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Abstract—We propose a method for phase estimation of a single
non-parametric quasi-periodic signal. Assuming signal intensities
should be equal among samples of the same phase, such corre-
sponding samples are obtained by self-dynamic time warping be-
tween a quasi-periodic signal and a signal with multiple-period
shifts applied. A phase sequence is then estimated in a sub-sam-
pling order using an optimization framework incorporating 1) a
data term derived from the correspondences and 2) a smoothness
term of the local phase evolution under 3) a monotonic-increasing
constraint on the phase. Such a phase estimation is, however, ill-
posed because of combination ambiguity between the phase evo-
lution and the normalized periodic signal, and hence can result in
a biased solution. Therefore, we introduce into the optimization
framework 4) a bias correction term, which imposes zero-bias from
the linear phase evolution. Analysis of the quasi-periodic signals
from both simulated and real data indicate the effectiveness and
also potential applications of the proposed method.

Index Terms—Phase, quasi-periodic signal, dynamic time
warping.

I. INTRODUCTION

ERIODIC signal analysis has been widely applied in the

signal processing field as well as in the fields of image pro-
cessing, computer vision, and pattern recognition. Fundamen-
tally, periodic signals play quite an important role in many appli-
cations ranging from data transmission via a radio carrier wave
[17, [2] in electronic communications to periodic motion detec-
tion from video [3], [4], periodic action recognition [5] (e.g.,
walking and running), and person authentication or identifica-
tion from periodic action (e.g., gait-based person identification
[6]) in the computer vision and pattern recognition fields.
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Such periodic signals are often modulated in amplitude,
frequency, and/or phase by design or by chance. We refer such
a modulated version of a periodic signal in terms of frequency,
phase, and/or amplitude, to a quasi-periodic signal. Typical
examples of intentional modulation are amplitude modulation
(AM) and frequency modulation (FM) [1] used in radio broad-
casts, and phase modulation (PM) [2] used in radio control,
where a carrier wave with known parameters is given as a
reference and the modulation is estimated from the carrier
wave.

In contrast, accidental modulation is induced by a fluctuation
in the sampling interval (e.g., a network camera with limited
communication bandwidth) or the periodic signal source itself
(e.g., fluctuations in human walking patterns). Estimating
phases from such phase-modulated quasi-periodic signals is
quite an important function for many applications. For example,
temporal interpolation of a video with constant phase evolution
needs the correct phase information for each key frame. More-
over, temporal super resolution of a periodic image sequence
[7] needs accurate phase registration data among multiple
periods with sub-sampling order displacement of phase, in the
same way that spatial super resolution needs image registration
data with sub-pixel order displacement [8]. Phase registration
data are also essential to reconstruct a manifold parameterized
by phase in periodic action analysis [9] and recognition and
accurate period segmentation for periodic signal matching [10].
In cases where a reference periodic signal is available, dynamic
time warping (DTW) [11] (more specifically, continuous dy-
namic programming (DP) [12] in the periodic signal case) is a
powerful tool for matching two sequences with non-linear time
warping, in the sense that matching results give phase registra-
tion data. A reference signal is, however, usually unavailable
in the above applications.

This paper tackles the challenging problem of phase estima-
tion from a single quasi-periodic signal. Given that signal inten-
sities should be equal among samples of the same phase, such
related samples are obtained by self DTW between a quasi-pe-
riodic signal and a signal with multiple-period shifts applied. A
phase sequence is then estimated in a sub-sampling order within
an optimization framework including (1) a data term derived
from the correspondences and (2) a smoothness term of the local
phase evolution under (3) a monotonic increasing constraint on
the phase.

Whereas the above optimization framework provides satis-
factory results in terms of phase registration or period segmen-
tation, it sometimes fails in terms of phase estimation due to
phase bias within a period. It has been reported that there is
a combination ambiguity of the phase evolution function! and

A phase evolution function maps time to phase (non-dimensional time).

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



MAKIHARA et al.: PHASE ESTIMATION OF A SINGLE QUASI-PERIODIC SIGNAL

normalized periodic signal in the phase domain? (see Fig. 3);
in other words, different combinations of phase evolution func-
tions and normalized periodic signals in the phase domain pos-
sibly produce the same quasi-periodic signal [13]. As aresult, a
biased phase evolution function and a phase-biased normalized
periodic signal can be reconstructed from a given quasi-periodic
signal.

Therefore, as an extension from our previous work [13], we
further introduce into the optimization framework (4) a bias-cor-
rection term which imposes zero-bias from the linear phase evo-
lution, which is essential to overcome the combination ambi-
guity problem. This enables us to construct an unbiased phase
evolution function and normalized periodic signal and to im-
prove the accuracy of the phase estimation.

II. RELATED WORK

Parametric Representation: A periodic signal is usually rep-
resented by a periodic function parameterized by amplitude, fre-
quency, and phase, and is often observed together with additive
noise. This parametric expression is widely used in the context
of periodic signal reconstruction [14] and detection [15], en-
hancement of a specific frequency [16], estimation of frequency
[17], estimation of amplitude [18], estimation of phase [19],
[20], phase synchrony [21], and decomposition of multiple pe-
riodic signals [22]-[24].

The common technique vital in these approaches is param-
eter estimation; henceforth, non-parametric periodic signals are
beyond the scope of these studies.

Non-Parametric Representation: Non-parametric approach
does not assume the model is fixed by some parameters (e.g.,
frequency, phase, or amplitude) and thus, require less assump-
tions on the model to estimate the parameters of any periodic
signal. In fact, our work proposed in this paper falls into this
category. As closely related literature to our work, Daubechies
et al. [25] proposed a robust signal decomposition method based
on time-frequency plane construction by Wavelet transform so
called synchrosqueezed wavelet transform (SST). This method
is able to deal with general AM and FM signals. The SST de-
composes the signal into multiple components of amplitude and
frequency, and it is able to reconstruct the original signal by
those components with high accuracy. Some of the applica-
tions of the SST can be found on Chen et al. [26] and Wu
[27], which estimates an instantaneous frequency (an inverse
of the instantaneous period) from a single quasi-periodic signal.
The phase is then estimated via components reconstruction and
phase unwrapping. This method requires quite large number of
frequency components for accurate representation.

