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The scattering effect of incident light, called subsurface scattering, occurs un-
der the surface of translucent objects. In this paper, we present a method for
analyzing the subsurface scattering from a single image taken in a known arbi-
trary illumination environment. In our method, diffuse subsurface reflectance
in the subsurface scattering model can be linearly solved by quantizing the dis-
tances between each pair of surface points. Then, the dipole approximation is
fit to the diffuse subsurface reflectance. By applying our method to real images
of translucent objects, we confirm that the parameters of subsurface scattering
can be computed for different materials.

1. Introduction

A variety of photometric analysis methods have been proposed to estimate
the shading and reflection properties of images captured by a camera. Since it
is assumed in most methods that the target scene consists of opaque materi-
als, translucent objects cannot be dealt with. In translucent media, an incident
ray scatters under the surface and reflects from different points. This reflection
is called subsurface scattering. Although marble and skin are considered typi-
cal translucent objects, there are many more such objects, including fruit and
vegetables 1). Some of the translucent objects in our everyday environment are
shown in Fig. 1. However, many of the photometric analysis methods, such as
shape-from-shading and photometric stereo, do not work well in our everyday
environment. It is well known that the main reasons that these methods fail are
non-Lambertian BRDFs (specular reflections), shadows, and inter-reflection. We
believe that another reason is that these methods cannot deal with subsurface

†1 Osaka University

Fig. 1 Many translucent objects in our living environment.

scattering. Although the subsurface scattering comes close to Lambertian reflec-
tion under homogeneous illumination, fine-scale geometric features are blurred
by the subsurface scattering. Hence, the analysis of subsurface scattering in
translucent objects is very important.

In the computer graphics field, several algorithms for rendering translucent
objects have been proposed. Hanrahan and Krueger 2) modeled reflection from
layered surfaces such as skin and leaves. Stam 3) approximated the effects of
multiple scattering in heterogeneous media by a diffusion process. Dorsey, et
al. 4) proposed a Monte Carlo subsurface ray tracer to render stones. Pharr and
Hanrahan 5) used scattering functions with Monte Carlo integration to render
complex shapes. Jensen proposed photon mapping 6) which traces individual
photons for simulating volumetric subsurface scattering. Later, Jensen, et al.
proposed an analytic dipole approximation 7) for multiple scattering in homo-
geneous materials based on a diffusion approximation, and extended it with a
two-pass rendering technique 8). Donner 9) further extended this by a multipole
diffusion approximation to render thin translucent slabs.

In the field of medical imaging, light scattering in the human body has been
analyzed by diffuse optical tomography (DOT) 10). To reconstruct images, DOT
requires modeling of the photon propagation in the scattering medium and data
inversion. Nitta 11) proposed a weight function model for signal processing in
DOT.

In the cosmetic field, skin translucency of facial images has been the focus of
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much research. Tsumura proposed a method to separate the hemoglobin and
melanin components by independent component analysis 12), and estimated irra-
diance by the deconvolution of the point spread function of translucent media 13).

Translucent objects are, however, not the primary focus in the computer vi-
sion field. Most research focuses on analyzing diffuse and specular reflections
and shadows on opaque objects. Only inter-reflection is analyzed as an effect of
global illumination. Recently, various methods were proposed to measure subsur-
face scattering directly in translucent objects using special lighting devices such
as a focused narrow beam using a lens 7), a sweeping laser beam 14),15), a projec-
tor 16),17), or a fiber optic spectrometer 18). Ghosh, et al. 19) proposed a practical
system to measure and analyze layered facial reflectance within a few seconds.
This system uses structured illumination and polarizers to estimate subsurface
scattering parameters.

These methods can, however, analyze subsurface scattering only under strictly
controlled illumination. In this paper, we propose a new method to analyze
subsurface scattering using only a single image taken in a known arbitrary il-
lumination environment. Such a problem setting is difficult to solve using the
previous approaches. The challenge addressed in this study is that of analyzing
subsurface scattering by inversely tracing the image rendering process.

Recently, Donner, et al. 20) used an inverse rendering technique to obtain the
parameters of subsurface scattering. In their model, human skin is modeled as
layered heterogeneous material and subsurface scattering is controlled by five pa-
rameters. To estimate these parameters from a single, multi-spectral image, they
utilized an inverse rendering approach. That is, starting from average skin pa-
rameters, a gradient descent optimization repeatedly renders the skin and finds
the parameters that minimize the differences between the rendering and the ac-
quired image.

