̂ =
g(θ̂,X)

‖ �g(θ̂,X) ‖ , (4)

where �g(θ̂,X) is the gradient of g with respect to variable X.
In a real problem, the inlier residual is not zero. The standard deviation of these
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Fig. 2 Decomposition of residual density distribution: inlier density distribution and outlier
(other) density distributions. The outlier distribution may consist of a distribution of
the other structure and a distribution of random outliers.

inlier residuals is called the “inlier scale”, and is denoted by σθ̂. The problem
is that σθ̂ is not known, and therefore, an inlier scale estimator tries to estimate
it. This estimate is denoted by σ∗

θ̂
. Once the inlier scale has been found, the

threshold tθ̂ = τσ∗
θ̂

can be decided to distinguish inliers from outliers.
Given an estimate θ̂, and an inlier scale σθ̂, the probability density function for

all residuals is denoted as Pθ̂(r), which is the sum of density functions for inliers
and outliers. The proposed estimator works with data with multiple structures,
and therefore the residual distribution may have multiple modes. A segment of
the distribution that has a mode near the origin is assumed to belong to the inlier
structure, whereas the others belong to the outlier structures. The decomposition
of the residual distribution is illustrated in Fig. 2. The outlier distribution is
usually complicated and unpredictable. However, the inlier distribution can be
well modeled in most problems. In our method, the inlier distribution model
is made using the residual function. The density function for the standardized
distribution model (SDM), with the sample deviation of 1, is denoted as P (ξ), ξ ≥
0. Then, the inlier distribution is estimated by matching the residual distribution
Pθ̂(r) with SDM. Since the tail, with low density, of the inlier distribution is
usually heavily overlapped with the outlier distribution, we do not use the whole
SDM for matching. Only the dense segment of P (ξ) with 0 ≤ ξ ≤ κ that contains
most of population of SDM is used for matching. κ is selected so that the range
0 ≤ ξ ≤ κ contains more than 97% of the population. For example, when the

SDM is the standard Gaussian distribution, we set κ = 2.5. In the following
sections, the SDM is analyzed and modeled using the residual function.

5. Residual Distribution Analysis

In this section, we briefly describe the preliminaries associated with the esti-
mation problem and then carry out an analysis of the residual distribution for
various estimation problems. It is better to assume Gaussian noise on the data
points than to assume a Gaussian distribution of residuals since the residual dis-
tribution is constrained by the residual function. This is because the noise on
data points originates from physical sensors such as a camera in which noise dis-
tribution is usually modeled by a Gaussian distribution. Therefore, we assume
that the noise model for the data points is known and, in this paper, is a Gaussian
of unknown variance. However, due to the residual function (3), the distribution
of residuals is generally different from that noise distribution. Then, we analyze
the distribution model for residuals. Two examples are presented in this section:
line fitting and fundamental matrix estimation.

5.1 Linear Residual
We start the analysis with a well-known problem for a robust estimator, the

line fitting problem, in which the residual function is a linear function of the
parameters. We have a set of N points (x, y), and the parameters of the true line
l are slope (a, b) and intercept c, where a and b are normalized so that a2+b2 = 1.
We denote these parameters as θ = (a, b, c). In most computer vision problems,
the data points are limited within some bound. Inliers are contaminated by noise
with a noise model such that:

x = xt + nx,

y = yt + ny,
(5)

where (xt, yt) is the true point and (nx, ny) is noise added to the point. The
noise scale is assumed to be much smaller than the bound of the data points.

Given an estimate for the estimation of the line fitting problem: θ̂ = (â, b̂, ĉ),
where â2 + b̂2 = 1, the fit of this estimate to the data set is analyzed by the
residuals of all points. We focus on the analysis of the distribution of residuals.
Signed residual r for data point (x, y) is computed as:

r = âx + b̂y + ĉ. (6)
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This is actually the signed point-line distance from (x, y) to the estimated line.
For outliers, regardless of whether the estimate θ̂ is correct or not, the residual
r is still large and is bounded by the same limit [rmin, rmax].