Seitz and Dyer [28] proposed a robust method to trace an
instantaneous period3 in a quasi-periodic signal and applied it
to irregularity detection. The phase then can be estimated via
frame-by-frame recurrence formula based on the instantaneous
frequency or period. However, this phase estimation method
often suffers from accumulation errors.

2A normalized periodic signal is a periodic function of a phase. The normal-
ized periodic signal is converted to an original quasi-periodic signal via the in-
verse function of the phase evolution function.

3A instantaneous period P () at time t means a period just at the moment
of time # and it may change across time.
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Linear Time Warping: Linear time warping is convention-
ally used in periodic action recognition such as gait recognition
[29]-[31]. Periods are usually first detected by an interval of
signal peaks [6], maximum entropy spectrum estimation [32],
or maximum normalized autocorrelation [33]. The signals are
then linearly stretched/shrunk so that the periods of two signals
match. Naturally, these methods cannot deal with non-linear
time warping within a period.

Non-Linear Time Warping: DTW [11] was introduced to
match time-varying signals in the field of speech recognition
[34], [35]. DTW has been also widely used for elastic matching
of two sequences in the field of action recognition [36] and gait
recognition [37]. The hidden Markov model (HMM), a proba-
bilistic framework version of the DTW, is one of the standard
approaches for automatic speech recognition [38], [39]. The
HMM is also used in phase state estimation in walker motion
extraction [40], gait silhouette refinement [41], [42], and gait
recognition [43], [44]. The HMM, however, needs sufficient
training sequences and hence, cannot be applied directly to
phase estimation from a single sequence. Moreover, the number
of states should be sufficiently large to realize a sub-sampling
order phase estimation and this leads to an explosive increase
in the number of training samples required.

Recently, Li and Chellappa [45] proposed a robust align-
ment method applied not only in time domain, but also in 2D
spatial domain using spatio-temporal non-linear manifold. This
method solves the spatial misalignment due to deforming shape
of spatial signal as well as the temporal misalignment due to
different rate between two signals. Another method based on
spatial and temporal periodic normalization was proposed by
Polana and Nelson [46] for motion detection and recognition.
These methods, however, require a template sequence for
alignment and hence cannot be used for the main purpose of
this paper; phase estimation only from a single quasi-periodic
signal.

Moreover, Makihara et al. [7] proposed a method of periodic
temporal super resolution from a single quasi-periodic image
sequence. While it can cope with a low frame-rate video, it im-
poses a strong assumption that exactly the same periodic images
are observed among all the periods. Therefore, it does not work
on the image sequences with view and speed transitions. Note
that although the work [7] also involves phase estimation step
in the framework and that the phase estimation is done using
the reconstructed periodic image sequence as a reference signal,
which falls into a family of DTW between two different signals
(e.g., input and reference signals).

III. PROBLEM SETTING
First, the generation process of a quasi-periodic signal (Fig. 1)
is introduced in this section. Given a multi-dimensional periodic
signal f(t) with period P that satisfies

fE+3P)=f(t) VjeL ()

where Z is a set of natural number, a time normalized by period
P is introduced as an absolute phase s and a relative phase s as
1
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Fig. 1. Process of generating a quasi-periodic signal.

where sp(t) is a phase evolution function which maps time ¢
to phase s, and || is the floor function. A periodic signal in the
phase domain (later, we call this the normalized periodic signal)
is subsequently introduced as

h(s) = f(sp'(s)), 4)
which satisfies
(s + 7) = h(s) = h(3) Vs, (5)

where s, (s) is an inverse function of the phase evolution func-
tion sp(t) which maps phase s to time ¢. Note that h(s + j)
means a signal intensity with j periods shift and that it coin-
cides with the original signal intensity h(s).

Next, it is assumed that the phase evolution function sp (%)
is modulated by fluctuations into s¢(¢) and that the periodic
signal f(¢) is converted to a quasi-periodic signal g(t), which
is subject to

9(t) = h(sq(t) = f (sp' (s0(1))) - (6)

Conversely, given the quasi-periodic signal ¢g(¢) and its phase
evolution function s¢(t), the normalized periodic signal is re-
constructed as

h(s) = 9 (s5'(5)) @)

In addition, because the signal is usually sampled through
observation, we redefine the above variables at sampling time
t:(i = 0,...,N — 1) with subscription i (e.g., g; = ¢(t;)).
Therefore, our objective is to estimate a phase evolution se-
quence S = {s¢.} from a given quasi-periodic signal G =
{gi}. This is referred to as the phase estimation problem in this
paper.

IV. PHASE ESTIMATION USING SELF DTW

A. Optimization Framework

In order to solve the phase estimation problem described in
Section III, the phase evolution sequence S¢) is optimized by
minimizing a certain objective function D(Sq) composed of
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(1) a data term Dy(Sg) which establishes the relation between
a phase and another phase with several periods shift, and (2) a
smoothness (or regularization) term D, (S¢) which makes the
local phase evolution speed (the first-order differential of the
phase evolution function) coincide with an instantaneous fre-
quency under (3) a monotonic increasing constraint on the phase
evolution function as

5S¢ = arg Iglin D(Sg) (8)
Q
D(SQ) = Dd(SQ) + )\SDS(SQ) 9
Dy(Sq) = Z Z ($Qu — 5Qi—4)° (10)
J [iu]eXd

N-2 1 2

DS(SQ) = Z 8@+l — 8Qi — = (11)
i=0 Pq.i

subject to sg 41 — S =0 Vi=0,...,N =2, (12)

where X7 is a set of corresponding pairs of frames whose phase
difference is j, which means j periods shift (call this a j-th pe-
riod correspondence pair later), P ; is an estimated instanta-
neous period at the z-th frame, whose inverse is equivalent to the
instantaneous frequency at the ¢-th frame, and A; is the smooth-
ness coefficient.