Our approach is similar to this in that the parameters of subsurface scattering
are estimated from a single image. However, our method divides the problem
into a reflectance estimation and a parameter estimation. The former can be
algebraically calculated by the least-squares method without any iterative cal-
culation. The latter becomes a simple fitting problem of the dipole model to
the estimated discrete reflectance. Consequently, we can eliminate the rendering

process from the image analysis.

2. Subsurface Scattering

2.1 Light Diffusion in Translucent Objects
Most computer vision methods assume that the target scene consists of opaque

objects. On the surface of an opaque object, an incident ray reflects directly
at the incident point as shown in Fig. 2 (a). This reflection is expressed as a
bidirectional reflectance distribution function (BRDF). The BRDF F (x, ωi, ωo)
represents the ratio of outgoing radiance in the viewing direction ωo to incident
irradiance from a lighting direction ωi at a surface point x.

On the other hand, an incident ray to a translucent object diffuses under the
surface and reflects from different points. The incident and radiative points do
not correspond as shown in Fig. 2 (b). Since strong scattering lights are observed
around the incident point, the surface appears smooth because the irregularities
of the surface become more difficult to see. This reflection is expressed as a
bidirectional scattering surface reflectance distribution function (BSSRDF). The
BSSRDF S(xi, ωi, xo, ωo) represents the ratio of outgoing radiance in the viewing
direction ωo at xo to incident irradiance from a lighting direction ωi at xi.

The radiance to the reflection direction ωo at the surface point xi is expressed

(a) Opaque object

(b) Translucent object

Fig. 2 The difference between BRDF and BSSRDF.
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by

Lo(xo, ωo) =
∫

A

∫
Ω+

S (xi, ωi, xo, ωo) Li (xi, ωi) (N · ωi) dωi dxi (1)

Here, Li(xi, ωi) represents the power of the incident illumination from the di-
rection ωi at the surface point xi. A, Ω+, and N are the surface area, positive
hemisphere, and surface normal at point xi, respectively.

2.2 Dipole Approximation
In the computer graphics field, the photon mapping algorithm 6) is often used

to express subsurface scattering. However, it requires huge computational cost
to render realistic images. Jensen, et al. 7) proposed the dipole approximation to
simulate subsurface light transport. It can render realistic images in a short time.
Hence, we also use the dipole approximation to analyze translucent objects.

The dipole approximation assumes that the subsurface scattering does not
depend on the incident and radiative directions. Hence, the BSSRDF
S (xi, ωi, xo, ωo) can be decomposed as

S(xi, ωi, xo, ωo) =
1
π

Ft,o(η, ωo)R(xi, xo)Ft,i(η, ωi). (2)

Here, Ft(η, ω) is the Fresnel function when the ray transmits from the direction
ω to the boundary whose relative index of refraction is η.

R (xi, xo) is the diffuse subsurface reflectance of light entering at point xi and
exiting at point xo. The R (xi, xo) is approximated to R(d) as a function of the
distance d = ‖xo − xi‖ as follows,

R (d) =
α

4π

{
zr

(
σtr +

1
dr

)
e−σtrdr

d2
r

+zv

(
σtr +

1
dv

)
e−σtrdv

d2
v

}
(3)

Each variable is defined as follows.

dr =
√

d2 + z2
r , dv =

√
d2 + z2

v , zr =
1
σ′

t

, zv = zr(1 +
4
3
A) (4)

A =
1 + Fdr

1 − Fdr
, Fdr = −1.440

η2
+

0.710
η

+ 0.668 + 0.0636η (5)

σtr =
√

3σaσ′
t, σ′

t = σ′
s + σa, σ′

s = σs(1 − g), α =
σ′

s

σ′
t

(6)

The scattering coefficient σs, reduced scattering coefficient σ′
s and absorption

coefficient σa are inherent parameters of the material. g is the mean cosine of the

Fig. 3 Examples of R(d) (Apple: σ′
s = 2.29, σa = 0.003, η = 1.3. Skin: σ′

s = 0.74,
σa = 0.032, η = 1.3)

scattering angle, which is zero when the scattering is isotropic. Hence, subsurface
scattering is defined by the three parameters, σ′

s, σa, and η, if we assume isotropic
scattering (g = 0).

Figure 3 shows how the diffuse subsurface reflectance R(d) changes with vary-
ing parameters. This graph shows that the power of the scattering light atten-
uates with distance from the incident point when the parameters corresponding
to apple and skin 7) are set.