For inliers, r can be decomposed as follows.
r = (âxt + b̂yt + ĉ) + (ânx + b̂ny)

= rt + rn,
(7)

where rt = âxt + b̂yt + ĉ and rn = ânx + b̂ny. It can be seen that r is the sum
of two different variables with different properties. rt is the linear combination
of xt and yt given the estimation parameters â, b̂, ĉ, and depends strictly on the
accuracy of the estimation. rn is the linear combination of the noise on the data
points. If the noise on the data points is Gaussian noise, with some standard
deviation and zero mean, nx ∈ G(σx, 0), ny ∈ G(σy, 0). Then rn is also a variable

that comes from a Gaussian with standard deviation σn =
√

â2σ2
x + b̂2σ2

y and is

bounded σn <
√

2(σ2
x + σ2

y). rn does not really depend on the accuracy of the
estimation. The better the estimate, the smaller rt becomes and in the ideal case
when the estimate is perfect, rt =0, and the distribution of r = rn is entirely a
Gaussian distribution.

This analysis can also be extended to any multiple linear regression problem
in which the residual is a linear function of the variables:

r =
p∑

k=1

âkxk + â0, (8)

where âk is a parameter of the estimation, and (x1 . . . xp) is a data point. As
the estimate improves, so the distribution of inlier residuals matches the Gaus-
sian distribution more closely. In this case, the residual distribution model is a
Gaussian distribution. The SDM is then the standard Gaussian distribution for
the absolute of the variable.

5.2 Non-Linear Residual
Similar to Section 5.1, in this section we analyze the problem when the residual

is a non-linear function or general function (3) of a data point. In this case, it
is difficult to analyze the distribution mathematically. However, such a func-
tion constrains the distribution of residuals helping us to analyze it statistically
by simulation, and then the ideal distribution of the residuals can be modeled.

Fig. 3 Standardized Residual Distribution Model (SDM) of fundamental matrix estimation
and line fitting problem with Gaussian noise on data points.

Implementation of this step can be done online.
Assuming a certain noise model on the data points, such as Gaussian noise on

the data point X, we can model how the residuals from inliers are distributed in
the ideal case. In a complicated problem such as fundamental matrix estimation,
it is easier to analyze by simulation. For a fundamental matrix estimation the
constraint function of the data points is 20),21):

g(F ,x,x
′
) = x

′T Fx = 0, (9)
where F is the fundamental matrix and X = (x,x

′
) is a single pair of point cor-

respondences on two consecutive images. Several residual definitions exist, such
as those in Ref. 21). Two non-linear residual functions are selected to simulate
how the residuals are distributed.
• The first residual function, which is called GRAD in this paper, is based on

a gradient criterion:

r = f(F ,x,x
′
) =

∣∣∣x′T Fx
∣∣∣√

‖ Fx ‖2 +‖ F T x
′ ‖2

. (10)

• The second residual function, which is called DIST in this paper, uses sym-
metric distance from points to epipolar lines:

r = f(F ,x,x
′
) =

∣∣∣x′T Fx
∣∣∣
√

1
‖ Fx ‖2

+
1

‖ F T x
′ ‖2

. (11)

The simulation is performed with an exceptionally large number of data points,
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and the statistical results are shown in Fig. 3. For the ideal case in this sim-
ulation, residuals are calculated with a known fundamental matrix, zero-mean
Gaussian noise is assumed on data point X, and no outliers appear. The dis-
tribution of residuals is standardized so that the sample standard deviation, de-
noted by σ, is 1. Figure 3 shows the standardized residual distributions together
with the standard Gaussian distribution for comparison. For the distribution of
GRAD residuals, about 97.7% of the population is found within the range 2.5σ,
and about 99.9% of residuals within 5σ. For the distribution of DIST residuals,
about 97.6% of the population is found within the range 1.5σ, and about 99.7%
of residuals within 5σ. For the Gaussian distribution, 97% of the population are
within 2.5σ.

6. Proposed Robust Estimator

In the previous sections, we analyzed the distribution of residuals for several
estimation problems. The understanding of the residual distribution thus gained
prompts us to propose an inlier scale estimator. Similar to previous diagnostic
robust estimators, the proposed estimator consists of two components: an inlier
scale estimator and an objective function. We also use random sampling for the
search procedure as in RANSAC.

