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A considerable issue in designing catadioptric imaging systems is what shape
the component mirrors should be formed. In this paper, we propose a new
algorithm for a catadioptric imaging system that satisfies the desired projec-
tion using a free-form mirror. A free-form mirror expressed as an assembly of
gradients is a flexible surface representation that can form various shapes in-
cluding non-smooth surfaces. We improve the shape reconstruction framework
in the photometric stereo scheme to design free-form mirrors. An optimal mir-
ror shape is formed to produce the desired projection under the integrability
condition that requires it to be a consistent surface. We assume various cata-
dioptric configurations, for which actual free-form mirrors are designed. The
design experiments confirm that the resulting free-form mirrors can approxi-
mate the desired projections, including non-smooth ones.

1. Introduction

Using a curved mirror is one of the most powerful approaches for changing
the projection of a primal imaging system such as a camera or projector. Re-
searchers have proposed catadioptric imaging systems with specially formed mir-
rors to obtain particular projections used in various applications, including robot
navigation and wide view surveillance. A typical use of the curved mirror is
an omnidirectional imaging system. Conventional omnidirectional imaging sys-
tems use mirrors with basic convex shapes 1)–3), or special rotationally symmetric
shapes to obtain the desired resolution in a vertical direction 4)–6),8). Gaechter,
et al. used not only such a mirror but also a space variant imager to control
image resolution 12). Kondo, et al. designed an asymmetric convex mirror to ob-
tain an anisotropic projection property 11). The shapes of all the mirrors used in
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the above proposals were defined by parameterized functions, resulting in limited
shape representation and projection forming capabilities. A generalized repre-
sentation of a mirror surface with a high DOF, together with a knowledge of its
design, is necessary for producing arbitrary projections.

A free-form mirror determined from multiple control variables is one of the
most generalized representations. It can be used to realize, without distortion,
various projections given by practical configurations, such as a wide panoramic
view. In this case, the desired projection is a uniform projection onto a cylindrical
scene around the camera. A further example of the use of a free-form mirror is to
correct the image distortion in projector systems. The mirror produces counter-
warping against the distortion.

There may however, still be a problem with using a free-form mirror surface,
in that there may not be a mirror that completely satisfies the desired projec-
tion. This was known as integrability of a gradient field on differential geometry.
Hicks, et al. discussed the existence of a mirror surface that satisfies a given pro-
jection with Frobenius theorem, and used it to obtain an optimal existent mirror
surface 7),9),10). They defined a mirror surface as a polynomial function based
on the Rayleigh-Ritz approximation method. Another algorithm for designing
free-form mirrors was proposed by Swaminathan, et al. 13). They modeled the
shape of the mirror using the cross products of splines to formulate the design
problem as a linear equation. However, these conventional approaches had a
problem representing non-smooth surfaces because of their smoothness property
and the limited number control parameters that determined the design DOF.

In this paper, we propose a new surface definition for free-form mirrors, con-
structed as the assembly of its gradients. This type of free-form definition can
represent mirror shapes, including non-smooth surfaces, more generally than the
conventional algorithms, thus allowing a variety of projections to be produced.
An example of this is a compound mirror constructed from multiple mirrors,
such as a polygon mirror. This type of free-from mirror can produce a uniform
projection onto a non-smooth scene such as a square room. Of course, compound
mirrors constructed from curved surfaces can be defined as a combination of the
free-form definition. Our method can design such a compound mirror directly as
if it were a single mirror surface, with the result that we do not have to consider
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the joints between multiple mirrors. A spiny convex mirror is one of the non-
smooth surface mirrors. It produces an effective horizontal omnidirectional FOV
for the omnidirectional camera.

A similar issue also occurs in the 3D shape reconstruction stage of photometric
stereo schemes, in which the shape of a target object is estimated according to
the shadings in an input image. On the other hand, the free-form mirror design
algorithm estimates the optimal shape of a mirror to produce the desired pro-
jection. These two problem specifications are very similar. However, it is not
feasible to apply the methods employed in the 3D shape reconstruction approach
directly based on observed data into a mirror design scheme. The reason is that
the meaning of the residuals is different in each problem. Additionally the as-
sumption of an orthographic camera is also a problem in catadioptric imaging
systems. For this reason, the algorithms used in the conventional shape recon-
struction framework from its gradient field are extended for application in the
mirror design problem. The results are tested experimentally.

2. Problem Settings

2.1 Problem Specification for Mirror Design
Mirror design for catadioptric imaging systems begins with defining the desired

projection. Now assuming a camera as the primal imaging system, a capturing
system is constructed. A projection system can be expressed as the reverse of a
capturing system based on the theory that the light geometry is maintained even
if the direction thereof is assumed to be reversed. Each incoming ray from a scene
is reflected at some point on the free-form surface, and its captured position on
the image plane is (u, v). Then the desired projection can be expressed by rays in
the scene Ps(u, v) defined on the image plane, and can be freely manipulated by a
designer. Similarly, projections of the primary camera are expressed as Pc(u, v).
Figure 1 illustrates this configuration. In this paper, we assume that the mirror
size is small enough with respect to the environment. The desired projection
is then indicated purely by the direction of the rays. Ps(u, v) and Pc(u, v) are
related by reflection on a curved mirror placed in front of the camera. This is
given by

N(u, v) = −N [N [Ps(u, v)] + N [Pc(u, v)]] (1)

Fig. 1 Camera-Mirror configuration. A curved mirror M is placed on the front of a perspective
projection camera C. The mirror M should be formed so as to produce a normal vector
field N(u, v) from a camera projection Pc(u, v) and a given scene-to-image projection
Ps(u, v).

with the vector normalization operator N [x] = x
||x|| , where N(u, v) is a normal

vector field of the mirror surface. The aim in mirror design is to determine the
surface that produces N(u, v). This is achieved by integrating gradient vectors
from the normal vector field N(u, v).