3. Analysis of Subsurface Scattering

3.1 Conditions
Our method estimates the parameters for the dipole approximation from only

a single image taken in a known arbitrary illumination environment. First, we
clarify the conditions for the proposed analysis method.

Geometry: The 3-D location of the camera and the 3-D shape of the
target object are known.
Material: The material is homogeneous and scattering is isotropic.
Illumination: The distribution of the illumination at each surface point
Li(xi, ωi) is known.

3.2 Linear Formulation
The object surface is divided into m small patches and the normal vector N is

calculated for each patch. The radiance Lo(Pj) of patch Pj is expressed by
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Fig. 4 Formulation of radiance.

Lo(Pj) =
1
π

Ft,o(η, ωo, Nj)
m∑

k=1

{
R(djk)

∫
Ω+

Li(Pk, ωi)Ft,i(η, ωi, Nk)max(0, Nk · ωi)dωi

}
. (7)

Here, djk denotes the length between Pj and Pk, and Li(Pk, ωi) denotes irradi-
ance from the direction ωi at Pk. We set η = 1.3 based on the research of Jensen,
et al. 7) and Goesele, et al. 14). Hence, Ft,o(η, ωo, Nj) and Ft,i(η, ωi, Nk) are cal-
culated in advance from the 3-D shape, the illumination, and the 3-D position of
the camera.

Now, we set lj and ck.
lj = πLo(Pj)/Ft,o(η, ωo, Nj), (8)

ck =
∫

Ω+
Li(Pk, ωi)Ft,i(η, ωi, Nk)max(0, Nk · ωi)dωi. (9)

Then, lj is represented by

lj =
m∑

k=1

(R(djk)ck), (10)

as shown in Fig. 4. By using l, c and R defined below,
l = [l1, l2, . . . , lm]T, c = [c1, c2, . . . , cm]T, (11)

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R(d11) . . . R(d1k) . . . R(d1m)
...

. . .
...

...
R(dj1) . . . R(djk) . . . R(djm)

...
...

. . .
...

R(dm1) . . . R(dmk) . . . R(dmm)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

the subsurface scattering can be expressed by the following linear formulation,
l = Rc. (13)

The l and c are known, and the unknown σa and σ′
s are included in R. In

principle, it is possible to estimate directly the best parameter set for σa and σ′
s

that minimizes |l−Rc| by varying the parameters. However, this direct approach
is impractical owing to the huge computational time required. Multiplication of
R and c corresponds to image rendering, and this often requires a few minutes
depending on the number of patches. Hence, R is calculated first, and thereafter,
the best parameter set for σa and σ′

s is estimated.
The unknown R cannot be calculated from Eq. (13) because m2 unknowns

are included in R, while only m constraints are derived from Eq. (13). The
actual value of m is 3,750 in the experiment with a simulated image described
in Section 4.1. This means that there are 14,062,500 unknowns and only 3,750
constraints. In the experiment with real images described in Section 4.2, the
actual value of m are 13,467 and 6,634 for a cube and pyramid, respectively. It
is thus obvious that the number of unknowns needs to be reduced.

3.3 Quantization of Distance between Patches
To calculate R from l and c, we propose a linear solution. The key idea is

a piecewise-linear approximation of the diffuse subsurface reflectance R(d). For
the approximation, the continuous distances between the patches are quantized
to discrete distances. This quantization enables us to reduce the number of
unknowns. Based on the quantization, the best solution that minimizes the
RMS error can be calculated using the Least Square method.

First, the distances d11, . . . , dmm are approximated by n quantized distances
d′1, d

′
2, . . . , d

′
n. R′

i denotes the diffuse subsurface reflectance corresponding to the
quantized distance d′i. The d′i satisfy the following conditions.

d′1 = 0, d′n > max(djk), (14)
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d′1 < d′2 < · · · < d′n. (15)
djk is quantized by finding i that satisfies

d′i ≤ djk < d′i+1, (16)
and defined by

djk = βjkd′i + (1 − βjk)d′i+1, βjk =
d′i+1 − djk

d′i+1 − d′i
. (17)

Then, the diffuse subsurface reflectance R(djk) is approximated by linear inter-
polation as follows.