6.1 Inlier Scale Estimation by Matching Residual Distribution and
Residual Distribution Model

The inlier scale is estimated by searching the best fit between a segment of
the residual distribution and the SDM. The segment of the residual distribution
used for matching starts from zero. Then, the residual scale of the first structure
is detected regardless of the outlier structures. The fitting error between the
density function Pθ̂(ρ) with assumed inlier scale σ and the SDM density function
P ( ρ

σ ) is:

eθ̂(σ) = min
μ

∫ κσ

0

(
Pθ̂(ρ) − μP

( ρ

σ

))2

dρ, (12)

where μ is some scale of the SDM density function, ρ is the residual variable and
κ indicates the part of the SDM used in the matching as discussed in Section 4.
The minimization (12) with respect to μ is solved when it is assigned:

μ =

∫ κσ

0
Pθ̂(ρ)P ( ρ

σ ) dρ∫ κσ

0
P ( ρ

σ )2 dρ
. (13)

Then, the best scale of inlier residuals σ∗
θ̂

is estimated by searching the scale that
gives the smallest fitting error. This is summarized as

σ∗
θ̂

= argmin
σ

{eθ̂(σ)}. (14)

Inliers are then distinguished using the threshold tθ̂ = κσ∗
θ̂
. The inlier scale σ∗

θ̂
is

refined for later use in the objective function, by being replaced by the standard
deviation of estimated inliers:

σ̂∗
θ̂

=

√∫ tθ̂

0

ρ2Pθ̂(ρ) dρ, (15)

In our algorithm, we compute the probability density of the residual from an
estimate θ̂ by applying the well-known histogram method, although the KDE can
also be used. A histogram is simple and as residual sorting is not required, in
contrast to most previous estimators, it can be computed with low computational
cost. Then, (12) and (13) are converted into histogram-based form, ρ is replaced
by the bin variable bi = ibθ̂, which is the location of the ith bin, with bθ̂ the
bin-width. The refined inlier scale in (15) is replaced by the sample deviation of
inlier residuals ri ≤ tθ̂. In addition, Pθ̂(bi) is the count of residuals belonging to
the ith bin. Searching for the best inlier scale σ∗

θ̂
and tθ̂ is graphically depicted

in Fig. 4.
6.2 Bin-width Selection
Bin-width is the size of a bin in the residual histogram mentioned in Section 6.1.

In this section, we decide the bin-width to be used in our algorithm. Bin-width (or
bandwidth in previous works) affects the smoothness of the density distribution
and consequently influences the detection of local peak or valley. Setting the bin-
width is usually a difficult problem for those methods that rely on the probability
density of residuals. A bin-width that produces good smoothness of the density
estimation is required in such situation, and a widely used bin-width 26) for robust
estimators is:

bθ̂ =

(
243

∫ 1

−1
K(ζ)2dζ

35N(
∫ 1

−1
ζ2K(ζ)dζ)2

) 1
5

ŝθ̂, (16)
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Fig. 4 Demonstration of finding the inlier bound. Data contains two parallel lines, and the
SDM in this case is the Gaussian. The residual histogram is computed given the
estimate θ̂, which has two actual modes for the two lines. The inlier scale is obtained
by finding the smallest fitting error, and then the inlier bound is computed as tθ̂ = κσ∗

θ̂
.

where K is some kernel, such as the popular Gaussian kernel or the Epanechnikov
kernel, ŝθ̂ is some scale estimate, such as the standard deviation of residuals,
median scale estimate 1) or MAD estimate 1), and N is the number of data points.
In our method, ŝθ̂ is the smallest window containing 15% of the smallest residuals.

Having obtained the bin-width, a histogram of the estimate can be built. Since
the bin-width is small for outlier residuals, especially in case of high outlier-rates,
the number of bins may be large and therefore, large number of bins for outliers
should be ignored. For a specific unimodal distribution with deviation σ of N

residuals, the bin-width is computed by (16), and by the definition, the densest
bin contains fixed number of residuals, some scale of 0.15N . Then, the number of
bins for r ≤ κσ is known, which is many less than N even when the distribution
becomes a uniform distribution. However, if there are more than two component

distributions (an inlier distribution and some outlier distributions), the number
of bins may be many greater than N due to the large scale of outlier residuals. In
order to search only for the inlier distribution, in practice, we limit the number
of bins, for example, by N .

6.3 Objective Function
Inspired by the usage of the KDE in the pbM-Estimator 15),16) and ASKC 9),

we also apply it in our adaptive objective function:

F (θ̂) =
1

Nhθ̂

N∑
i=1

K

(
ri,θ̂

hθ̂

)
, (17)

where hθ̂ is adaptively estimated and K is a kernel, such as the Gaussian kernel
KG or Epanechnikov kernel KE . The KDE objective function evaluates how
densely the residuals are distributed at zero using the kernel’s window. In our
case, the window of kernel K is hθ̂, which tightly fits the estimated inliers, and
therefore, the objective function gives the density measured at zero only for the
estimated inliers. For KG, hθ̂ = σ̂∗

θ̂
, while for KE , hθ̂ = κσ̂∗

θ̂
.