Generally, gradients of a smooth surface can be determined by differentiation.
However, the inverse, integrating the given gradients to reconstruct an original
surface, is not always possible. Since an integration result depends on its path,
integrations along different paths may (and in most cases do) produce divergent
results when freely distributed gradients are given. To form a consistent surface,
one needs to consider this problem.

2.2 Problem Specification in the Shape Reconstruction Stage of a
Photometric Stereo Scheme

Photometric stereo schemes have a similar problem to mirror design, in that
these schemes reconstruct a surface in two steps. First, a normal vector field
of the target object is estimated from images under different illumination. Then
the shape is estimated (reconstructed) from the obtained normal vectors. Strictly
speaking, photometric stereo implies the former estimation based on shadings on
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the target object. But this stage is not important in this paper. Strongly related
to the proposed approach is the latter stage in which shape reconstruction takes
place after the estimation of a gradient field (or normal field).

Gradients are normally integrated to reconstruct the shape of the original ob-
ject. Various methods have been proposed to assist in this process. These include
solving a two-dimensional Poisson equation (this is the easiest and most popular),
an iterative approach with the Gauss-Seidel method as per Horovitz, et al. 14),
and a linear method from Agrawal 15).

2.3 Similarities and Differences in the Problem Specifications
As described in Sections 2.1 and 2.2, despite mirror design and shape recon-

struction schemes are very different projects, interestingly, they result in very
similar problems. We make use of this similarity in this paper. However, using
the same approach proposed in conventional shape reconstruction schemes has
disadvantages for mirror design.

The normal vector field, estimated from input images in a photometric stereo
scheme, is generated from a real object. So, in principle, the shape of the object
surface can be perfectly reconstructed if the images do not include any errors.
If the integration cannot be performed consistently, this is due to image errors
caused by, for instance, specular reflections, shadows, miscalibration, bad approx-
imations, and so on. Decreasing the effect of image errors is, therefore, important
in this type of shape reconstruction problem. Actually, the shape reconstruction
method proposed by Agrawal 15) focused on eliminating errors such as impulse
and inconsistent noise.

For mirror design, whether or not the normal vector field produced from the
desired projection Ps(u, v) can form a continuous consistent surface is a prob-
lem. Generally, the desired projection Ps(u, v) is given without considering the
possibility of forming a consistent surface. Therefore, in most cases, a solution
that perfectly satisfies a given desired projection Ps(u, v) does not exist, which
is very different to the shape reconstruction problem that is based on observed
data. The reason why integration of the gradients does not form a consistent
surface is the given projection itself. In this case, an approach that minimizes
the overall projection residual is recommended.

Furthermore, basic conventional shape reconstruction schemes assume known

boundary conditions and an orthographic projection at the stage of normal vec-
tor estimation. In free-form mirror design, the designer has no information about
the shape, or its boundary conditions. A perspective projection should be as-
sumed in catadioptric imaging systems because an orthographic projection gives
a bad approximation for mirrors placed close to the camera. The mirror design
problem for catadioptric imaging systems requires a method under the perspec-
tive projection without any boundary conditions. Thus the conventional gradient
based shape reconstruction approaches used in, for example, photometric stereo
schemes, need to be extended for use in mirror design.

3. Design of a Free-form Mirror

3.1 Representation of the Free-form Mirror
In this paper we assume that a target catadioptric imaging system is con-

structed with a conventional perspective camera C and a single reflective mirror
M placed in front of the camera (Fig. 1). The camera C has a W × H size im-
age plane (u, v) that corresponds to a pixel on the image plane. The camera
projection vector field Pc(u, v) is given by

Pc(u, v) =

⎡
⎢⎣ −Kuu

−Kvv

f

⎤
⎥⎦ (2)

where f is the focal length of the camera and Ku, Kv the size of the pixels. We
assume a depth of field z(u, v) defined on the image plane to form the shape of
the mirror surface S(u, v):

S(u, v) =
1
f
Pc(u, v)z(u, v). (3)

We represent the free-form mirror shape with gradients p = ∂z
∂u , q = ∂z

∂v . The
objective of the mirror design is to optimize S(u, v) by moving p, q so as to
produce N(u, v) with a minimum residual.

3.2 Integrability of a Free-form Surface
The reconstruction or design of a 3D surface must be done in such a way as

to form a consistent surface. This is an implicit constraint that is referred to as
the integrability of the surface 16). On a consistent surface, integration of surface
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(a) two points on the surface (b) integrations along different paths

(c) integration along the closed loop (d) linear combination of the unit loops

Fig. 2 A model of integrability on a surface. (b) Integration results from A to B along any
path should be constant for a consistent surface. (c) It is equivalent to that integration
results along any closed loop including A and B should be 0. (d) Arbitrary closed loop
can be expressed as a linear combination of the unit loops.

gradient vectors from a point A to a point B must be constant along any path as
shown in Fig. 2. This is known as the integrability of a potential field 16). When
an integration result along a path differs from that along any other path, the
surface is discontinuous at that point.