While the data term is derived from the signal intensity
consistency at the same relative phase as described later in
Subsection IV-C, the smoothness term is derived from the
relationship between the phase and the frequency/period as
follows. First, it is well known that the first-order differential
of the phase evolution function s, () coincide with the instan-
taneous frequency F(t) at time ¢, which is equivalent to the
inverse of the instantaneous period Pg(t) at time ¢, as

(lSQ(t) B B 1
i =T =50

(13)

Note that the instantaneous period P (1) is equivalent to the
constant period P in a completely periodic signal, which is ob-
vious from (2). For a sampled version, (13) becomes

5Qi+1 — sQi = Fgi = PL (14)
Qi

where Fg ; and Pg ; are the instantaneous frequency and period

at the 2-th frame, respectively. We now notice that the smooth-

ness term D, (.Sg) is defined as summation of the squared errors

of (14).

Moreover, even if a constant phase shift 5 is added to the
phase sequence as s’Qﬂ; = 5¢, + 5, the value of the objective
function (9) as well as the constraints (12) are not affected at
all, because all s¢) ,; are used in a pairwise subtraction form.
Therefore, the following constraint (an initial condition) is
added without loss of generality

sg.0=0. (15)

Finally, because the objective function D(.Sg) is a quadratic
form and the constraints of (12) and (15) are linear forms, the
above optimization problem is efficiently solved by convex
quadratic programming using the active set method, given a set
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X7 of j-th period correspondence pair and the estimated in-
stantaneous period sequence P = {Pg i =0,...,N —1).

We describe the ways how to estimate them in the following
subsections.

B. Instantaneous Period Estimation by Short-Term Period
Detection (STPD)

In this subsection, we describe the way how to estimate in-
stantaneous period sequence Fy,. First, we assume that the do-
main [Puin, Pinax] of the instantaneous period Pg ; is given
by prior knowledge. A short-term normalized autocorrelation
(NAC) is then introduced as

Yorer, U7 Gr+Po.

VErer 9o 12 /e, Ngmarg.

I; = {7— € Z|L — Py <7 <0+ Oépmax}-,

(16)

Ci(Pg.) = -

amn

where C,;(P, ;) is the NAC at the i-th frame for the instanta-
neous period Py ; and « is a coefficient to control the size of
the window function for the short-term mask.

One of possible solutions to this is to just adopt an argu-
ment maximizing the NAC in (16) as the instantaneous period
frame-by-frame [13]. In such a solution, .-times instantaneous
period (k € Z) can sometimes be estimated by mistake, when
the k-times instantaneous period is included in the domain
[Prnin, Pmax]. This is because the k-times instantaneous period
can also be another instantaneous period and hence the NAC
for the k-times instantaneous period can exceed that for the
correct instantaneous period. Abrupt changes or jump of the
instantaneous periods due to this mis-detection can cause a
failure in the optimization step, and hence a sequence of the
instantaneous periods should keep C0O smoothness.

Therefore, instead of maximizing the NAC frame-by-frame,
the DP framework is employed to estimate a CO-continuous se-
quence of the instantaneous periods. Let’s define the instanta-

neous period sequence as Py = {Py;}(i=0,...,N —1) and
also define the cumulative NAC C(FPy,) as
N-1
C(Pg) = Ci(Pg.). (18)

1=0

In addition, the transition constraint on the instantaneous pe-
riods between adjacent frames, as well as the range constraint
of the instantaneous period frame-by-frame, are imposed as

[PQiv1 — Poil <6
Pmin S PQ,i < Pmax7

(19)
(20)

where 6 is a tolerance of instantaneous period change between
adjacent frames, which is set to sufficiently small number to
keep the CO smoothness of the instantaneous period sequence.
An instantaneous period sequence P is then computed in the
DP framework so as to maximize the cumulative NAC in (18) in
a recursive way by taking into consideration the constraints in
(19) and (20). After the maximum cumulative NAC at the final
frame (N — 1) is found, the optimal path is back-tracked, which
actually corresponds to the estimated instantaneous period se-
quence Fy).
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Once the CO-continuous instantaneous period sequence PQ is
obtained, the first-order derivative dsfjt(t) of the phase evolution
function is also CO continuous from (13) and the phase evolution

function s¢(?) itself is therefore C1 continuous.

C. Self DTW

In this subsection, we describe the way how to obtain a set
X7 of the j-th period correspondence pairs. _ A

We denote a j-th period correspondence pair as ;] = [4, u]]
at first. Remembering that the difference of the absolute phases
between the j-th period correspondence pair z7 is j, it is ideally
subject to the following phase constraint

SQy“{ —8Q,i = ] (21)
In addition, according to (5) and (6), signals for the j-th pe-
riod correspondence pair z! is subject to the following signal
consistency

9ui = Yi- 22)
Hence, the phase constraint in (21) is exploited as the data term
in the optimization step, and we try finding the j-th period cor-
respondence pair -] based on the signal consistency in (22). For
this purpose, we exploit self DTW, which is a variant of the con-
ventional DTW. While the conventional DTW finds the optimal
correspondence between two different signals (e.g., query and
reference signals), the self DTW finds the optimal correspon-
dence between a quasi-periodic signal and a period-shifted ver-
sion of the same quasi-periodic signal. More specifically, a key
procedure to the self DTW is to find the optimal paths as a set
of the j-th period correspondence pair from a cost matrix whose
(7, u) component is the signal difference at frames ¢ and u. Al-
though this process is similar to trace of the instantaneous period
[28] to some extent, note that the self DTW finds multiple op-
timal paths ( = 1,...) based on the DP framework, the work
[28] finds a single optimal path for ; = 1 based on the snake
fitting framework. The detailed procedures of the self DTW are
described as below.