R(djk) � βjkR′
i + (1 − βjk)R′

i+1. (18)
Using n dimensional vectors

wjk = [ · · · 0 βjk (1 − βjk) 0 · · · ], (19)

r = [R′
1 R′

2 . . . R′
n ]T, (20)

Equation (18) is represented by
R(djk) � wjkr. (21)

From Eqs. (10) and (21), lj is represented by

lj �
m∑

k=1

(ckwjkr). (22)

Hence, Eq. (13) is approximated as

l � Wr, W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

(ckw1k)

m∑
k=1

(ckw2k)

...
m∑

k=1

(ckwmk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

This equation includes n unknowns and m constraints. If n ≤ m, r can be
calculated linearly as

r = W+l. (24)

Here, W+ is the pseudo inverse of W. In practice, the radiance of all patches
is not fully recorded in one input image. Hence, only the rows corresponding to
visible patches are extracted from l and W, then r is calculated from the partial
l and W.

Since the diffuse subsurface reflectance R(d) is smooth and a monotonically
decreasing function as shown in Fig. 3, the quantization does not cause crucial
errors if the quantization step is small.

Since the actual value of n depends on the quantization step, it varies between
50 and 450 in the experiment with a simulated image described in Section 4.1.
In the experiment with real images described in Section 4.2, the actual value of
n is 10. Hence, the problem is over-constrained.

3.4 Parameter Estimation
Once the diffuse subsurface reflectance R′

i has been calculated for each distance
d′i, the dipole approximation is fit to the data. The diffuse subsurface reflectance
R(d) is uniquely decided by only two parameters σ′

s and σa, since we assume that
the refractive index η is known. The optimal two parameters are estimated from

arg min
σ′

s,σa

n∑
i=1

(R′
i − R(d′i))

2, (25)

and the subsurface scattering model for the target material is obtained.

4. Experiment

4.1 Simulated Image
First, we evaluated how the quantization of distance affects the accuracy of

the estimated parameters. For a more precise evaluation, a simulated scene was
used, and the same subsurface scattering model was used for both rendering and
analyzing to avoid other adverse effects. For rendering the simulated image, we
originally implemented the renderer based on Jensen’s algorithm 7). Figure 5
shows the illumination environment captured using a mirrored ball. Under this
illumination, an image of a pyramid was rendered using dipole approximation
(σ′

s = 2.19, σa = 0.002, η = 1.3) as shown in Fig. 6 (a). There are 3,750 patches
in this pyramid model.

To obtain the best parameter set for the dipole model, all possible combinations
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Fig. 5 Illumination environment (http://www.debevec.org/Probes/).

(a) input image (b) resynthesized image

Fig. 6 Simulated image. (a) input image for given parameters (σ′
s = 2.19, σa = 0.002, and

η = 1.3). (b) resynthesized image for the estimated parameters (σ′
s = 2.34, σa = 0.009).

Table 1 Range and step of the parameters.

σ′
s σa

minimum 0.01 0.000
maximum 3.00 0.010

step 0.01 0.001

of the parameters were tested to avoid local minima. The ranges and steps used
for varying the parameters are given in Table 1. Figure 7 shows the fitting
errors for all combinations of σ′

s and σa, with a quantization distance of 0.35 mm.
In this figure, the error values are expressed in color, while a red ‘+’ marker
indicates the estimated parameter set that minimizes the fitting error. We can
see that an obvious global minimum exists for σ′

s and that the estimation of σ′
s

is stable. On the other hand, even if σa changes, the error does not vary while
the distribution is smooth. In other words, the estimation of σa tends to be
unstable. In fact, R(d) does not change dramatically as σa varies. Figure 8

Fig. 7 Error distribution when quantizing distance is 0.35 mm.

Fig. 8 Fitting result when quantizing distance is 0.35 mm.

shows the relationship between the estimated diffuse subsurface reflectance R(d)
and the fitted dipole approximation with a quantization distance of 0.35 mm.
Since the estimated R(d) include some outliers, the fitted dipole approximation
slightly underestimates the ground-truth kernel for increasing the distance d.

Next, we evaluated the accuracy of the estimated parameters as the quanti-
zation distance varied between 0.05 mm and 0.50 mm with a 0.05 mm step. The
parameters minimizing the fitting error were estimated for each quantization dis-
tance as listed in Table 2. While the estimated σ′

s is close to the ground truth,
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Table 2 Estimated parameters and PSNR.