Let p(u, v) and q(u, v) be gradients of S(u, v) in the u and v directions, ∂S
∂u

and ∂S
∂v , respectively. Integrability of the surface is generally formulated with a

curl operator of S as

curl(p,q) =
∂p
∂v

− ∂q
∂u

= 0 (4)

at any point on (u, v), thus representing the constraint for forming a consistent
surface. This is well known as the integrability constraint. Agrawal, et al. also
used the same formulation in their paper 15).

Remember that the shape of the mirror surface is given by Eq. (3). Since camera
projection Pc is determined by the camera parameters, and the only freedom in
the shape S(u, v) is in the scalar field z(u, v), an integrability constraint can be

written in a scalar domain about z instead of a vector domain S. It is given by

curl(p, q) =
∂p

∂v
− ∂q

∂u
= 0. (5)

The mirror design must be performed with Eq. (5) to form a consistent surface.
Here we define a target mirror surface using a set of continuous and sampled
gradients on the (u, v) field to formulate the design problem as linear equations.
In this paper, the size of a pixel is assumed to denote the sampling interval, which
states that a mirror surface is constructed by 2WH gradients of p and q defined on
a discrete domain (u, v), u = 0, 1, · · · ,W − 1, v = 0, 1, · · · ,H − 1. The following
procedures are used to enforce the integrability constraint on the continuous
domain over the discrete domain. Since the derivatives of the gradients are given
as the differences of two contiguous values, the partial derivatives of p and q are
obtained by

∂p

∂v
= p(u, v + 1) − p(u, v)

∂q

∂u
= q(u + 1, v) − q(u, v).

(6)

The equation for curl can be written in the discrete domain using Eq. (6). It is
given by

curl = p(u, v + 1) − p(u, v) − q(u + 1, v) + q(u, v). (7)
One can write Eq. (7) in linear form as

curl = [0, · · · , 0,−1, 0, · · · , 0, 1, 0, · · · , 0, 1,−1, 0, · · · , 0]g (8)
where g is a 2WH × 1 vector constructed from the scan line ordered series of
gradients p and q given as

g = [ p(0, 0), p(1, 0), · · · , p(W − 1, 0), p(0, 1), · · · , p(W − 1,H − 1),
q(0, 0), q(1, 0), · · · , q(W − 1, 0), q(0, 1), · · · , q(W − 1,H − 1)]T .

(9)

Equation (7) corresponds to a particular loop integral around a box of four pixels.
Note that the loop integral around any other bigger loop can be expressed as
linear combinations of the elementary loop integrals and thus does not provide
any additional information. Thus stacking Eq. (8) = 0 on the entire (u, v) field,
one obtains a linear equation for the integrability constraint:

Cg = 0. (10)
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Fig. 3 Relationship between a normal vector and a gradient vector. (a) and (b) show models
of orthographic projection and perspective projection cameras. The gradient vector in
(a) is constant, independent of its depth. In (b) depth is ambiguous.

C is a sparse matrix of size (W − 1)(H − 1) × 2WH. Each row in C is in
accordance with Eq. (8) and has four non-zero values; two +1’s corresponding to
p(u, v + 1) and q(u, v), respectively, and two −1’s corresponding to p(u, v) and
q(u+1, v), respectively. This formulation procedure is similar to that in Ref. 15).

3.3 Integrability on a Perspective Projection
For gradient calculations from the normal vectors, conventional research such

as classical photometric stereo schemes have assumed an orthographic projection
camera because a camera can be placed sufficiently far from the target object
to approximate the perspective projection to an orthographic one. If an ortho-
graphic projection is assumed, we can easily calculate the gradients p, q from the
normal vector field N since x = Kuu and y = Kvv (Fig. 3 (a)). However, in cata-
dioptric imaging systems, curved mirrors are placed relatively close to the camera
for compactness. Thus the perspective projection cannot be approximated to an
orthographic one. This means a method is needed to calculate the gradients.

Generally a normal vector N can be decomposed into two perpendicular gradi-
ent vectors whose outer product becomes N itself. For a perspective projection,
we can obtain the directions of the gradient vectors, but their lengths are not
uniquely determined because they depend on their depth as shown in Fig. 3 (b).
Tankus’ proposal 17),18) provides a hint to solve this problem. Fortunately, the

relationship between the length of the gradient vector and its depth under per-
spective projection is linear, resulting in

p̂ =
1
z

∂z

∂u

q̂ =
1
z

∂z

∂v

(11)

rather than p = ∂z
∂u and q = ∂z

∂v .
Having obtained the above, consideration should be given to how the integra-

bility constraint with p̂, q̂ is formulated. Consider that curl(p̂, q̂) can be expressed
with curl(p, q) as

curl(p̂, q̂) =
∂p̂

∂v
− ∂q̂

∂u

=
∂

∂v

(
1
z

∂z

∂u

)
− ∂

∂u

(
1
z

∂z

∂v

)

= − 1
z2

(
∂z

∂v

∂z

∂u
− ∂z

∂v

∂z

∂u

)
+

1
z

(
∂2z

∂v∂u
− ∂2z

∂u∂v

)

=
1
z
curl(p, q)

. (12)

Since z > 0, curl(p, q) = 0 is equivalent to curl(p̂, q̂) = 0. We can now say
that curls in the discrete domain have the same characteristics as curls in the
continuous domain. Thus a set of p̂ and q̂ can be used as g instead of p and q for
the integrability constraint. The shape of the surface can easily be produced by
integrating p̂ and q̂. Integration of p̂ and q̂ provides a log scaled shape, because

p̂ =
1
z

∂z

∂u
=

∂ ln z

∂u

q̂ =
1
z

∂z

∂v
=

∂ ln z

∂v
.