‘First, an initial estimate of the j-th period correspondence
b}

! =i, 112’ ] is obtained from the estimated instantaneous period

P ; in a recursive manner as

=il =gt p
iy =, =4a;  + PQ%A

(23)
Next, lower and upper bounds of the j-th period correspon-
dence, namely, the boundaries of the so-called corridor of a
DTW path search region, are set to

1}{0,%1. = max{a] — /3PQ 240} 24)
’&ip,i = Inin{'&g + 3P M‘,N -1}, (25)

where 3 is a coefficient to control the size of the cor-
ridor. Thus, a self DTW path search region is defined as
R = {r = ulld],, ; < u < Gyp; Vi € [0.N]}, and
subsequently the source and terminal regions are set to R =
{z = [0,u]lz € R} and R} = {x = [i,N — 1]|z € R},
respectively, as illustrated in Fig. 2. Now, the correspondence
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Fig. 2. Overview of Self DTW.

problem is decoded as continuous DP [12] in the search region
RI.

The formulation is given as follows. A cumulative cost ¢(z)
and a counter n(x) are introduced and these are initialized for
z € RL as

o) =cr(z), nlx)=1, (26)
where ¢y () is a cost function for the signal intensity difference
given as cr(x) = ||gi — gul.

Next, a transition process is considered. We limit the previous
state , to the current state x to 77 (x) = {[i — 1,u — 1], [i —
2,u — 1],[i — 1,4 — 2]} N R? and define the optimal previous
state to be the current state as L]’]* (z), which is given as

j*

r3 (r) =arg min

w, €T3 (x) | n(wp)
where the first and second terms on the right-hand side are,
respectively, the counter-normalized previous cumulative cost
and the transition cost function, given as cp(r,z,) = ||z —
#p||r, . Then, the cumulative cost and the counter are updated
as

-I—CT(II},:I}I,)} . 27

() = e(ad (1)) + er(x) + e, 2l ()

n(z) = TL(.L;)*(:E)) +1

(28)
(29)

After the cost propagation of all the states in K7, the optimal
terminal state is

; clr

2l = arg min ()

mERi, n(’E)

(30)

Subsequently, the terminal counter and the optimal ter-

minal state are redefined, respectively, as n? = n(z]. )

y ;ok . . .
and xflj* = 7. for convenience, and the optimal path is
back-tracked as 27 = aI(2l., ) fori = nd —1,...,1

Finally, the optimal correspondence sequence is denoted as
Xi={zl li=1,....,n7}.
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Fig. 3. Combination ambiguity problem. Different combinations of phase evo-
lution functions and normalized periodic signals potentially produce the same
quasi-periodic signals ¢(¢).

Quasi periodic
signal g(1)

V. GLOBAL OPTIMIZATION

A. Overview

In this section, we propose an improved version of phase es-
timation method. The estimation method by (8) in the previous
section sometimes results in a biased phase sequence caused by
a combination ambiguity problem of the phase evolution func-
tion and the normalized periodic signal as reported in [13]. We
therefore incorporate a bias correction framework into the ob-
jective function for phase estimation. The details are explained
in the following subsections.

B. Combination Ambiguity

In this subsection, we show an example of the combination
ambiguity and also point out its problematic aspects.

Let’s assume that a quasi-periodic signal g(#) is derived from
a combination of a phase evolution function s¢(¢) and a nor-
malized periodic signal h(s) as g(t) = h(sqg(t)). In addition,
given another phase evolution function s, (£)(# s (t)), we can
consider another normalized periodic signal 4'(s) which satis-
fied #'(s) = g(s’Q—l(s)). This means that the quasi-periodic
signal ¢(#) is also derived from a combination of a phase evo-
lution function s,(¢) and a normalized periodic signal h'(s)
as g(t) = h'(sg(t)). In other word, given the quasi-periodic
signal, the combination ambiguity of the phase evolution func-
tion and the normalized periodic signal remains as shown in
Fig. 3.

This ambiguity is not problematic in cases where the final
goal is phase registration or period segmentation; we can adopt
one of the combinations of the phase evolution function and
normalized periodic signal as the result.

Nevertheless, the ambiguity poses a serious problem in cases
where the reconstructed phase evolution function and normal-
ized periodic signal are used for temporal interpolation or tem-
poral super resolution. This is because once the biased phase
evolution function and phase-biased normalized periodic signal
are reconstructed, the playing speed of the resulting temporally
interpolated or super-resolved signal is also biased.

This can also degrade performance of DTW matching be-
tween a gallery and a probe signal. Actually, if the normalized
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periodic signals of a gallery signal are reconstructed as phase-bi-
ased signals due to the biased phase evolution function sg, (%),
additional effort of elastic phase deformation is needed to match
it to a probe signal. This leads to additional transition cost in the
DTW matching process, which is essentially unnecessary in the
case of a phase-unbiased normalized periodic signal h(s).

Note that the smoothness term in (9) only acts locally, namely,
on adjacent samples, and that it does not solve the combination
ambiguity.

