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This paper presents the largest inertial sensor-based gait database in the world, which is made open to
the research community, and its application to a statistically reliable performance evaluation for gait-
based personal authentication. We construct several datasets for both accelerometer and gyroscope of
three inertial measurement units and a smartphone around the waist of a subject, which include at most
744 subjects (389 males and 355 females) with ages ranging from 2 to 78 years. The database has several
advantages: a large number of subjects with a balanced gender ratio, variations of sensor types, sensor
locations, and ground slope conditions. Therefore, we can reliably analyze the dependence of gait
authentication performance on a number of factors such as gender, age group, sensor type, ground
condition, and sensor location. The results with the latest existing authentication methods provide
several insights for these factors.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, smart wearable or portable electronics are being
developed so rapidly, and they are expected to be sophisticated
enough in the future to be able to interact with the owner and
understand his/her needs, intentions, actions [1,2], and health
conditions [3,4]. Inertial sensor (accelerometer or gyroscope) is in
fact increasingly being embedded in commercial portable electro-
nic devices such as smartphones due to their high cost-perfor-
mance, and inertial sensor-based owner assistance, such as user
recognition, is an active research topic.

There are many existing methods to recognize a person who
carries an inertial sensor based on gait such as identification by
[5–9] or verification by [8,10–16], which showed the promising
applications of inertial sensor for gait-based recognition.

Because the human gait is a periodic motion, a large number of
gait recognition methods detect periods [5,6,9,12,13,15,17] for
constructing gait patterns. Some researchers use frequency-
domain features such as a histogram of signal intensity [8,10] or
coefficients of Fourier transform [6,7]. Some researchers employs
ll rights reserved.
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model-based approaches [18,19], in which gait signal is modeled
using a finite state machine.

However, in these studies, the authors evaluated their methods
with databases limited in number of subjects, age variety, gender
balance, sensor types, and ground conditions and hence the
reliability of the performance evaluation is insufficient. In addition,
it is difficult to compare these methods because they lack a
common ground such as the same sensor configuration, gender
ratio, number of subjects, and ground condition.

In this paper, the first contribution is to construct the largest
inertial sensor-based gait database in the world to overcome such
limitation. The advantages of the database includes (1) a very large
number of subjects (744), (2) a balanced gender ratio, (3) a wide
age range (2–78 years), (4) both acceleration and angular velocity
data captured by three inertial sensors (containing both acceler-
ometer and gyroscope) and a smartphone (containing an accel-
erometer), (5) a variation of sensor locations on subject's waist,
and (6) 3 ground slope conditions (walking on a flat ground,
walking up, and down a slope). The second contribution is to
evaluate the state-of-the-art gait authentication algorithms in a
more statistically reliable way and to reveal how gait authentica-
tion performance differs between genders and among age groups,
sensor types, and sensor locations using the database. This paper is
an extended version of our previous publication [20]. Here, we
present an extended database with variations of sensor location,
sensor type, and ground slope so that we can conduct more
experiments with more comprehensive results.
r-based gait database and performance evaluation of gait-based
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2. Related work

2.1. Existing inertial gait databases

There are many databases have been used in this field as
summarized in Table 1, however they are publicly unavailable for
the research community.

The largest existing database was used by Gafurov et al. [23]
with 100 subjects, the gender is biased with a number of males is
twice larger than that of females. This database was frequently
used to evaluate the algorithms within the same research group
[23–25,31]. Derawi et al. [15], Kobayashi et al. [7], Gafurov et al.
[22,31], and Jenifer et al. [8] evaluated their methods with
databases of 60, 58, 50, and 36 subjects, respectively, without
age and gender information. Derawi et al. [27] again captured
another dataset of 51 subjects with a very biased gender ratio and
age distribution.

The largest database for smartphones was presented by Kobaya-
shi et al. [7] with 58 subjects and about 40 sequences per subjects
on different days. However, the frame-rate was as low as 33 Hz.