(13)

Note that the use of p̂ and q̂ requires an additional procedure when forming a
shape from optimized gradients, namely the exponents of the integration results
to convert a log scaled shape into an original shape. See Section 3.6 for more
detail. In this paper, we use p̂ and q̂ as gradients with an assumption of a
perspective projection.

Of course, we can attach a telecentric lens unit to the primal imaging system
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so as to generate the orthogonal projection. In that case, p and q can be used
directly without considering p̂ and q̂.

3.4 Gradient Optimization under the Integrability Constraint
An optimal shape for the mirror surface should minimize residuals from the

desired gradients under the integrability constraint from the previous section.
The approach proposed by Agrawal 15) for the photometric stereo method uses a
graph that describes the reliability of the gradients. Gradients with high reliabil-
ity are retained and the others are ignored to satisfy the integrability constraint,
much like an elimination of outliers. This proposal works well for the photo-
metric stereo problem because the gradients obtained from the images can have
unexpected errors. Conversely, residuals in the mirror design problem are not
caused by unexpected errors but by non-integrability of the given desired gra-
dients. Thus minimization of residuals all over is superior to the elimination of
outliers.

Let g be a vector consisting of gradients p̂, q̂ that form a surface, and let gd be
that of desired gradients p̂d and q̂d obtained from the desired projection. The goal
for the optimization is to minimize the cost function F (g,gd) ∈ R1 formulated
as

F (g,gd) = ||g − gd||2 (14)
about g under the integrability constraint Eq. (10). In fact, gradient g does
not have the same DOF as the number of its row, because of the constraint
from Eq. (10). Therefore, g can be expressed as a general solution of Eq. (10).
We formulate this with the following scheme. Assume a homogeneous linear
equation Ax = 0 with an m × n matrix A (m < n and rankA = m). This can
be transformed into[

−Em B
]
x = 0 (15)

with a basic matrix transformation of the rows of A. Here Ei is an i × i unit
matrix. Then the general form of its solution is described as

x =

[
B

En−m

]
y (16)

where y is a vector that denotes the actual DOF of the solution x for Ax = 0.

g can be expressed as the same formulation as Eq. (16), in the case of Eq. (10)
instead of Ax = 0. See the appendix for a detailed explanation of the above
theory. Let the integrability constraint C and the gradient g correspond to A
and x, respectively, so that the above proposition can be used. Based on Eq. (8)
and Eq. (10), C is formed as

C =

⎡
⎢⎢⎣

−P P 0 Q 0 0

−P P Q

.

.

.

. . .
. . .

. . .
.
.
.

0 −P P 0 Q 0

⎤
⎥⎥⎦ (17)

where P, Q, and 0 are (W − 1) × W matrices as given below.

P =

⎡
⎢⎣ EW−1

0
...
0

⎤
⎥⎦ ,Q =

⎡
⎢⎣

1 −1 0

1 −1

. . .
. . .

0 1 −1

⎤
⎥⎦ , and 0 =

⎡
⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0

⎤
⎥⎦ .

(18)

C is constructed from (H − 1) × 2H blocks of P, Q and 0 as shown in Eq. (17).
The construction of C indicates rankC = (W − 1)(H − 1). Now assume another
gradient vector ḡ with a different order for p̂ and q̂ to replace P in EW−1 and
apply the theory of Eq. (15) and Eq. (16). This enables us to obtain a new form
of the integrability constraint C̄ḡ = 0, its ideal solution ḡd, and a cost function
F̄ with

ḡ = [ p̂(0, 0), p̂(1, 0), · · · , p̂(W − 2, 0),
p̂(0, 1), p̂(1, 1), · · · , p̂(W − 2, 1),
p̂(0, 2), · · · , p̂(W − 2,H − 1),
p̂(W − 1, 0), p̂(W − 1, 1), · · · , p̂(W − 1,H − 1),
q̂(0, 0), q̂(1, 0), · · · , q̂(W − 1, 0),
q̂(0, 1), q̂(1, 1), · · · , q̂(W − 1, 1),
q̂(0, 2), · · · , q̂(W − 1,H − 1)]T ,

(19)

IPSJ Transactions on Computer Vision and Applications Vol. 1 158–173 (Sep. 2009) c© 2009 Information Processing Society of Japan



164 Integrability-based Free-Form Mirror Design

ḡd = [ p̂d(0, 0), p̂d(1, 0), · · · , p̂d(W − 2, 0),
p̂d(0, 1), p̂d(1, 1), · · · , p̂d(W − 2, 1),
p̂d(0, 2), · · · , p̂d(W − 2,H − 1),
p̂d(W − 1, 0), p̂d(W − 1, 1), · · · , p̂d(W − 1,H − 1),
q̂d(0, 0), q̂d(1, 0), · · · , q̂d(W − 1, 0),
q̂d(0, 1), q̂d(1, 1), · · · , q̂d(W − 1, 1),
q̂d(0, 2), · · · , q̂d(W − 1,H − 1)]T ,

(20)

F̄ (ḡ, ḡd) = ||ḡ − ḡd||2, (21)

and

C̄ =

⎡
⎢⎢⎣

−EW−1 EW−1 0 Q 0 0

−EW−1 EW−1 Q

.

.

.

. . .
. . .

. . .
.
.
.

0 −EW−1 EW−1 0 Q 0

⎤
⎥⎥⎦ . (22)

Take note of the left part of C̄. Working from the bottom to the top of the
matrix, and sequentially adding a row block to the row block immediately above
it, converts the left part into a negative unit matrix given by⎡

⎢⎢⎣
−EW−1 0 EW−1 Q Q · · · Q 0

−EW−1

.