6.4 Estimation Algorithm Summary
A summary of the proposed algorithm is given below.

(a) Make the standardized residual distribution model (SDM) using the residual
function. This can be done online or offline.

(b) Create a random sample and then estimate the putative parameters θ̂.
(c) Estimate all the residuals of the data points given the parameters θ̂.
(d) Estimate the bin-width as described in Section 6.2, and then compute the

residual histogram Pθ̂.
(e) Estimate the inlier scale according to (14) and its refinement according to

(15).
(f) Estimate the score using the objective function (17).
(g) Update the best solution.
(h) Repeat from (b) if not terminated.
The criterion for terminating the random sampling depends on the applications.
It can be the excess of an amount of running time, or a number of iterations
that assures a good estimate 23). In our experiments, we fix the same number of
iterations for the proposed method as well as the compared methods.
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7. Experiments

In this section, we describe the experiments carried out to validate our algo-
rithm in both linear and non-linear estimation problems: plane fitting, line fitting
and fundamental matrix estimation. For each problem, a simulation is first used
to understand the various aspects of the algorithm and then a real experiment
with real data is carried out to validate the algorithm in a real situation. For the
plane and line fitting problems, we compared our algorithm with several popular
robust estimators: the pbM-Estimator, LMedS, ALKS, ASSC, and ASKC. For
the fundamental matrix estimation, we used LMedS, ASSC, ASKC, and ALKS
for comparison since the pbM-Estimator was originally proposed for linear ro-
bust regression problems only. In the experiments using ALKS, since it is very
unstable when the normalized error function accumulates only small number of
residuals, we started using this error function only when it accumulated a num-
ber of residuals greater than 15% of the total number of data points. For the
pbM-Estimator, we used the program from the authors 27). The Epanechnikov
kernel was used for all kernel density estimations including the related objective
functions such as in the proposed objective function. All algorithms were sup-
plied with the same set of random sampling trial hypotheses and no estimation
optimization was done in any of the algorithms. In the proposed estimator, the
value of κ is chosen according to the SDM. κ is selected so that the section of
SDM for matching contains about 97% of the population. In the experiments,
κ = 2.5 for the line fitting problem and fundamental matrix estimation using the
GRAD function, while κ = 1.5 for the fundamental matrix estimation using the
DIST function. The criteria for validating the proposed estimator are:
• robustness with various outlier rates and noise scales,
• accuracy of the inlier bound (threshold to distinguish the inliers), and
• the ability to work with data with multiple structures.

In data with the appearance of multiple structures, it is important that an es-
timator estimates a tight bound and outputs as many inliers as possible for a
particular structure, otherwise the actual structure may be broken into many
smaller structures or several structures may be estimated as a single one.

7.1 Linear Residual
In this problem, the estimator must extract the correct line or plane from a

data set that contains single or multiple structures with the appearance of ran-
dom outliers. The experiments were carried out by various popular and analytic
simulations for a robust estimator as previous works. For data with a single struc-
ture, the evaluation was carried out with various outlier rates and noise scales.
For data with multiple structures, we validated the proposed estimator using the
various types of data with multiple structures frequently used for testing robust
estimators: that is, data with parallel lines, data with steps and roof data.

Given an estimate θ̂ = (â, b̂, ĉ, d̂), the residual function is defined as:
ri = |âxi + b̂yi + ĉzi + d̂|, (18)

where (xi, yi, zi) is a data point. The estimation error is defined as follows.

Errorθ̂ =
√

(a − â)2 + (b − b̂)2 + (c − ĉ)2 + (d − d̂)2, (19)

where (a, b, c, d) are ground-truth parameters. The normal vector of each plane
is normalized so that

√
a2 + b2 + c2 = 1,

√
â2 + b̂2 + ĉ2 = 1.

7.1.1 Single Structure with Various Outlier Rates
A 3D plane with 500 points was randomly generated for each trial data set.

Gaussian noise with a mean of zero and noise scale σG was added to the inliers.
Random outliers were generated to replace inliers, and therefore, the total data
set always contained 500 points. All the points were located within the 3D volume
[0, 0, 0, 1000, 1000, 1000]. 100 data sets were randomly generated, and for each
data set, the same 10,000 iterations of random sampling were supplied to each
estimator. The graphs shown below use the averages of the results for all 100
data sets.