C. Bias Correction Framework

In this subsection, we provide a bias correction framework to
handle the combination ambiguity problem. For this purpose,
we make an assumption that a similar tendency of deviations
is unlikely to be observed for every period; e.g., phase evolves
faster than the linear time evolution in the first half and slower
than the linear time evolution in the latter half as shown in
s¢(t) in Fig. 3. We believe this assumption is reasonable due to
the occurence of random fluctuations in many real-world cases
(e.g., anetwork camera with limited communication bandwidth)
or fluctuations in the periodic signal itself (e.g., fluctuations in
human walking patterns of healthy people). As an implication
based on this assumption, we consider that phase fluctuations
are unbiased, in other word, phase deviations from a linear phase
evolution averaged over all the periods (i.e., bias) should be
zero. As a conclusion, we therefore incorporate the assumption
into the optimization framework. Because phase bias computa-
tion and phase estimation requires each other’s result, we intro-
duce an iterative optimization framework as described below.

After we obtain an initial estimate of the phase sequence,
we compute a time warping function (TWF) which represents a
mapping from a linear time evolution to the estimated relative
phase for each period. Once the bias of the TWFs are computed
from phase sequence estimate S, at the r-th iteration, an un-
biased phase s¢, ; at the r-th iteration is then computed based
on the TWFs for each sample. This bias-correction term is sub-
sequently defined as a sum of squared differences between the
phase estimate sg} at the (7 4 1)-th iteration and the unbiased
phase &g, ; at the r-th iteration for each sample, which is incor-
porated in the global optimization framework. More details of
individual steps are described below.

D. Formulation

In this section, the global and iterative optimization frame-
work is reformulated, where superscript » denotes 7-th iteration.
As described before, the phase evolution sequence Sgrl at the
(r41)-th iteration is estimated by taking into consideration not
only three points mentioned in Section IV but also the bias-cor-
rection term Db(SE’;l; 5’22) as

r1* . / r+1. or
ST = arg ;I;}HD (SQ ,SQ) (31)
D' (8511380) = Da (85'7) + 2D (357
+ 2Dy (857585 (32)
~ J\T 2
Dy (557:85) = 3 (557 — 56 (33)

=0
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Fig.4. TWF and bias correction. (a) TWF before bias correction, (b) TWF after
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subject to ‘52;714-1 - 52211 >0Vvi=0,...,N -2,
(34)

where ) is a coefficient for the bias-correction term.

Finally, because the reformulated objective function
D’ (Sgl; Sp) is a quadratic form and the constraints of
(34) and (15) are linear forms with respect to S:?'H, the above
optimization problem is efficiently solved by convex quadratic
programming using the active set method.

E TWF

Once the phase sequence has been estimated, we can obtain
period segmentation boundaries in sub-sampling order given
that phase s and relative phase s are, respectively, integers and
zero values at the period segmentation boundaries. In more de-
tail, the j-th period segmentation boundary ig’o)lm 4 1s obtained as
follows. First, we find a pair of adjacent samples [i¢) () + 1]
around the period boundary that satisfies

(SQ,N) - j)(SQ,i(J>+1 -J)<0. (35)

Next, the j-th period segmentation boundary ’il()]gund is calcu-

lated by interpolation as

i = (1= 099 0D +1) (36)
W) = i (37)

$QiD 41 — 8Q,iD

Furthermore, the linear time evolution v; for the i-th sample
within a period, is defined as

o lseal-1)
t— phound

T e (sed-D-
Lbound [‘bound

V4

(3%

As described previously, the TWF expresses the mapping
from the linear time evolution v to an estimated relative phase
5¢, as illustrated in Fig. 4, with that for the j-th period denoted
as § = w")(v). Note that the continuous mapping function
w(j)(v) is not directly acquired. Instead, sampled pairs of the
linear time evolution parameter and the relative phase within
the j-th period are given as W) = {[v;, 30.4]||50.4] = j}.
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F. Bias Estimation

One of simple ideas to estimate the bias from the linear time
evolution is to compute a subtraction between an average of
multiple-period TWTF {w()(v)} and the linear time evolution.
This is, however, difficult because the continuous TWFs w) (v)
cannot be used and different samples of the linear time evolution
v; are observed among the periods. Moreover, it is not guaran-
teed that sampled pairs of the linear time evolution and the rel-
ative phase {[v;, 3¢ ;]} lies on a single TWF due to deviations
for individual periods, as shown in Fig. 4(a).

Therefore, a cubic-order natural spline function f(v; ) on the
linear-time evolution v is introduced to represent a continuous
TWF, with 6 denoting the parameters for the spline function.
These are estimated so as to minimize the following objective
function composed of the data fitness term to the sampled pairs
{[w, 8¢.:]} and tension and stiffness terms of the spline curve
as

N-1
1 , N
D(0) = I Z (f(vi0) — 8g.)?
i=0
-1 df 2 -1 a2 f 2
A ense -— d )\s.i — d y 39
+Ate /0 do v+ rﬂ?/o 102 v, (39)

where A¢ense and Agig are coefficients for the tension and stift-
ness, respectively. Once the spline parameters are estimated, a
biased relative phase for i-th sample is interpolated by the spline
function as f; and a bias correction amount Asg ; is then com-
puted as

ASQ:i = }?L — U;. (40)
Finally, the unbiased absolute phase is computed as
‘A?QL =8Q,i — ASQZ (41)

G. Algorithm Summary

The global optimization is finally processed iteratively as de-
scribed in the following.

* Step 1
Set the iteration index r to 0 and compute an initial solu-
tion of phase sequence S% by the convex quadratic pro-
gramming composed of the objective function D(S%) 9
and the constraints ((12) and (15)).

e Step 2
Estimate the spline function of the TWF by minimizing
(39) based on the phase sequence S¢), and compute the un-
biased phase 5‘@ using (40) and (41).

e Step3
Update the phase sequence Sgrl by the convex quadratic
programming composed of the objective function
D’ (S&H; SH) ((31)) and the constraints ((34) and (15))
based on the unbiased phase 5’5

* Step 4
Increment iteration index r and then go back to Step 1 if
r < Tmax, Otherwise, terminate the iteration.
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VI. EXPERIMENTS USING SIMULATION DATA

A. Dataset

To confirm the effectiveness of the proposed phase estima-
tion, we conducted experiments using simulation data?.