.

. Q · · · Q

.

.

.

. . .
.
.
.

. . .
.
.
.

.

.

.

0 −EW−1 EW−1 0 Q 0

⎤
⎥⎥⎦ ḡ = 0

⇔
[
−E(W−1)(H−1) S

]
ḡ = 0 (23)

where

S =

⎡
⎢⎢⎣

EW−1 Q Q · · · Q 0

.

.

. Q · · · Q

.

.

.

.

.

.
.
. .

.

.

.

.

.

.

EW−1 0 Q 0

⎤
⎥⎥⎦ (24)

corresponding to B in Eq. (15) and Eq. (16). Then the general solution defined
by the integrability constraint is represented as

ḡ =

[
S

E2WH−(W−1)(H−1)

]
h = Th (25)

based on Eq. (16). The 2WH − (W − 1)(H − 1) × 1 vector h corresponds to y
in Eq. (16). T is a 2WH × (2WH − (W − 1)(H − 1)) matrix whose columns are
linearly independent solutions of Eq. (10). Substituting Eq. (25) into Eq. (21) for
a new cost function F̄(h, ḡd) given as

F̄ (h, ḡd) = ||Th − ḡd||2 (26)
with actual DOF h instead of ḡ. Here we use a simple Least Mean Square
algorithm to minimize Eq. (25) and obtain the optimal solution for ḡ. This is
expressed as

h = T+ḡd ⇒ ḡ = TT+ḡd (27)
where T+ is the pseudo inverse matrix of T. Since T+ �= TT , we must calcu-
late T+ = (TT T)−1TT . This procedure does not require any additional prior
information despite the fact that typical gradient based 3D-shape reconstruction
approaches, such as using a two dimensional Poisson equation and the algebraic
method 15), need the boundary conditions.

3.5 Adaptive Optimization with a Weight Map
By using a weight map that gives evaluation weights to each gradient, opti-

mization becomes more adaptive. This is useful when a designer wishes to give a
non-uniform importance map, or when the influence of gradient residuals on pro-
jection residuals changes according to location on the mirror surface 13). A weight
map that gives small weightings at locations with large residuals can suppress
the expansion thereof. This countermeasure works effectively when a desired
projection is discontinuous and/or bumpy.

A weight map can be generated by checking curl values of the gradient map
obtained from the given desired projection in advance. The reason is that projec-
tion residuals tend to appear at locations with non-integrability gradients. Thus
a small weight or even 0 should be given to these when generating the weight
map.

Here we discuss differences between the proposed method and Agrawal’s
method 15) by considering the weight map. Since the integrability constraint par-
tially prevents Eq. (21) = 0, 2WH − (W − 1)(H − 1) DOF, corresponding to h,
still remain. The proposed method uses the remaining DOF to obtain an optimal
ḡ that minimizes square residuals from ḡd all over the field (u, v). On the other
hand, Agrawal, et al. chained contiguous nodes to create edges in the graph show-
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ing the topology of the integrability constraint, so as to add 2WH−(W−1)(H−1)
requirements. This procedure is similar to allocating weights of 1 and 0 to the
corresponding 2WH − (W − 1)(H − 1) gradients and the other (W − 1)(H − 1)
gradients, respectively. As a result, the 2WH − (W − 1)(H − 1) elements in ḡ
become equal to those in ḡd, and the other (W − 1)(H − 1) elements are au-
tomatically determined based on the integrability constraint without any effect
from the corresponding elements in ḡd. Since this method has an all-or-nothing
approach at each (u, v), it cannot be used for overall optimization.

The weight map is defined as a 2WH × 2WH matrix M, the diagonal compo-
nents of which are the weights for each gradient. Re-alignment of g to ḡ creates
M, with the same order, as

M = diag( mp(0, 0),mp(1, 0), · · · ,mp(W − 2, 0),
mp(0, 1),mp(1, 1), · · · ,mp(W − 2, 1),
mp(0, 2), · · · ,mp(W − 2,H − 1),
mp(W − 1, 0),mp(W − 1, 1), · · · ,mp(W − 1,H − 1),
mq(0, 0),mq(1, 0), · · · ,mq(W − 1, 0),
mq(0, 1),mq(1, 1), · · · ,mq(W − 1, 1),
mq(0, 2), · · · ,mq(W − 1,H − 1)).

(28)

where mp and mq are weights corresponding to gradients p̂ and q̂, respectively.
In this paper, we took mp(u, v) and mq(u, v) to be the same value, w(u, v),
calculated as

w(u, v) = 1 + (wmax − 1) × Curlave(u, v)
Curlmax

(29)

in order to configure 1 ≤ w(u, v) ≤ wmax. Here wmax is the maximum weight
value given by the designer. Curlmax and Curlave(u, v) denote a maximum curl
value on an entire (u, v) field and an average of neighbor curl values around a
target (u, v) expressed as

Curlmax = max
u,v

curl(u, v) (30)

and

Curlave(u, v) =
1
4

1∑
i=0

1∑
j=0

curl(u + j, v + i) (31)

respectively. Applying M to Eq. (26) achieves a weighted optimization.
F̄ (h, ḡd) = ||MTh − Mḡd||2 (32)
h = (MT)+Mḡd ⇒ ḡ = T(MT)+Mḡd (33)

Although M−1 = diag( 1
mp(0,0) , · · · , 1

mq(W−1,H−1) ), (MT )+ cannot be obtained
by any multiplications thereof, such as M−1, TT , T+, and so on. Therefore we
need to calculate (MT)+ = ((MT)T (MT))−1(MT)T .