Sampling [mm] σ′
s σa PSNR [dB]

0.05 2.14 0.000 26.47
0.10 2.20 0.007 42.12
0.15 2.19 0.004 30.58
0.20 2.19 0.009 33.47
0.25 2.19 0.005 28.69
0.30 2.32 0.009 29.78
0.35 2.34 0.009 47.93
0.40 2.22 0.009 25.76
0.45 2.18 0.009 20.35
0.50 2.40 0.009 23.43

Ground truth 2.19 0.002 –

σa tends to be larger and unstable.
To evaluate the accuracy of the estimated parameters, images were resynthe-

sized using the estimated parameters and these images were compared with the
input image. For a quantitative comparison, the difference was measured by the
PSNR (Peak Signal to Noise Ratio). The PSNR is often used to compute the
difference between two images, where a large PSNR indicates that the two im-
ages are similar. The signal corresponds to the pixel value in the input image,
while the noise is the difference in the pixel values of the input and resynthesized
images.

The PSNR for each quantizing distance is given in Table 2. It is generally
stated that we cannot distinguish two images if the PSNR is greater than 40 dB.
The PSNRs are greater than 40 dB for distances of 0.10 mm and 0.35 mm, and
are around 30 dB between these distances as shown in Fig. 9. Figure 6 (b) shows
the resynthesized image of the pyramid using the estimated parameters for dis-
tance of 0.35 mm. As the PSNR is 47.93 dB, we cannot see any differences from
the input image in Fig. 6 (a).

If the quantizing distance is large, the quantizing error affects the parameter
estimation. Inversely, too small a quantizing distance increases the number of
unknowns, hence the calculation of the pseudo inverse in Eq. (24) becomes un-
stable. In fact, the PSNR is small for the short distance 0.05 mm. Resolving the
optimal quantizing distance is one of our future tasks.

Although all possible combinations of the parameters were tested to obtain

Fig. 9 Relationship between quantizing distance and PSNR.

the best parameter set, the total computation time is less than 1 second using
a conventional Pentium4 PC. Of course, the computation time increases, if we
set a smaller step for varying the parameters. In this case, a kind of steepest
descent method may be effective in speeding up the computation since the error
distribution is smooth and does not have local minima.

4.2 Real Images
Next, we estimated parameters for real images of objects made of various

translucent materials. The purpose of this experiment was to evaluate stabil-
ity when the assumed subsurface scattering model and actual phenomena are
not the same. The images were captured with a Nikon D80 digital SLR camera
using raw mode (12 bit). Despite the fact that our method is able to work under
general illumination, we used a single white LED as illumination to allow us to
measure the illumination more precisely. The 3-D positions of the camera and
LED were measured by hand. To avoid surface reflection and single scattering,
we used cross-polarization. In other words, linear polarizers were placed in front
of the camera and light source, and each polarizer was manually rotated until no
specular reflection was observed through the camera. The target objects were
placed on a light absorbing black sheet in a dark room as shown in Fig. 10 (a).

Cubes and pyramids �1, made of three different materials namely polypropy-
lene (PP), polyethylene (PE), and polyoxymethylene (POM), were used as target

�1 The pyramid has a base that is required by its manufacture.
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(a) equipment (b) location of the point light sources

Fig. 10 Setup for the actual experiment.

objects. There are, respectively, 13,467 and 6,634 patches on the cube and pyra-
mid. Each object was captured under six different illumination conditions. The
locations of the light source in relation to the target object are illustrated in
Fig. 10 (b). Since the distance from the source to the object is relatively small,
the incident angle varies for every patch. The irradiance also attenuates accord-
ing to the distance between the source and the patches. Hence, the irradiance is
not uniform over the surface of the target object. In total, 36 images (2 shapes
× 3 materials × 6 illuminations) were captured. Figure 11 shows the images of
the cubes and pyramids made of PP, PE, and POM under ‘illumination-3’. The
camera settings, such as shutter speed and exposure, are the same for all images.

In this experiment, the quantization distance was fixed at 1 mm. The range
and step used for varying the parameters were the same as in the simulated scene
in Section 4.1. Figure 12 shows the fitting results for the cube illuminated from
the position referred as ‘illumination-3’. In the graph, ‘+’ markers indicate the
computed diffuse subsurface reflectances, while the lines denote the fitting results
from the dipole approximation for each material. The estimated parameters σ′

s

and σa for all images are graphically illustrated in Fig. 13. The rendering of the
Stanford bunnies using the averaged parameter set for each material are shown
in Fig. 14.

(a) Cube

(b) Pyramid

Fig. 11 Real translucent objects (leftmost column: polypropylene (PP), center column:
polyethylene (PE), rightmost column: polyoxymethylene (POM)).

Fig. 12 Examples of fitting results for the cube. The ‘+’ markers indicate the estimated
diffuse subsurface reflectances, while the lines denote the fitting results using a dipole
approximation.
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Fig. 13 Estimated parameters from the dipole approximation for all real images.