We evaluated both the estimation error and inlier bound with various outlier
rates. The ratio between the number of estimated inliers and the number of true
inliers, and the ratio between the scale of the estimated inlier residual and the
scale of the true inlier residual should be about 1 for any estimator.

In the first experiment for 3D plane fitting, we tested the outlier rate factor
for all estimators with the same noise scale σG = 8. The average results are
shown in Fig. 5. Figure 5. a) describes the break-down point and the accuracy
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Fig. 5 Experiments with varying outlier rates for single-line data: a) estimation error, b)
ratio between the scale of the estimated inlier residuals and the scale of residuals of
true inliers.

of the robust estimators, while Fig. 5. b) shows the ratio between the estimated
and true inlier scales. We can see that in this experiment our proposed algorithm
yields the best overall performance for accuracy and estimated inlier scale of all
the algorithms. At low outlier rates, less than 50%, LMedS is accurate, but
for higher outlier rates, LMedS fails to estimate. The performance of ALKS
is unstable for very low or high outlier rates; the estimated inlier scale ratio is
about 2, which means that ALKS overestimates the inlier scale. ASSC, ASKC,
pbM and the proposed algorithm have similar breakdown points allowing these
to retain good performance up to an outlier rate of 90%. ASSC and ASKC show
similar performance, since their estimated inlier scales and KDE bandwidths
correlate, but they usually underestimate the inlier scale. On the contrary, the
performance of the pbM and proposed estimator for estimating residual density
does not really depend on the bandwidth (or binwidth), and thus the accuracy
of the pbM and proposed estimator remains high for the various outlier rates. In
addition, as the proposed estimator always estimates an accurate inlier scale, the
estimated inlier scale closely matches the true inlier scale. However, it should
also be noted that the pbM estimates the solution first and then estimates the
inlier scale and consequently the inlier scale is not important for the accuracy of
the estimated solution.

7.1.2 Single Structure with Varying Noise Levels on Inliers
A second experiment was carried out to test all estimators with various noise

scales. The data was set up similar to the experiment for 2D line fitting, ex-

Fig. 6 Random data sets with an outlier rate of 60% and a) σG = 8.0 and b) σG = 50.

Fig. 7 Experiments with varying Gaussian noise scales and outlier rate fixed at 60%.
Proposed estimator is highly resistant to high noise levels.

cept that the Gaussian noise scale σG on inliers varied between 1 and 52, while
the outlier rate was fixed at 60%. Examples of the noise scales are shown in
Fig. 6, while the average results are shown in Fig. 7. Figure 7. a) describes the
estimation error, while Fig. 7. b) describes the ratio between the estimated inlier
scale and true inlier scale. Since the outlier rate is 60%, LMedS fails to estimate
correctly, giving a much larger estimated number of inliers than the number of
true inliers. The performance of ALKS is unstable with the higher noise levels on
inliers. All the other estimators have lower accuracy with higher noise levels, al-
though the proposed estimator gives the most robust performance. These results
confirm that our proposed estimator has the best accuracy and robustness of all
the estimators, and the estimated inlier bound is quite close to the ground-truth.
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Fig. 8 Parallel Lines: estimation by each estimator using a random data set with d = 70.
ALKS and the pbM are confused, since the two lines are extracted as one. ASKC and
ASSC extract a small part of the actual line. LMedS estimates a line with a large
number of inliers belonging to Line 1 and a few inliers belonging to Line 2. The
proposed method extracts one of the two lines correctly and neatly.

7.1.3 Parallel Lines with Different Distances
Here we demonstrate the ability of the estimators with the appearance of mul-

tiple structures in the data.
A data set containing two parallel lines was used in this experiment. Each

estimator was required to estimate one of the two lines correctly with a precise
inlier bound. The experiment was carried out with different distances between
the two parallel lines:

Line 1 : 2x − y + d = 0, where d = 20, 30, 40, . . . 210
Line 2 : 2x − y = 0.