In overall, the numbers of subjects in these databases (100
subjects at most in [23]) are insufficient for statistically reliable
performance evaluation. In addition, age variety is limited to adult
and/or gender balance is biased.

2.2. Recognition methods

As stated above, since gait signal is periodic, there are three
main approaches for gait recognition: period detection-based,
frequency analysis-based, and gait model-based methods.

A large number of recognition systems [5,6,9–17] detect gait
periods, each of which contains motion signal of both left and
right steps, to construct gait patterns for recognition. A gait period
can be detected from a gait signal sequence using heuristic
information [5,12,13,15], or without heuristic information [16].

Some researchers use frequency-domain features such as a
histogram of signal intensity [6,8,10], or coefficients of Fourier
transform [6,7]. To obtain such frequency-domain features, we
need a relatively long and stable gait signal sequence. However, a
real gait signal is very noisy, temporally distorted and sensor
orientation may change, and hence such a long stable gait signal is
rarely available. As a result, frequency analysis-based techniques
are outperformed by period detection-based methods in most
situations [6,14,16]. Moreover, period detection-based methods
can be applied for a single period of signal sequence (about 1 s),
which implies potential real-time applications, while the fre-
quency analysis-based methods cannot.

In the gait model-based methods [18,19], a gait model is
generated using a finite state machine then some characteristics
such as the gait period symmetry and homogeneity are used for
gait pattern. However, the gait model-based methods require
expert knowledge about the human gait to train the finite state
machine so that it cannot deal well with the signal variation either.

In the evaluation of the gait authentication with our database,
we select the four latest period detection-based authentication
methods presented by four other research groups for evaluation
with our database.
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3. Gait database construction

3.1. Setup of gait capture system

To consider variations of sensor type and sensor location, we used
four sensors to capture gait signals: three IMUZ sensors from ZMP Inc.
[32], and a triaxial KXTF9 accelerometer from Kionix Inc. [33] inside a
iPlease cite this article as: T.T. Ngo, et al., The largest inertial sensor-based gait database and performance evaluation of gait-based
personal authentication, Pattern Recognition (2013), http://dx.doi.org/10.1016/j.patcog.2013.06.028
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z

y

x

IMUZMotorola

IMUZ battery

left

center

right

Fig. 1. Setup of the gait capturing system: (a) four uncovered sensors on a belt, (b) IMUZ, and (c) a belt on subject's waist.

1 The database can be accessed from OU-ISIR Biometric Database: inertial
sensor dataset, http://www.am.sanken.osaka-u.ac.jp/BiometricDB.
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Motorola ME860 smartphone. An IMUZ includes a triaxial acceler-
ometer and a triaxial gyroscope. The IMUZ and KXTF9 accelerometers
can work at a preset dynamic range, either 72, 74, or 78 (g), and
the IMUZ gyroscope can work at either 7500 or 72000 (deg/s). We
set the IMUZ dynamic ranges at 74 (g) and 7500 (deg/s) for
capturing human gait signal. For the Motorola's accelerometer, the
default setting by the manufacturer was used. In the experiments, the
settings of all the four sensors were suitable for human gait and
captured signal was not saturated. IMUZ sensors were connected to a
remote computer through Bluetooth connection, while the Motorola
could store all captured data in its internal memory. All the four
sensors captured data at their maximum frame-rate, 100 Hz. The
sensors were mounted on a waist belt as shown in Fig. 1(a). The belt
was covered by a soft cushion to protect the sensors and avoid direct
contact to the subject. Attachment of the belt on a subject's body is
shown in Fig. 1(c). The center IMUZ and the smartphone were located
at the center back, one IMUZ at the left and one at the right of the
subject's waist. Subjects were asked to walk in and out the same
designed path at their normal speed. The path contained a flat and a
slope grounds, the slope angle was about 8 deg.