First, we generated three normalized periodic sig-
nals with a common parameter, s, from the sinusoidal
function h{s) = sin(2ws), the harmonic-sum function
his) = qu(l/k) sin{2mks) with k set to 5, and a non-para-
metric function constructed from the second-order differential
(d*h/ds?) of an h(s) randomly drawn from a uniform distri-
bution in the domain [—500, 500] and with periodic boundary
conditions A(l) = h(0) = 0. The generated normalized
periodic signals are shown in Fig. 5(a).

Second, the phase evolution function s¢(t) was also gener-
ated by a non-parametric scheme in the same way. A instanta-
neous period P () was generated with a second-order differ-
ential (d* Py /dt?) drawn from a uniform distribution in the do-
main [—0.25,0.25], boundary conditions Pp(0) = FPu(T) =
P, where T is the time at the final frame and P is a prede-
fined period, and additive noise drawn from a uniform distri-
bution in the domain [—0.2P, 0.2P]. The phase evolution func-
tion s¢(#) is then given by the first-order differential equation
dsq/dt = 1/Pg(t) with initial condition sg(¢) = 0. In the
simulation, T and P were set to 10 and 100, respectively. The
generated instantaneous period Pg(t) and phase evolution se-
quence s¢(t) are shown in Figs. 5(b) and (c), respectively. As
shown by Fig. 5(b), local phase fluctuations as well as global
phase modulations are included in the generated phase evolu-
tion sequence.

Third, quasi-periodic signals were generated by sampling at
(1/P) intervals as g, = h(sq(it/P)),i = 0,..., N, where
N = TP is the sample ID in the final frames. Fourth, sequences
with signal intensity noise were also generated as g, = g; + 9,
where ¢ is drawn from a Gaussian distribution with standard
deviation ¢ = 0.1. The generated quasi-periodic signals are
shown in Fig. 5(d). The other parameters used in each process
were set experimentally as « = 1.0, # = 0.3, A, = 10.0, and
Ap = 1000.0. We set the maximum iteration 7, to 2.

4Software and dataset can be accessed here: http:/www.am.sanken.
osaka-u.ac.jp/research/SelfDTW.html
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Fig. 6. Estimated phase error on simulated signals.

B. Benchmark Methods

Because a reference signal is not given, as stated in
Section III, most of the existing methods such as contin-
uous cyclic DP and cyclic HMM cannot be applied. Therefore,
we regard the following scheme, based on the estimated in-
stantaneous period with STPD, as a baseline algorithm for

comparison:
1
8Qi+1 = 8Q,i + =,
Fo.i

(42)

where we initialize 5¢ o = 0. Note that, in the proposed frame-
work, this is also equivalent to setting the regularization coeffi-
cient A to infinity.

We also implemented the SST [25], [47]° and period trace
(PT) [28], and estimate the phase by recurrence formula ((42))
in the same way as STPD.

C. Phase Estimation Results

First, we evaluated the errors between the estimated phase
and the ground truth in Fig. 6. Note that phase errors should
be evaluated by variance or standard deviation without a mean
component of the errors because constant phase shift 5 is mean-
ingless, as discussed in Section IV.

As for only Self DTW [13], although the phase error vari-
ance is large to a certain extent, the phase error patterns are
still similar to a quasi-periodic form; this implies the possi-
bility that a combination of a biased phase evolution s¢ () and
a phase-biased normalized periodic signal A(s) has been recon-
structed. For example, given a harmonic-sum signal without
noise, a reconstructed spline function of TWF is biased from

SWe used SST toolbox provided in [48].
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Fig. 7. TWF for harmonic-sum signal without noise before and after bias cor-
rection. (a) Before bias correction. (b) After bias correction.
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linear phase evolution, as shown in Fig. 7(a). Thus, these quasi-
periodic phase errors can effectively be removed by bias cor-
rection, as shown in Figs. 6 (self DTW w/ bias correction) and
7(b). In addition, this trend is common for signals with intensity
noise although the phase error variances are naturally larger than
those for signals without intensity noise (Fig. 6(b)).

In contrast, the error variance in the other benchmark methods
(STPD, SST, PT) is larger than that in the proposed methods
due to accumulation errors, and furthermore, the error patterns
do not resemble a quasi-periodic form.

To summarize the phase estimation performance, the standard
deviations are shown in Fig. 8(left). As a result, we can see that
the estimated phase errors are sufficiently reduced when using
self DTW together with bias correction.

D. Phase Registration Results

Next, phase registration results for the harmonic-sum signal
without intensity noise were evaluated by plots of the relative
phase 55 ; and the corresponding signal intensity g; in Fig. 9.
Note that these plots form a certain normalized periodic signal
h(s) if the phase is correctly registered.

According to the result, the plots for self DTW [13] lie on
a single curve and form a similar curve to the ground truth
signal except for phase bias. This shows that self DTW even
without bias correction is sufficient for the purpose of phase reg-
istration or period segmentation in sub-sampling order. More-
over, the plots for self DTW with bias correction lie almost on
the ground truth signal without any phase bias, and hence self
DTW with bias correction enables further applications such as
time interpolation and temporal super resolution from a single
quasi-periodic signal. In contrast, the plots of the other bench-
mark methods are widely distributed around the ground truth
signals due to incorrect phase estimation.

To summarize the phase registration performance, the peak-
signal-to-noise ratio (PSNR) is shown in Fig. 8(right). As we
can see, the self DTW with bias correction gives better phase
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Fig. 9. Phase registration results for harmonic-sum signal.

registration results than STPD, SST [25], PT [28], and self DTW
only [13].