Various random data sets were used, with each data set containing 270 random
outliers, 420 random points on Line 2, and 210 random points on Line 1. Gaus-
sian noise σG = 8.0 was added to each point on each line, and the coordinates of
all points were within the rectangle (0, 0, 62.5σG, 62.5 σG). The estimations of
the robust estimators using an example data set are shown in Fig. 8. In this ex-
ample, all estimators estimated the correct line, but LMedS, the pbM and ALKS
overestimated the population of inliers, ASSC and ASKC underestimated the

Fig. 9 Parallel Lines: a) estimation error, b) ratio between the number of estimated inliers
and the number of true inliers.

inliers, while the proposed estimator estimated the inliers correctly. The average
results for 100 random data sets are shown in Fig. 9. Figure 9. a) shows the es-
timation error for the robust estimators, while Fig. 9. b) shows the ratio between
the number of estimated inliers and the number of true inliers. When the two
lines are close together with d = 20, they are almost mistaken for being one line,
with all estimators having a similar accuracy. When the lines are further apart,
the performance of ALKS is the worst, as it only manages to estimate correctly
once the two lines are very far apart with d > 170. This is understandable since it
is claimed 4) that ALKS only estimates correctly step signals with a height greater
than 8σG. Because the actual outlier rate of estimating any line is greater than
50%, LMedS produces worse results as the two lines move further apart. ASSC
and ASKC have a similar performance, but the number of inliers is underesti-
mated in both cases and remains similar since it is only related to their KDE
bandwidth. The proposed algorithm starts to estimate the line correctly for both
solution parameters and inliers when d = 60, that is, when the distance between
the lines is about 3.3σG. With regards the bound on the estimated inliers, our
proposed estimator gives the best results, since the number of estimated inliers
is relatively close to the number of true inliers; in fact it is slightly smaller since
leverage true inliers were also judged as outliers.

7.1.4 Multiple Structures: Steps with Varying Noise Levels
In this experiment, the step data consisted of four planes, set up as shown in

Fig. 10. The parameters of the actual planes are:
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Fig. 10 An example of a step data set with four planes and various random points. Each
point on a plane is contaminated by Gaussian noise with σG = 5.0.

Plane 1 : z − 100 = 0
Plane 2 : z − 200 = 0
Plane 3 : z − 300 = 0
Plane 4 : z − 400 = 0

The data set used in the evaluation consisted of 240 random points for each
plane and 240 random outliers. Each data point on a plane was contaminated by
Gaussian noise with σG. The experiment was carried out to test all the estimators
with different values of σG. For larger values of σG, the four planes move closer
and may become fused. The results are illustrated in Fig. 11, which gives the
average of the results for 100 such randomly generated data sets.

In this experiment, the pbM-Estimator did not perform well since it mistook
the four planes for the same structure, and consequently the estimated number
of inliers is about four times the number of true inliers for each plane, as shown
in Fig. 11. b). LMedS also did not perform adequately since the outlier rate is
high for the estimation of any plane. ASSC and ASKC succeeded in estimating
correctly with low noise levels only. The number of estimated inliers for the two
methods remained similar regardless of whether they failed or succeeded. The
proposed method was able to work correctly with slightly higher noise levels but

Fig. 11 Results from using data consisting of steps with different Gaussian noise levels σG =
1, 2, . . . , 10. a) shows the average estimation error, while b) shows the ratio between
the estimated number of inliers and number of true inliers.

then became confused, and the four planes were estimated as a single plane. In
this comparison, ALKS worked correctly with much higher noise levels. How-
ever, since ALKS is well-known for its instability and sensitivity to small pseudo
structures, we limited the size of possible structures, such that the estimated
structure for ALKS was larger than 15% of the data. Therefore, it was able to
estimate these steps correctly. In this case, its sensitivity was an advantage.

7.1.5 Multiple Structures: Roof with Varying Noise Levels
In this experiment, two planes were set up as shown in Fig. 12. The parameters

of the actual planes are:
Plane 1 : x − y = 0
Plane 2 : x + y + 500 = 0

The data set used in the evaluation consisted of 350 random points for Plane 1,
350 random points for Plane 2 and 300 random outliers. Each data point on a
plane was contaminated by Gaussian noise with σG. The experiment was carried
out to test all the estimators with different values of σG. The results are depicted
in Fig. 13, which gives the average results for 100 such randomly generated data
sets.

The results show that most of the estimators worked well with this type of
data except the LMedS since the actual outlier rate for estimating any plane was
higher than 50%. The proposed estimator and pbM-Estimator outperformed the
others. The pbM-Estimator performed slightly better with a low noise level,
whereas the proposed estimator performed slightly better with high noise levels.
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Fig. 12 An example of the roof data set consisting of two planes and various random points.
Each point on a plane is contaminated by Gaussian noise with σG = 13.0.