3.2. Database information

We collected the gait data of visitors in an exhibition during 5
days. Each visitor was requested to sign an informed consent to
iPlease cite this article as: T.T. Ngo, et al., The largest inertial senso
personal authentication, Pattern Recognition (2013), http://dx.doi.org
permit the use of their data for research purpose. He/she also
supplied the basic personal information such as gender and age.
Thanks to them, we got the world largest database on inertial
sensor-based gait.1

We captured 6D signal sequences from the accelerometer and
gyroscope in each IMUZ sensor and from the accelerometer in the
Motorola. Data only for level, up-slope, and down-slope walk was
extracted for each subject. For level walk, two sequences were
extracted for entering and existing the path for each subject,
meanwhile only one sequence was extracted for up-slope or
down-slope walk. An example of a 6D signal of a subject is
separately shown in Fig. 3 for accelerometer, gyroscope, and three
ground slope conditions.

After simple preprocessing to remove invalid data and extract
interested data, we found that the validity of captured data was
not equal for all subjects, hence our database could be optimized
with respect to several variation factors. The most important factor
is the number of subjects, therefore we made the first dataset that
included the maximum number of subjects. Meanwhile, the
second dataset was maximized with the variations of sensor
r-based gait database and performance evaluation of gait-based
/10.1016/j.patcog.2013.06.028
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Fig. 2. Distributions of age and gender of the database in the first dataset for center
IMUZ (a), IMUZ subset (b) and smartphone subset (c) of second dataset.
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location, ground condition, and sensor type, therefore the number
of subjects was sacrificed for these variations.

In the first dataset, level walk data of 744 subjects (389 males
and 355 females) with ages ranging from 2 to 78 years was
captured by the center IMUZ. In this dataset, two different level-
walk sequences for each subject were extracted automatically by
using motion trajectory constraint and signal autocorrelation. The
detailed age distribution of subjects can be found in Fig. 2(a).

In the second dataset, variations of ground slope and sensor
location were focused. For each subject and each sensor, we
extracted two sequences for level walk, a sequence for up-slope
walk, and a sequence for down-slope walk. In total, we had a
subset from 3 IMUZ sensors for 495 subjects and a subset from the
smartphone for 408 subjects. In this dataset, the data extraction
for each sequence was performed manually by synchronizing with
a simultaneously captured video. The age distribution of subjects
can be seen in Fig. 2(b) and (c) for the subset of 3 IMUZ sensors
and the subset of the smartphone, respectively.

Compared with the existing databases, the advantages of this
database are as follows:
1.
iP
p

The number of subjects is about 7 times as large as in the
existing largest gait databases. This significantly improves the
reliability of the gait recognition performance evaluation.
2.
 The male-to-female ratio is close to 1. This is a desirable
property for more reliable performance evaluation of gait-
lease cite this article as: T.T. Ngo, et al., The largest inertial sensor-ba
ersonal authentication, Pattern Recognition (2013), http://dx.doi.org/10
based gender classification and for comparison of gait recogni-
tion performance between genders.
3.
 The subjects' ages are widely distributed from 2 to 78 years. In
particular, the number of children is comparable with the
number of adults. This provides more statistically reliable
results on gait-based age group classification and difficulty
level comparison of gait recognition among age groups.
4.
 6D gait signal includes 3D acceleration and 3D angular velocity
captured at a high frame rate, which is not only useful for gait
recognition but also for understanding the walk motion.
5.
 Four sequences for three ground slope conditions are consid-
ered (two of them for level walk).
6.
 Variation of sensor locations (back center, left, and right positions
on subject's waist) is considered to understand the dependence of
recognition performance on sensor location around subject's waist.

The limitation of our database is that all walk sequences of a
subject are relatively short, which were captured within a session
of about 1 min. Level and slope walk paths were about 9 m and
3 m long, respectively.
4. Benchmark methods

To evaluate this large database, we apply recent four bench-
mark gait-based personal authentication methods by Rong et al.
[13], Gafurov et al. [12], Derawi et al. [15], and Trung et al. [16]. We
briefly summarize these methods in this section, the details can be
found in the reference papers.