(a) PP (b) PE (c) POM

Fig. 14 Rendered Stanford bunnies.

Since the ground truth of the parameters was not known, we evaluated the
estimated parameters by consistency. Ideally, the same parameters should be
obtained for the same material even if the illumination or shape differs. In the
experiment, similar parameters were estimated for the same shape and material.
The parameters for the different pyramids were not strongly affected by the
differences in illumination. However, different parameters were estimated for
the cube and pyramid. One of the possible reasons for this is that the dipole
approximation assumes a semi-infinite slab, and thus cannot be used principally
for analyzing and rendering complex shapes. The unstable result seems to be due
to a mismatch between the scattering model and actual phenomena. Investigating

an appropriate BSSRDF model that is suitable for image analysis of complex
shaped objects is our future work.

4.3 Discussion
4.3.1 Reasonability of the Dipole Approximation
In this research, we used the dipole approximation for analyzing subsurface

scattering. Since the BSSRDF is explicitly and mathematically given in the
dipole approximation, the inverse problem that tries to find the BSSRDF from
the radiance information can be solved easily compared with Monte Carlo ray
tracing or photon mapping. However, a mismatch between the BSSRDF model
and the actual phenomena caused unstable results. The dipole approximation
originates from optical physics, and is designed for a semi-infinite material with
a planar surface.

In fact, good results were obtained for the simulated image because the same
model was used for rendering. However, the same accuracy cannot be expected
for real images since these complex shaped objects do not fit the design of the
dipole approximation.

Consequently, we need to develop a new BSSRDF model specifically for ana-
lyzing complex shaped objects. The data-driven approach 17) that records actual
light transport is one of the potential candidates for handling more generic scat-
tering behaviors.

4.3.2 Radiometric Calibration
Since we did not perform radiometric calibration in our experiments, we do

not know the physical unit of a pixel value. Therefore we empirically rely on the
‘GAIN’ constant to convert the radiances to pixel values. To ascertain the abso-
lute scale of the intensities and the ratio between the scattering and absorption
parameters, we need to improve on this simple method.

4.3.3 Adaptive Sampling of the Distances
In our implementation, we set the quantization distance at even intervals. This

approach may be inadequate for rapidly changing ranges and redundant for non-
varying ranges. The optimal distances for quantization depend on the 3-D shape
of the object. Adaptive sampling will be investigated in a future work to realize
a better piecewise-linear approximation of the diffuse subsurface reflectance.
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4.3.4 Relative Index of Refraction
In our method, we set the relative index of refraction η to 1.3 without any

plausible reason. This decision has no foundation. If we estimate the value of η

together with the parameters for the dipole approximation, the problem becomes
much more difficult. Automatically assigning a value to η is another of our future
works.

4.3.5 Ground Truth
The main reason for not being able to present objective evaluations in the

experiment using real images, is that we do not know the ground truth of the
parameters for PP, PE, and POM. In this respect, Tsumura, et al. 13) used
phantoms with known physical properties to validate their reconstruction. It
remains a future task to construct such phantoms and evaluate the estimated
parameters.

4.3.6 Illumination in a Real Environment
Our method can be used in any illumination environment in which the illumi-

nation is known. Measuring the illumination environment is, however, a difficult
task. Images with high dynamic ranges need to be captured precisely because
general illumination includes both strong light sources and weak inter-reflections.
Depending on the scene, the 3-D locations of all light sources must be recorded.
Furthermore, the cross-polarization technique is difficult to apply. Measuring the
illumination environment is another of our future tasks.

5. Conclusion

We proposed a new method to analyze subsurface scattering from a single im-
age taken in a known arbitrary illumination environment. We showed that diffuse
subsurface reflectance can be calculated linearly by quantizing the distances be-
tween each pair of surface points. We provided a solution to analyze subsurface
scattering by inversely tracing the image rendering process, while previous ap-
proaches attempted to measure the subsurface scattering directly using special
lighting devices such as a laser beam or projector.

Although accurate parameters could be estimated in the simulated experiment
using an appropriate quantization distance, problems of stability and accuracy
were still apparent since different parameters were estimated for the same mate-

rials in the experiments with real objects. Although the analysis is not stable,
we believe that our method is a significant first step in analyzing the appearance
of translucent objects in a known arbitrary illumination environment. Our fu-
ture work is to enhance the analyzing algorithm by using more suitable BSSRDF
models. Detailed verification using a more complex scene is also necessary.
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