This adaptive optimization using the weight map can be applied to conventional
approaches 10),13). However, the correspondences between the control variables
and the gradients on the mirror surface are not one-to-one. Thus the weight
map does not contribute appropriately to forming the mirror in these approaches.
Since each weight has a direct affect on every location in our method, the gradient
optimization is done more adaptively.

3.6 Forming the Mirror Shape from Its Gradients
Forming the mirror shape takes place after the optimal gradients have been

obtained. Since the relative positions of contiguous points on the surface are
determined by the gradients, giving an integral constant value allows us to form
the mirror shape. This is given as the depth of a point z0 = z(u0, v0) 0 < u0 <

W − 1, 0 < v0 < H − 1. Depths at the other points (u, v) can be calculated
by sequential additions (integrations) of the optimized gradients along a path
from (u0, v0) to (u, v). Note that the path of the integration does not affect
the integration result, because the optimized gradients satisfy the integrability
constraint.

Define po and qo as optimized gradients, in the case of an orthogonal projection
camera, to formulate the integration procedure given by

z(u, v0) =

{
z0 +

∑u−1
j=u0

po(j, v0) u > u0

z0 −
∑u0−1

j=u po(j, v0) u < u0

(34)

and
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z(u, v) =

{
z(u, v0) +

∑v−1
i=v0

qo(u, i) v > v0

z(u, v0) −
∑v0−1

i=u qo(u, i) v < v0 .
(35)

When a perspective projection is assumed to be a camera projection, the optimal
gradients are said to be log scaled. This indicates that ẑ0 = ln z0, ẑ = ln z, p̂o,
and q̂o are used instead of z0, z, po, and qo in the above integration, respec-
tively. Additional exponent calculation is necessary to convert the log scaled
depth ẑ(u, v) into an original depth z(u, v). Since the designer can arbitrarily
give a depth and its position, the distance from the mirror and the camera can
be controlled.

4. Design Experiments

4.1 Wide Panoramic Imaging System
The free-form mirrors designed from our algorithm satisfy both an expanding

FOV and reduced distortion on captured images. We assumed a configuration
for a wide panoramic imaging system as shown in Fig. 4 (a). In this setup,
distortion-free means that cylindrical scenes around the camera appear directly
on the images. A desired projection is given by dividing an objective panoramic
FOV into grids of the same size. The FOV of the camera and the objective
panoramic FOV are respectively, ±20.0×±15.3 degrees produced with a 6.0 mm
focal length, and ±50.0 × ±20.0 degrees. The shape of the designed mirror, a
target panoramic scene, and a captured image are shown in Fig. 4. Checkers
on the cylindrical scene appear approximately as squares on the image. The
center region has almost no distortion, whereas a little distortion appears at the
image edges. The distortion is, however, much smaller than that which results
from conventional parametric approaches such as using rotationally symmetric
mirrors.

4.2 Catadioptric Projector System
Free-form mirrors can also correct image distortions in projector systems. Gen-

erally direct projection by an upward facing projector has trapezoidal distortion.
Using a combination of a projector and a free-form mirror, rectangular images
appear on a screen without image deformation, and these cancel the trapezoidal
distortion. Since the projection of a projector is the same as that of a camera

(a) setup (b) designed mirror

(c) target panoramic scene (d) input image

Fig. 4 Wide panoramic imaging system. X, Y , and Z axes in figure (b) correspond to the
camera coordinate system.

apart from the direction of the light, our algorithm can be applied directly. As-
sume a catadioptric projector system as shown in Fig. 5 (a). We configured a
rectangular projection as the desired one, and designed the catadioptric projec-
tor system using our algorithm. The focal length and FOV of the projector are
the same as those for the camera in the previous experiment. The shape of the
designed mirror and examples of projected images are shown in Fig. 5 (b) and
Fig. 5 (c-e), respectively. The trapezoidal distorted image with only the upward
projector is corrected with the use of the designed free-form mirror to be a rect-
angular image. Although a little distortion still remains, the amount of image
deformation required to cancel it is much smaller.

4.3 Anisotropic Omnidirectional Camera
The previous two configurations aim to achieve uniform and orthogonal pro-

jections. Here we demonstrate an optical construction that has a more particular
projection. Generally, most catadioptric omnidirectional cameras use rotational
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(a) setup (b) designed mirror

(c) ideal project (d) only a looking up (e) with the designed

projector mirror

Fig. 5 Catadioptric projector system.

symmetric convex mirrors and align these to the optical axis of the camera.
Thus conventional omnidirectional cameras have isotropic optical and geometri-
cal properties.

There are some cases in which anisotropic properties work well. One example is
vision in mobile robots, where it is desirable for the robot to observe the direction
along its moving path to avoid collisions, recognize targets, manipulate objects,
and so on. An anisotropic omnidirectional imaging system with continuously
changing resolution along the azimuth angle to observe the scenes in the front
and back with higher resolution than those on the sides has been proposed by
Kondo, et al. 11). We have also designed an anisotropic omnidirectional camera
with a convex mirror designed from our algorithm. Input images of a conven-
tional isotropic omnidirectional camera and our anisotropic one are shown in
Fig. 6 (d) and (e), respectively, with the target being a uniform checker pattern
on the panoramic scene. While the same size checkers appear concentrically in
Fig. 6 (d), larger checkers appear on the left and right of Fig. 6 (e) than at the

(a) objective anisotropic projection (b) designed mirror

(c) setup for generating (d) input image with (e) input image with

input images the isotropic mirror the designed mirror

Fig. 6 Anisotropic omnidirectional camera for mobile robots. The radial and concentric di-
rection on the input images (d), (e) correspond to the latitudinal and longitudinal
direction in the world, respectively. Red lines correspond to horizontal rings in the
world. Typical checkers located in a perpendicular direction are colored green for
comparison.

top and bottom, which reflects the anisotropic resolution distribution along the
azimuth angle. Furthermore, the checkers are large in both the longitudinal and
latitudinal direction. The form of the convex mirror used in Kondo’s anisotropic
omnidirectional camera was determined with few coefficients. This demerit cre-
ated nearly constant latitudinal resolution while longitudinal resolution changed
significantly. Since our algorithm has many degrees of design freedom (the num-
ber of control variables), resolution distribution can be controlled more flexibly.