4.1. Gait period detection

Gait period detection is a key procedure for gait-based personal
authentication and differs among the benchmark methods.

Rong et al. [13] detect periods based on up–down acceleration
after normalizing the signal intensity to range [�1, 1]. Wavelet
denoising is first applied, and local minimum points are then
detected. Zero-cross point is detected just after a local minimum
point. Next, four consecutive zero-cross points make a gait period.
Finally, a fixed-size pattern is constructed by omitting intensity-
similar samples so as to remain the maximum signal intensity
difference within a period.

Gafurov et al. [12] also detect periods based on the up–down
acceleration after being adjusted to be zero-mean. A start point of a
gait period is found by the zero-cross point (from negative to
positive), then autocorrelation is used to estimate the period length.
The start point of the next period is the end point of the previous.

Derawi et al. [15] detect periods by using resultant signal
(magnitude of 3D acceleration signal). First, the authors extract a
single fixed-size subsequence from a signal sequence, and then
slide the subsequence along the signal sequence to compute the
matching distances and find the local minimum points of this
distance sequence. Then, these local minimum points are com-
bined with the local minimum points on the resultant signal to
refine the period locations. All the gait periods can then be
detected. Since, it is important to have a good subsequence, the
authors heuristically extract the reference subsequence from the
middle of the long sequence.

Trung et al. [16] use all the signal dimensions for the period
detection using a phase-registration technique, called Self-DTW
[34]. Self-DTW detects periods using a global optimization without
using heuristic information on local points. Self-DTW sometimes
results in temporally distorted periods, and then the authors
linearize the time warping function (TWF) to correct the distor-
tion. As a result, all detected periods are phase-registered and
temporally undistorted.
sed gait database and performance evaluation of gait-based
.1016/j.patcog.2013.06.028
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Fig. 3. Example of gait signals from gyroscope (the upper graphs) and accelerometer (lower graphs) for different ground slope conditions of a subject in the same sequence:
(a) level walk, (b) slope up, and (c) slope down.
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In the benchmark methods other than Rong et al.'s [13], a fixed-
size pattern is constructed by simply re-sampling a detected
period.

4.2. Authentication

First, a gallery G is defined as a collection of all the sample gait
patterns for the owner: G¼ fgig, gi ¼ fgi;jjj¼ 0;…;N�1g, where i is
the pattern index, and N is the size of a pattern. A circularly shifted
gallery pattern gi by s is defined gs

i ¼ fgi;ðjþsÞmodNg.
For any probe pattern p¼ fpjg, the dissimilarity between it and

all the shifted patterns in G is computed using the minimum rule
[35]:

DðG;pÞ ¼min
i;s

dðgs
i ;pÞ; ð1Þ

where dð:; :Þ is the dissimilarity between gs
i and p.

Gafurov et al. [12] use Euclidean distance (L2 norm) for dð:; :Þ. In
other benchmark methods by [13,15,16], dð:; :Þ is computed as the
normalized cumulative DTW score based on Euclidean distance at
the end of the optimal warping path.

In fact, some other dissimilarity measures such as those based
on normalized cross correlation, Tanimoto coefficient [36], and
Manhattan distance can also be used. Therefore, we will evaluate
these four dissimilarity measures in Section 5.4.
5. Performance evaluation

5.1. Evaluation procedure

In the experiments, we used all our extracted gait data for the
personal authentication scenario (one-to-one matching). Data
from gyroscope and accelerometer was evaluated separately, but
period detection was executed simultaneously based on
acceleration data.

Authentication performance of a method was evaluated by
receiver operating characteristic (ROC) curve [37]. The ROC curve
shows a trade-off between false rejection rate (FRR) and false
acceptance rate (FAR) when the acceptance threshold is changed
by a receiver in personal authentication scenario. The equal error
rate (EER) where FRR and FAR are equal was also used to evaluate
the performance. The lower the EER, the better the method
performs.