Fig. 13 Estimation error using roof data with different Gaussian noise levels
σG = 5, 7, . . . , 17.

The above results clearly show that our proposed algorithm works well with
data containing multiple structures.

7.2 Non-linear Residual
For this experiment, we first carried out a simulation to validate various as-

pects of the proposed algorithm, and then performed the experiment with real
data to show the effectiveness in a real situation. The GRAD and DIST residual
definitions described in Section 5.2 were used for the fundamental matrix estima-
tion. These residual definitions are not linear, and therefore, the pbM-Estimator

is not applicable, because it was originally designed for linear residual problems
only. Thus we compared the proposed algorithm with ASSC, ASKC, LMedS and
ALKS, even though the non-linear residual function could have been linearized
for use by the pbM.

Since it is not possible to compare the estimated fundamental matrix with a
ground-truth fundamental matrix, we computed the error as the standard devi-
ation of only the inlier residuals of the estimated fundamental matrix θ̂

∗
= F̂

∗
:

Error ˆF
∗ =

√√√√ 1
M

M∑
i=1

(r
i,

ˆF
∗)2, (20)

where M is the number of inliers. This error computation relies on how the
solution fits the motion data: a better fit produces smaller residuals for inliers,
and vice versa. In the simulation, we know the true inliers and thus M is known.
In the real experiment, the error is computed for the M smallest residuals (which
are considered inliers), with M assigned manually after checking the actual data.

7.2.1 Fundamental Matrix Estimation in a Simulation
We simulated points on a unit sphere, with 500 points randomly distributed on

a unit sphere. Altering the view point slightly causes the points on the sphere
to move, thus creating 500 pairs of point correspondences. Some of these pairs
were then replaced by outlying pairs with random point coordinates, thus keeping
the total number of pairs as 500. Coordinates (x, y, z) for each inlier point on
the unit sphere, before and after being moved, are contaminated by Gaussian
noise with zero mean and noise scale σG. The fundamental matrix was estimated
using the seven point algorithm 22). Experiments were carried out for robustness
under various outlier rates and the average results of 100 randomly generated
data sets are shown in Fig. 14 with σG = 0.005 for the GRAD residual function.
The results of these experiments are similar to those in the plane fitting problem
described above. These results prove that our proposed algorithm gives the
highest robustness under various outlier rates and estimates a reasonable number
of inliers which is close to the number of true inliers. ALKS performs quite well in
these experiments and also produces an estimate or the number of inliers which
is close to the number of true inliers, however it is unstable for very low or high
outlier rates. ASSC and ASKC usually underestimate the population of inliers
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Fig. 14 Fundamental matrix estimation in a simulation using the GRAD residual function:
a) estimation error, and b) ratio between the number of estimated inliers and the
number of true inliers with various outlier rates.

Fig. 15 A pair of images in a sequence: inliers (image features in red) and outliers (image
features in green) are output by the proposed estimator.

as in the previous experiments.
We carried out a similar simulation using the DIST residual function. However,

as the results are similar to those using the GRAD residual function they are not
shown here.

7.2.2 Fundamental Matrix Estimation in Real Video Sequences
In this experiment, real video sequences were captured in an indoor environ-

ment with an omnidirectional vision sensor. Examples of the captured images
are shown in Fig. 15. The sensor consisted of an omnidirectional mirror, a tele-
centric lens and an imaging sensor. The camera was mounted on a rotary stage

and controlled by a PC, which translated the camera whilst it was being rotated.
For each pair of images, 200 Harris image features were detected on the first
image and tracked on the second image to obtain the feature correspondence
pairs using the KLT feature tracker 25) implemented in OpenCV 24). Features for
each image were mapped to the unit sphere. The fundamental matrix between
a pair of consecutive images was computed using the seven point algorithm with
these feature correspondence pairs. For each video sequence, about 50 images
were captured whilst ensuring the same rotation between consecutive images.
The performance of all the estimators tends to deteriorate with a greater de-
gree of rotation, since the KLT tracker is less accurate under greater rotation.
Therefore, we used three video sequences with different rotation settings. These
video sequences are referred to as Video 4 deg, Video 14 deg and Video 18 deg

for rotation speeds of 4 degrees/frame, 14 degrees/frame, and 18 degrees/frame,
respectively. We computed the error by (20) and M was set independently for
each video sequence after randomly checking five pairs of images within each
video sequence. The average number of true inliers and the assigned value of
M for each video sequence are given in Table 1. From this table, we can see
that the outlier rate for Video 4 deg is low, about 10%. For Video 14 deg, the
outlier rate is about 50%, and for Video 18 deg, the outlier rate is about 65%.
For each image pair, 20000 iterations of random sampling were provided for each
estimator. In this case, the true noise model on the feature points was not known.
However, it was assumed to be a Gaussian model with zero mean and thus the
residual distribution models for the GRAD and DIST residual were known. In
this experiment, the results for GRAD and DIST residual function are similar,
the only description of experiment for GRAD is shown in this section.