E. Effect of Smoothness and Bias Correction Term Coefficients

In this subsection, the effect of smoothness and the bias cor-
rection coefficient, As and A, on estimated phase errors is in-
vestigated for the harmonic-sum signal.

On the one hand, adopting small A; values (e.g., 1 or 10),
the phase evolution curve tends to be flexible. Thus, while it
can effectively absorb local phase fluctuations, it suffers from
phase bias due to the combination ambiguity problem of the
phase sequence and normalized periodic signal, and the mag-
nitude of the estimated phase errors increases as A, decreases,
as shown in Fig. 10. These error patterns are, however, almost of
quasi-periodic form as seen in Fig. 10(a), and hence they are ef-
fectively removed by adding the bias-correction term as shown
in Figs. 10(b),(c),(d), and 11.

On the other hand, adopting large A; values (e.g., 1000 or
10000), the phase evolution curve tends to be stiff. Thus, while
it is robust to such quasi-periodic phase errors even if only self
DTW is used, it cannot correctly absorb local phase fluctua-
tions and/or middle-range phase modulations particularly given
a fairly large A, (e.g., 10000), which results in relatively large
phase estimation errors compared with the middle A, (e.g., 100),
as shown in Fig. 11.

In summary, as long as self DTW is used together with a small
or middle-range smoothness coefficient A; (e.g., from 1 to 100
in this example) and a sufficiently large bias correction coef-
ficient Ay (from 100 to 10000), the estimated phase errors are
suppressed within a certain satisfactory range with more sta-
bility and smoothness.

VII. APPLICATIONS TO REAL VISION DATA

A. Phase Alignment for Viewpoint-Transited Gait Silhouettes
Sequence

We conducted an experiment on two types of gait silhouette
sequences under viewpoint transition; one is selected from a
gallery set of the USF Gait Database (call it USF later) [6] and
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the other from the OU-ISIR Gait Database, the large popula-
tion dataset (call it OULP later) [49]. While USF contains slight
viewpoint change within a sequence and its silhouette quality is
relatively poor due to outdoor environment, OULP contains rel-
atively large view point change (front-oblique to side view) but
with relatively fine silhouette quality. Size-normalized (88 by
128 pixels) gait silhouette sequences at 30 fps were provided
for both USF and OULP. Each gait silhouette was converted
into an unfolded image vector whose dimension is image size
in a raster scan way, and it was further projected into a lower
dimensional vector g by principal component analysis (PCA).
A sequence of such lower dimensional vectors G = {g;} was
used as an input quasi-periodic signal.

Figs. 12 and 13 show the gait silhouette images aligned at
the estimated relative phase. Despite the low silhouette quality
in USF and viewpoint changes in OULP, all gait phases, such
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Fig. 12. Multiple gait silhouette images from USF aligned at the estimated
phases (every 2 frames, a half gait period). The horizontal axis indicates the

relative phase § and each silhouette image is aligned at the estimated relative
phase.

b eeben M

0.0

Relative phase 0.5
Fig. 13. Multiple gait silhouette images from OULP aligned at the estimated
phases (every 2 frames, a half gait period). The horizontal axis indicates the
relative phase § and each silhouette image is aligned at the estimated relative
phase.
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Fig. 14. A half gait period of a phase normalized gait silhouette sequence from
USF. The horizontal axis indicates the relative phase 5 and each silhouette image
is aligned at the relative normalized phase (every 4 frames).

as the double-support phase and single-support phase, are well
registered among periods.

With a view to applications, phase-registered image se-
quences are quite useful. For example, a phase-normalized
gait silhouette sequence can be produced from the temporal
interpolation of the estimated phase information so that the
intervals between adjacent silhouette images are uniform, as
illustrated in Figs. 14 and 15. Such sequences can be useful in
reducing the effects of frame misalignment due to temporal rate
difference during the matching process in gait recognition.

B. Manifold Reconstruction From Speed-Transited Gait
Silhouette Sequence

We also conducted an experiment on a gait silhouette se-
quence with gradual speed variations ranging from 6 km/h to

2075
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Fig. 15. A half gait period of a view-transited phase normalized gait silhou-
ette sequence from OULP. The horizontal axis indicates the relative phase s
and each silhouette image is aligned at the relative normalized phase (every 4
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Fig. 16. Sub-sequences of input gait silhouettes from OUTD (every 4 frames).
Top to bottom rows correspond to 6, 7, 8, 9, and 10 km/h, respectively. Note
that the phases between different walking speeds are not synchronized.
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Fig. 17. Multiple gait silhouette images from OUTD aligned at the estimated
phases (every 2 frames, a half gait period). The horizontal axis indicates the rela-
tive phase § and each silhouette image is aligned at the estimated relative phase.
The vertical axis indicates the number of periods (every 5 periods). Changes in
the rows from top to bottom represent a gradual speed increase from 6 km/h to
10 km/h.

0.0 Relative phase

10 km/h (Fig. 16), selected from the publicly available OU-ISIR
Gait Database, the treadmill dataset A (call it OUTD later) [50].
A size-normalized silhouette sequence (88 by 128 pixels) at 60
fps are provided. In the same way as the previous subsection,
a sequence of such lower dimensional vectors G = {g;} in the
PCA space was used as an input quasi-periodic signal.

Fig. 17 shows the gait silhouette images aligned at the es-
timated relative phase and Fig. 18 shows a phase-normalized
gait silhouette sequence. Despite the significant variation in gait
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Fig. 18. A half gait period of a phase normalized gait silhouette sequence from
OUTD. The horizontal axis indicates the relative phase § and each silhouette
image is aligned at the relative normalized phase (every 4 frames). The vertical
axis indicates the number of periods (every 5 periods). Changes in the rows from
top to bottom represent a gradual speed increase from 6 km/h to 10 km/h.