We used the first dataset with a large number of subjects for
evaluating the impact of the number of subjects in Section 5.2,
evaluating the benchmark methods, Section 5.3, the impact of
iPlease cite this article as: T.T. Ngo, et al., The largest inertial senso
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genders, Section 5.6, and the impact of age groups, Section 5.7. We
used the second dataset for evaluating the impact of sensor types,
Section 5.4, ground slope conditions, Section 5.5, and the impact of
sensor locations, Section 5.8.

For each subject, the first level-walk sequence was made a
gallery, other sequences were made probes. To make a gallery G
for a subject, period detection of a benchmark method was applied
for the first level walk sequence to make gallery patterns gi of gait
period: G¼ fgig. To prepare a probe P for each probe sequence, the
benchmark method also used period detection to make probe
patterns pj of gait period: P ¼ fpjg. Since the period detection
performances of these benchmark methods were different, we
used the whole sequence as a gallery or probe instead of an
independent period. The dissimilarity DissðG;PÞ between the
probe P and the gallery G is computed

DissðG;PÞ ¼min
i;j;s

dðgs
i ;pjÞ; ð2Þ

where dðgs
i ;pjÞ is defined in Section 4.2, which depends on

benchmark method. The size of a pattern was 50 samples after
normalization.

In all of our experiments, gallery for each subject includes one
signal sequence which is the first level-walk sequence. Similarly,
probe for each subject with each of three ground slope conditions
(level, up-slope, and down-slope) also includes one signal
sequence (the second level-walk, the up-slope, or down-slope
sequence).

5.2. Impact of the number of subjects

In this section, the impact of the number of subjects is
investigated. Based on a statistical analysis of ROC curves [38],
the standard deviation of the observed FRR p̂ with multiple
attempts for each subject is estimated as

ŝðp̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a2i �2p̂∑aimi þ p̂2∑m2

i

m2nðn�1Þ

s
; ð3Þ

where these variables are described as follows:
�

r-ba
/10
ai: the number of false rejections for ith subject;

�
 mi: the number of probe samples from ith subject;

�
 m: the average number of probe samples per subject; and

�
 n: the number of subjects.
This indicates that the obtained FRR becomes more reliable as
the number of subjects increases. To validate the estimation, we
sed gait database and performance evaluation of gait-based
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repeated the experiments with randomly chosen subsets of fewer
subjects and compared the actual standard deviation of the
performance and the estimated one from Eq. (3). First, we
prepared 30 subsets of acceleration signals comprising 60 subjects
randomly chosen from the first dataset and obtained 30 ROC
curves by [16] method, which was equipped with Euclidean
distance. Then, we calculated the average and standard deviation
of the FRR for each FAR, depicted by an averaged ROC curve (gray
line) and the standard deviation bars (in gray) in Fig. 4. In addition,
the estimated standard deviation range from Eq. (3) is depicted by
the two gray dashed lines for the subsets. From this graph, we can
see that the experimental standard deviation ranges (gray bars)
derived from the experimental results correspond well with those
estimated from Eq. (3).

Moreover, the result for the whole set is superimposed as the
black line, while the standard deviation range estimated from Eq.
(3) is depicted by the two black dashed lines in Fig. 4. We can see
that the standard deviation range is significantly narrower than
that of the smaller subject subsets. For example at 10% FAR, the
standard deviation is reduced from 5.32% to 1.36%. This indicates
that the accuracy of the performance evaluation increases approxi-
mately 3.91 times.

5.3. Evaluation on benchmark methods

In this experiment, we evaluated the performance of the
benchmark methods described in Section 4. All methods com-
puted pattern dissimilarity based on Euclidean distance, as
described in Section 4.2.