5. Forming Non-smooth Surfaces

Direct definition of the mirror surface with its gradients as control variables
can represent a non-smooth surface and projection. Thus our method covers not
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(a) two type omni-cameras (b) setup for generating input images

Fig. 7 Omnidirectional camera with a spiny convex mirror. Correspondences between the
input images and the scene is the same as Fig. 6.

only the single curved surface addressed in conventional methods such as7),9),10),13)

but also a surface with sharp edges and/or vertexes. Three configurations are
demonstrated to validate the performance of our algorithm with respect to non-
smooth surfaces.

5.1 A Spiny Convex Mirror
Generally, a conventional omnidirectional camera with a convex mirror covers

an omnidirectional scene from directly under the camera to obliquely upward.
While this FOV is appropriate to observe the whole scene including the ground,
the camera itself is unfortunately also captured. Furthermore, observation of
the ground is not necessary if we wish to capture only a horizontal scene. We
can avoid capturing these unwanted scenes by forming a convex mirror that has
a spiny bottom (Fig. 7 (a)). We have designed omnidirectional cameras with
spiny convex mirrors designed using two separate algorithms: our method and
Swaminathan’s method 13). The desired projection uniformly covers panoramic
scenes whose vertical FOV is ±30 degrees. Figure 8 (a) and (b) show a close-up
of the bottom of the two convex mirrors. Our algorithm forms a sharper vertex.
To confirm each vertical FOV, input images are generated by the setup shown
in Fig. 7 (b). Take note of the center of the input image that corresponds to the
downward scene. The black colored region at the center indicates superfluous
FOV about the scene underneath. Since a smaller region appears in Fig. 8 (c)
than in (d), our algorithm is better suited to forming spiny convex mirrors.

Swaminathan’s algorithm Our algorithm

Bottom of mirror

(a) (b)

Input image

(c) (d)

Fig. 8 Design results of the spiny convex mirrors.

5.2 Pyramid Mirror
We evaluate the design ability with respect to ridge lines by designing a com-

posite mirror. A pyramid mirror is one of the simplest composite mirrors con-
structed from four flat mirrors, with four non-smooth ridge lines at their joints.
Many residuals remain when redesigning the pyramid mirror shape from its own
projection using the conventional method 13) that assumes a single curved mir-
ror (Fig. 9 (c)). To avoid these residuals when using the conventional methods,
each component mirror needs to be designed individually. This however, causes
problems in the construction as continuity at the joints is not considered. On
the other hand, our method suppresses residuals at the joints and allows them
to expand to neighborhoods (Fig. 9 (d)) in spite of the single mirror design. The
pyramid mirror, which is one of the simplest examples of composite mirrors, can
be used to quantitatively evaluate residuals easily.
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Swaminathan’s algorithm Our algorithm

Mirror

(a) (b)

Residual

Average = 1.9 (deg.) Average = 0.08 (deg.)

S.D. = 2.7 (deg.) S.D. = 0.40 (deg.)

(c) (d)

Fig. 9 Mirror design for discontinuous projection. (a), (c) Swaminathan’s algorithm. Errors
spread in bands around the boundaries. (b), (d) our algorithm. Error spreading is
limited to narrow areas. The number of projection errors is small.

5.3 Compound Eye Mirror
The previous two configurations demonstrate the advantage of the proposed

method with simple shape mirrors. Here we focus on designing an odd shaped
mirror that has not been addressed in conventional methods. Assume that the
image plane of a camera is divided into small rectangular semi-image planes
and that each semi-image plane captures an environment with the same FOV.
When the original image plane is divided into 4 × 4 = 16 semi-image planes, a
4 × 4 tiled image seems to appear in the image plane. We have attempted to
construct a type of compound eye imaging system similar to an insect’s eyes.
We call this the “compound eye camera”. The mirror is expected to have the

(a) compound eye configuration (b) designed compound eye mirror

(c) target scene (d) ideal input image (e) input image with

the designed mirror

Fig. 10 Design of compound eye camera.

same number of convex shapes as there are divisions in the image plane. This
configuration is illustrated in Fig. 10 (a). The convex shapes are not simple
rotational symmetric shapes, but differ from one another, because each convex
needs to produce the same FOV from different FOVs generated by each semi-
image plane. This complicated and strange surface is difficult to create with
conventional approaches using a single polynomial function 7),9),10) or the cross
product of spline curves 13).

We have designed a new type optical system with 4 × 4 semi-image planes as
noted above. The desired FOV of horizontally ±30 degree × vertically ±23 degree
for each semi-image plane results in a strangely shaped mirror that includes both
smooth surfaces and sharp edges as shown in Fig. 10 (b). It consists of 4 × 4
different shaped convex surfaces as expected. The proposed method succeeded in
limiting the average and variance of the projection residual to 1.0 degree and 3.0×
10−5 degree2, respectively. Therefore the input image with the designed mirror
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(Fig. 10 (e)) is almost the same as that with the desired projection (Fig. 10 (d)).