‘ Phase sync
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Fig. 19. A 2D gait manifold parameterized by phase and walking speed. Each
colored loop depicts a manifold for a single walking speed parameterized by
phase, while gray lines represent phase synchronization among the walking
speeds.

style due to large speed variations from walking (6 km/h) to run-
ning (10 km/h), all gait phases are well registered for the dif-
ferent speeds.

Furthermore, given just a single walking sequence with
speed variation, a gait manifold parameterized by both phase
and walking speed can be constructed by the phase-normalized
speed-varied gait image sequence (see Fig. 19). The gait man-
ifold enables us to analyze the gait pose transition by walking
speed for fixed phase as well as by phase for fixed walking
speed.

Moreover, in the context of gait recognition with speed vari-
ations, the 2D gait manifold is provided as an efficient gallery
expression, unlike the existing 1D gait manifold parameterized
only by phase [31]. A set of 1D gait manifolds with different
speeds, depicted as colored loops in Fig. 19, cannot deal with
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Fig. 20. Variance in TWFs as the phase evolution instability measure. Time
warping function variance between periods for unstable gait (bottom) is larger
than that for stable gait (top). (a) Half gait-period of multiple silhouette images
aligned by estimated relative phase. (b) TWFs.

variations in walking speed within a period, as these do not
provide phase registration information across different walking
speeds, depicted as gray lines in Fig. 19. In contrast, because a
2D gait manifold has such phase registration information across
different walking speeds, it can appropriately match a sequence
with walking speed variations within a period in the framework
of 1D-2D (input to gallery) dynamic programming. Note that
the proposed method is applicable not only to gait with speed
variation, but also to general quasi-periodic signals undergoing
transition by factors other than phase, such as periodic action
recognition with gradual view changes or periodic signal anal-
ysis with gradual attenuation®.

C. Phase Evolution Instability Measure

Because the proposed method reconstructs TWFs from a
single quasi-periodic signal through a bias estimation process,
the variance in the reconstructed TWFs can be used as a kind of
phase evolution instability measure of the signal. For example,
gait silhouettes of two subjects aligned by estimated relative
phase are shown together with their reconstructed TWFs in
Fig. 20. Note that the non-uniform alignment intervals of these
gait silhouette images represent a non-linear time distortion
due to the gait fluctuation obtained by the proposed method.
We can see that the phase intervals for the first subject (top of
Fig. 20) are almost constant across periods and we can say that
this subject’s phase evolution is stable. As such, the variance
in reconstructed TWFs for the first subject is small. In contrast,
the phase intervals for the second subject (bottom of Fig. 20)
differ greatly across periods at several relative phases and thus
the phase evolution is unstable. As a result, the variance in
reconstructed TWFs for the second subject is larger than that
for the first subject.

Therefore, the variances in TWFs can be exploited as a kind
of phase evolution instability measure, which could be a po-
tential feature in gait-based person identification or age group
classification for example, because a child’s gait is more un-
stable than that of an adult. Note that previous DTW-based

6In these cases, the manifold is parameterized by phase and view or degree
of attenuation.
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TABLE I
COMPARISON ON STANDARD DEVIATION OF PHASE ESTIMATED ERROR ON
NON-PARAMETRIC SIGNAL WITH AND WITHOUT AM

Signal STPD  SST[25] PT[28] Self DTW[13] Proposed
Without AM  0.036 0.107 0.092 0.017 0.001
With AM 0.064 0.108 0.093 0.025 0.018

methods need the reference signal period in addition to an input
quasi-periodic signal to obtain these TWFs, whereas the pro-
posed method needs only a single input quasi-periodic signal.

VIII. DISCUSSION AND LIMITATIONS

Signal With AM and FM: In order to see the effect of AM
in quasi-periodic signal on the proposed method, we also car-
ried out the experiment non-parametric simulated signal with
AM as well as FM (Fig. 21(a)). From Fig. 21(b) and Table I,
while the phase estimation error for the signal with AM and
FM increases compared with that for the signal only with FM.
Nevertheless, the increase of the phase estimation error of the
proposed method is limited compared with those of the other
methods. This shows the potential robustness of the proposed
method against AM as well as FM and signal noise.

Low Sampling Rate: The accuracy of the correspondences
between a quasi-periodic signal and a multiple-period shifted
signal used in the proposed self DTW process is highly depen-
dent on the sample density within a period. This is because both
relative phases and similar signal intensities between the cor-
responding pair are quite similar in the case where signals are
densely sampled for each period; in other words, the correspon-
dence is sufficiently accurate. However, no accurate correspon-
dences are obtained when signals are sparsely sampled for each
period (e.g., a few samples per period); in this case, the ob-
tained correspondences are inaccurate. Therefore, the proposed
method cannot guarantee high phase-estimation performance
for signals with low sampling rates.

Rapid Change in Other Factors: If a factor other than phase
(e.g., walking speed in a gait silhouette sequence) changes
rapidly between adjacent periods, the correspondence pair for
self DTW cannot be accurately determined because signal
intensity could also change between periods. Therefore, the
other factors need to change gradually across periods, as shown
in the examples in Section VII.
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IX. CONCLUSION

In this paper, we proposed a method for phase estimation of
a single non-parametric quasi-periodic signal. Having detected
a short-term period for each sample by normalized autocorre-
lation, correspondences of multiple-period shifts are obtained
by self DTW and these are used in the subsequent phase opti-
mization framework. Reconstructed phase evolution functions
are often biased due to the combination ambiguity of the phase
evolution function and normalized periodic signal, and thus the
bias-correction term is incorporated into the proposed algorithm
to correct such phase bias.

Future work includes extensions of the proposed method to
quasi-periodic signals with multiple AM and FM components,
and applications to matching and time super-resolution of quasi-
periodic signals.
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