The ROC curves and their theoretical standard deviation of the
benchmark methods are shown in Fig. 5 for accelerometer of the
first dataset. We can see that although the ROC curves for these
benchmarks are rather separated, their deviation boundaries are
often overlapped. The performance of Derawi et al. and Rong et al.
methods are quite similar since their ROC curves and deviation
boundaries are not clearly separated. Meanwhile, the performance
of Trung et al. and Gafurov et al.'s methods are quite different since
0.00
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0.40

0.00 0.10 0.20 0.30 0.40
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Subset average

Subset

Whole set
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Fig. 4. ROC curves with different numbers of subjects. Black and gray lines stand
for the whole set and smaller subsets, respectively. A line and two bounding dashed
lines mean a false rejection rate p and its theoretical standard deviation range p7s
derived from Eq. (3). Gray bars are actual standard deviation ranges p7s obtained
from 30 ROC curves.
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their deviation boundaries are separated. One can imagine that if a
small number of subjects was used, the comparison was unreliable
since the deviation boundaries were wider. For examples, if we
used a small subset of only 60 subjects, these deviation boundaries
were about 3.91 time wider, as shown in Fig. 4.

For reference to the databases presented in original publica-
tions of the four benchmark methods, we list the benchmark
methods' performances in Table 2. There are two points that need
to be discussed from this table. First, although it is difficult to
directly compare the performances by the original database with
those by our databases since they were carried out under very
different conditions in terms of sensor, sensor location, variation of
shoes, and testing scenario, it turned out that the performances
with our database were significantly worse than those with the
original databases. One of the main reasons for this performance
degradation is derived from subject variations in terms of age
variation. While the original databases mainly contained healthy
adults with suitable ages for recognition (mostly between 20 s and
40 s), our database contains many children and the elderly as well
as adults. In fact, if we limit our database to a subset of 20's
subjects, the EER becomes comparable to those with the original
databases (approximately 6% for both, see Fig. 9 in Section 5.7).
Although, children and the elderly have much lower recognition
abilities, it is quite important to include them in evaluations when
considering a number of useful applications such as those for
security and safety at school and home. The second point to be
mentioned is that the performance differences among the bench-
marks with the original databases becomes statistically less sig-
nificant than those with our database. For example, Gafurov et al.
achieved 0.5% EER at the best case, while Derawi et al. and Rong
et al. achieved 5.7% and 5.6% EERs, respectively, with the original
databases. On the other hand, EERs with our database become
15.8%, 14.3%, and 14.3% for these methods, respectively. This means
that the performance comparison with the small-sized original
databases is not statistically meaningful, and hence the perfor-
mance comparison with a common large-scale database is essen-
tial for practical applications. Our database could therefore highly
r-based gait database and performance evaluation of gait-based
/10.1016/j.patcog.2013.06.028
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Table 2
Performances of benchmark methods with original databases.

Method Original database No. of subjects EER (%) Proposed database No. of subjects EER (%)
Sensor information Sensor information

Derawi et al. [15] Accelerometer at left hip 60 5.7 Accelerometer at back waist 744 14.3
Rong et al. [13] Accelerometer at back waist 21 5.6 Accelerometer at back waist 744 14.3
Gafurov et al. [12] Accelerometer at ankle 30 0.5–6.1a Accelerometer at back waist 744 15.8
Trung et al. [16] Gyroscope in backpack 32 6.0 Gyroscope at back waist 744 20.2

a In Gafurov et al.'s work, various databases with different types of shoes were used.
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contribute to the research community of the sensor-based gait
recognition once it is released to the public.

From Fig. 5, we also can see that the benchmark method by
Trung et al. produced a slight advantage in term of ROC curve,
therefore, we select it for further evaluations in the following
sections.

5.4. Impact of sensor types and dissimilarity measures

In this section, we compared the accuracy of the accelerometer
and the gyroscope, and also explored a proper dissimilarity
measure for each sensor. We used a data subset for the center
IMUZ of the second dataset.