The average error and number of estimated inliers for 100 executions of each
video sequence are given in Table 1 and Table 2, respectively. The results show
that the proposed estimator has the best accuracy for various outlier rates. The
number of estimated inliers correlates with the outlier rate; it is slightly larger
than the number of true inliers. ASSC and ASKC estimate a similar number
of inliers for the various outlier rates as in the previous experiments. ALKS
performs the worst of all these estimators in this real experiment.

In addition, we also evaluated the inlier bound for all estimators using visual-
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Table 1 Fundamental matrix estimation for real video sequences using GRAD residual
function: estimation error.

Table 2 Fundamental matrix estimation for real video sequences using GRAD residual
function: number of estimated inliers.

ization. For each estimator, the average of all the histograms of residuals from
the estimated solutions for all executions was calculated for comparison with the
average of the estimated thresholds. This averaging for visualization purposes
can be done within the same video sequence and with the same control speed
only, since the performance of the KLT feature tracking is similar. The visualiza-
tion is shown in Fig. 16. a), b) and c) for the three video sequences Video 4 deg,
Video 14 deg and Video 18 deg, respectively. It can be seen from these figures
that the proposed estimator output the most reasonable results, with the esti-
mated threshold adaptively located in the tail of the actual distribution, and in
which the density of outliers was low and the density of inliers within the inlier
bound was high. This means that it was able to separate the inliers and outliers

Fig. 16 Visualization of the estimated inlier bounds for estimators using the GRAD residual
function with three videos sequences (from left to right) Video 4 deg, Video 14 deg and
Video 18 deg. An average of the histograms of residuals from the estimated solutions
was made for each estimator to visualize how tightly the estimated inlier bound fits
the residual distribution.

Fig. 17 Processing time for all estimators.

effectively. ASKC and ASSC output a solution in which the threshold was not
located in the tail of the distribution, and in which the density of inliers was
very high since the number of inliers was underestimated. ALKS did not work
well resulting in a low density of histograms and very large inlier bounds. For
the sake of giving only informative comparisons, the estimated inlier bounds for
ALKS are not shown.
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7.3 Computational cost
We simulated the relation between processing time and the number of data

points, the average results of which are shown in Fig. 17. The graph shows that
overall the proposed estimator gives the fastest computational time, especially for
large data. For the proposed method, the residuals are not needed to be sorted,
therefore it is fast in comparison with the others, especially when the number of
data points increases. For the other estimators, the residuals have to be sorted
first. LMedS is the simplest algorithm among the sorting-based methods, it takes
the second fastest place in this comparison. After sorting the residuals, ALKS
needs more cost to find the separation between inliers and outliers. ASKC and
ASSC have the same procedure to locate the inlier distribution using mean-shift
algorithm, the only difference is that ASKC uses the smaller window (bandwidth)
for searching the local peaks of residual density then it consumes less computa-
tional cost than ASSC. The slowest estimator is pbM since it consumes heavy
cost to find a global peak of residual density.

8. Conclusions

In this paper, we proposed a novel highly robust estimator for the estimation
problem in computer vision that deals with data with high outlier rates and mul-
tiple structures. Our algorithm does not need any prior information about the
inlier scale, as this is estimated adaptively. Depending on the specific problem,
the distribution model of residuals is analyzed using that useful constraint, the
residual function. The analysis is feasible and simple, and simulation of the resid-
ual distribution model can always be performed. The advantage of this approach
is that it estimates the inlier scale correctly and therefore improves robustness.
The proposed algorithm was positively validated through experiments with vari-
ous conditions and real estimation problems. The use of the constraint from the
residual function in the robust estimator is effective for improving the robustness
and detection of inliers.

The proposed estimator can be applied to any problem in which the residual
function is properly defined. Furthermore, it is especially useful when the inlier
scale needs to be estimated accurately.
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