6. Discussions

6.1 Differences from Conventional Methods for Projection Based
Mirror Design

We have already alluded to the differences between the proposed method and
the conventional mirror design methods 7),9),10),13). These are now discussed in
detail.

There are, certainly, common aspects between the proposed method and the
conventional ones, such as motivation, issues, and goals. However, the proposed
method offers a significantly different mirror surface representation method.
Swaminathan’s work 13) and the earlier works by Hicks 7),9) define mirror sur-
faces using the cross product of spline curves and a single polynomial function
or its multiplication based on the Reyleigh-Ritz approximation method. These
definitions give an almost satisfactory approximation for a single smooth surface.
But not all 3D surfaces can be covered with them. In fact, Hicks, et al. said
that they had not considered an optimal choice of basis with the Rayleigh-Ritz
approximation, and it seemed to be a difficult problem in their paper 9). Our
method is one of a different approach to the surface representation problem.
We directly define a mirror surface with a number of gradients, not with basis
functions and their coefficients as used in the conventional methods. Although
the conventional methods with polynomial functions and spline curves involve
integrability conditions, forming a consistent surface is not guaranteed with only
an assembly of gradients. Therefore we applied the additional constraints for
integrability described in Eq. (10).

The proposed surface definition can easily represent non-smooth surfaces, in-
cluding frequent bumps, sharp edges, and spiny vertexes (this has been demon-
strated through the design examples discussed in Section 5). Non-smooth surfaces
can be divided into a number of smooth surfaces, which are then dealt with indi-
vidually. Unfortunately, this causes an additional problem, namely interrelations
between the component mirrors, such as their positions and border connections.
These interrelated problems are important issues when it comes to manufactur-
ing a mirror and aligning it precisely. Whereas conventional methods do not

even discuss these problems, the proposed method need not consider them as it
is able to represent non-smooth surfaces. Even a complicated mirror constructed
from a combination of component mirrors can still be designed as a single mirror.
As clarified above, the surface representation approach underlying the proposed
method is essentially different to the conventional method.

6.2 Limitations and Future Works
We have assumed that a mirror surface is defined as a single continuous surface

with a set of gradients. Therefore, the proposed method can design a mirror with
a large depth gap only if it is a single continuous surface. Multiple mirrors can, of
course, be designed as a group of single mirrors or as a conjunction of the multiple
mirror as if it were a single mirror, as described in the previous subsection. In this
case, the proposed method works especially well when continuity in the borders of
the component mirrors is a problem, such as the configuration given in Section 5.

The proposed method cannot, however, design optics with multiple reflections
by multiple mirrors, because of the assumption of only one reflection for each
ray from the environment to an image plane as shown in Fig. 1. One suitable
approach is to divide multiple reflections into a series of single reflections for
sequential design.

We have designed various mirror shapes, but none of these have been manu-
factured as yet. We would like to evaluate the actual projections and captured
images with real optical equipment. Designing and manufacturing mirrors for
practical use is also envisaged.

7. Conclusion

In this paper, we proposed a design method for a free-form mirror surface
for a catadioptric imaging system, using the assembly of its gradients. It is
a new approach to defining 3D mirror surfaces for catadioptric camera design.
We formulated the integrability constraint of the gradients to form a consistent
surface in the mirror design, using a method similar to that used in gradient
based shape reconstruction schemes. Our approach produces mirror surfaces
with minimal overall projection residuals, and also works well for non-smooth
mirrors such as spiny convex mirrors and compound eye mirrors.
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Appendix

A general solution for a homogeneous linear equation can be calculated with
the following procedures. Assume a homogeneous linear equation Ax = 0 with
an m × n matrix A (m < n, and rankA = m). Since rankA = rowA = m, A
can be translated into the form given by

A →

⎡
⎢⎢⎢⎢⎢⎣

−1 0 b1,m+1 · · · b1,n

−1
...

...
. . .

...
...

0 −1 bm,m+1 · · · bm,n

⎤
⎥⎥⎥⎥⎥⎦ = [−Em B] (36)

with a basic matrix transformation of the rows. The matrix transformation is
a combination of three types of operations: swapping two rows, multiplying all
elements of the target row by the same value, and adding one row to another.
This transformation retains the properties of the original equation (i.e., Ax =
0 ⇔ [−Em B]x = 0). If we assume the n − m vectors to be
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x1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,m+1

...
bm,m+1

1
0
...
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,x2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,m+2

...
bm,m+2

0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, · · · ,xn−m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1,n

...
bm,n

0
...
...
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (37)

these are obviously linearly independent of each other and Axi = 0 for i =
1, 2, · · · , n − m (check [−Em B]xi = 0). Therefore xi, i = 1, 2, · · · , n − m are
vectors considered as elementary solutions or linearly independent solutions of
Ax = 0 (linear algebra indicates that these are equal to bases in the solution
space of Ax = 0). Finally a general solution x of Ax = 0 can be obtained as a
linear combination of xi. It is given by

x =
n−m∑
i=1

cixi =
[

x1 x0 · · · xn−m

]
⎡
⎢⎢⎢⎢⎣

c1

c2

...
cn−m

⎤
⎥⎥⎥⎥⎦ =

[
B

En−m

]
y = Fy

(38)

where y = [c1, c2, · · · , cn−m]T is a coefficient vector that denotes the actual DOF
of the solution for Ax = 0.
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