Performances of the normalized dissimilarities based on nor-
malized cross correlation and Tanimoto coefficients were com-
pared with those of the unnormalized dissimilarities, Manhattan
and Euclidean distances, these dissimilarity measures are denoted
as NCC, TANIMOTO, MANHATTAN, and EUCLIDEAN, respectively.
The comparison results are shown in Fig. 6. From these results, we
can see that accelerometer produces a better authentication
performance than gyroscope does in overall, except for TANI-
MOTO. Normalized dissimilarities (NCC and TANIMOTO) work
better than unnormalized dissimilarities (MANHATTAN and EUCLI-
DEAN) for any sensor. However, normalized dissimilarities work
more effective for gyroscope than for accelerometer. These results
come from the observation that inter-period signal fluctuation of
the translational motion (acceleration) for a subject when he/she
walks straightly forward is smaller than that of the rotational
motion (angular velocity). Therefore, the normalization on angular
velocity data is more effective than on acceleration data.

We also made a result for combining both sensors, which
means that the gait signal has six dimensions. For the unnorma-
lized dissimilarities, the result of using both sensors became worse
than that of using only the accelerometer, and better than that of
using only the gyroscope. However, for the NCC, the result of using
both sensors became slightly better than that of any single sensor
(accelerometer or gyroscope). Therefore, when we want to use
both sensors, a proper dissimilarity measure or score-level fusion
technique is preferred.
iPlease cite this article as: T.T. Ngo, et al., The largest inertial senso
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From these experiments, the combination of NCC and the
accelerometer produced the best authentication performance
and we selected it along with the Trung et al.'s method in the
following experiments.

5.5. Impact of ground slope conditions

In this section, we investigate the impact of ground slope
condition on gait authentication performance. For this purpose,
we used the data subset for center IMUZ of the second dataset.

The ROC curves for different slope conditions are shown in
Fig. 7. We can see that walking up/down a slope is quite different
from walking on a flat ground which resulted in a decline of
authentication performance for such ground slope conditions. In
this experiment, the average error rates for slope-up and slope-
down sequences increased significantly.

5.6. Impact of genders

In this section, we investigate how gait authentication perfor-
mance differs between genders using the acceleration of the first
dataset. Our large-scale gait database is suitable for this since the
gender ratio is close to 1 in total. However, gender bias occurs for
each age group in details as shown in Fig. 2(a). Therefore, we
equalized the number of males and females for each age group to
reduce such bias. There were 6 age groups used in this equaliza-
tion: under 10, 10 s, 20 s, 30 s, 40 s, and over 50.

The ROC curve and its theoretical deviation for authentication
performance among the 349 males are depicted by the gray lines
and for the 349 females by the black lines in Fig. 8. According to
r-based gait database and performance evaluation of gait-based
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the results, the authentication performance among females is
clearly better than that among males. This evaluation is reliable
since the ROCs curves with their deviation boundaries are clearly
separable with our database. A similar result was found by Gafurov
[24], however, the evaluation was made with a small database of
only 100 subjects aged between 19 and 62 with a very biased
gender ratio (70 males vs. 30 females).

5.7. Impact of age groups

Next, we show the difference in gait authentication perfor-
mance among the age groups. Our large-scale gait database is
ideally suited to this purpose because the age distribution is much
wider than that in existing gait databases.

In the first dataset, each 10-year interval up to 50 years
contains about a hundred subjects. The interval over 50 years
was treated separately as one age group because of the shortage of
subjects. We then separated all the subjects into age groups: under
10, 10 s, 20 s, 30 s, 40 s, and over 50. The ROC curve for each age-
group interval is shown in Fig. 9.

From these ROC curves, we can see that the gait authentication
performance for the child group (under 10) is worse than that for
most other age groups except the over-50 group, and this
gradually improves with the older groups up to 20 years. The
authentication performance is then gradually reduced for the
older groups. This result is understandable because the intra-
subject gait fluctuation for children is relatively larger due to the
immaturity of their walking skills. In contrast, fluctuation in gait
for adults is quite small since adults have established their own
walking style; in other words, they have a stable gait pattern.
Moreover, the gait authentication performance for groups over 30
years old declines as the subjects become older. This degradation
in performance is inferred from the fact that physical strength
generally declines as the subject grows older and hence, the gait
tends to fluctuate more.

Consequently, gait authentication performance of subjects in
their twenties is regarded as a trade-off between the maturity of
walking ability and physical strength.
iPlease cite this article as: T.T. Ngo, et al., The largest inertial senso
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5.8. Impact of sensor location around the waist

In this section, we evaluate the authentication performance for
all the four sensors around the waist using the second. Since it was
difficult to fix the left and right IMUZ sensors at the same
orientation among all the subjects, the gait signals of the left
and right IMUZ sensors were not aligned well to be compared. It is
because when the orientation of the sensor coordinates changes,
so does the captured signal. However, the change of sensor
orientation does not affect the magnitude of signal. In other
words, the magnitude of a 3D signal (resultant signal) is an 1D
sensor-orientation-invariant signal. Therefore, although the
authentication performance was degraded due to the reduction
of dimensionality, we used the resultant signal instead of 3D
original signal for the evaluation. The results of the evaluation are
shown in Figs. 10 and 11 for 1D resultant signal of acceleration and
angular velocity, respectively.

From the results for accelerometer, we can see that ROC
curves for the smartphone and center IMUZ are quite similar.
However, these ROC curves are slightly worse than those for the
left and right sensors, which means accelerometer location on
subject's waist slightly influences the authentication perfor-
mance. On the other hand, from the results for angular velocity,
we can see that ROC curves are quite similar, which means
gyroscope location on subject's waist does not affect the authen-
tication performance.

The difference between accelerometer and gyroscope's perfor-
mances are understandable if we look into the mechanical
difference between translational and rotational motions of solid
object. Assuming that the belt, where the sensors are mounted, is
a solid object, the same rotational velocity is captured at any point
on the belt. However, the acceleration depends on the location of
the sensor which resulted in the authentication performance
difference among these accelerometers. The performances of the
center accelerometer and the smartphone are similar because they
are located at the same point at the back waist of a subject. This
point is close to the center of mass of the subject, where the
translational motion is much more stable and hence less informa-
tive than that of the left or right side. Meanwhile, translational
motion at the left and right locations is influenced by the physical
and geometrical characteristics of each individual waist. As a
result, authentication performance using acceleration at the center
back waist is less than that at the left or right side.
r-based gait database and performance evaluation of gait-based
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6. Conclusions

This paper describes the construction of the world's largest
inertial sensor-based gait database and a statistically reliable
performance evaluation of inertial sensor-based gait authentica-
tion. The database has the following six advantages compared
with existing gait databases: (1) the number of subjects is 744,
which is approximately 7 times as large as the existing large-scale
gait databases, (2) the male-to-female ratio is close to one, (3) the
age distribution is wide, ranging from 2 to 78 years, (4) it includes
6D gait signal for both accelerometer and gyroscope, (5) 3 ground
slope conditions are captured, and (6) it contains variation of
sensor locations. Because a sufficient number of subjects for each
gender or age group is included in the large-scale gait database, it
is possible to evaluate how gait authentication performance differs
between genders and among age groups.
iPlease cite this article as: T.T. Ngo, et al., The largest inertial senso
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The results of the benchmark authentication method provide
several insights, such as the trade-off of gait authentication
performance among age groups based on the maturity of walking
ability and physical strength. Moreover, improvement in the
statistical reliability of performance evaluation is shown by com-
paring the gait authentication results for the whole set and small
subsets of subjects randomly selected from the whole set. The
impacts of sensor types, dissimilarity measures, and sensor loca-
tions were also investigated. An accelerometer has a better
authentication performance than that of a gyroscope. A normal-
ized dissimilarity measure works better than an unnormalized
dissimilarity measure. Sensor location on subject's waist does not
influence authentication performance for a gyroscope, while it
does for an accelerometer. Authentication performance for an
accelerometer about the center of mass is not as good as that at
left or right waist.

Future work includes performance evaluation of other state-of-
the-art gait recognition approaches and present another recogni-
tion method for improving the robustness to the sensor attach-
ment. Understanding the age or gender from the gait signals is also
one of attractive research topics.
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