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a b s t r a c t

This paper tackles a challenging problem of inertial sensor-based recognition for similar gait action
classes (such as walking on flat ground, up/down stairs, and up/down a slope). We solve three drawbacks
of existing methods in the case of gait actions: the action signal segmentation, the sensor orientation
inconsistency, and the recognition of similar action classes. First, to robustly segment the walking action
under drastic changes in various factors such as speed, intensity, style, and sensor orientation of different
participants, we rely on the likelihood of heel strike computed employing a scale-space technique.
Second, to solve the problem of 3D sensor orientation inconsistency when matching the signals captured at
different sensor orientations, we correct the sensor's tilt before applying an orientation-compensative
matching algorithm to solve the remaining angle. Third, to accurately classify similar actions, we incorporate
the interclass relationship in the feature vector for recognition. In experiments, the proposed algorithms
were positively validated with 460 participants (the largest number in the research field), and five similar
gait action classes (namely walking on flat ground, up/down stairs, and up/down a slope) captured by three
inertial sensors at different positions (center, left, and right) and orientations on the participant's waist.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With advances in micro-sensor and wireless communication
technology, inertial sensors (accelerometer and/or gyroscope) are
now low-power, small, accurate, and fast. They are increasingly
being embedded inwearable and portable electronic devices such as
smartphones, tablets, and smartwatches. As a result, many research-
ers have been employing a wearable inertial sensor in a variety of
research topics such as human-machine interaction [1], user authen-
tication [2], driving analysis [3], fall detection for medical alerts in
the elderly [4], rehabilitation and therapy for patients [5], sport
training support [6], and a user's daily life surveillance and monitor-
ing [7]. Currently, recognizing a wearer's actions through an inertial
sensor is one of the most attractive research topics.

Various actions with different levels of complexity have been
investigated in this research field. They are mostly gestures, move-
ments, behaviors, postures, transitions of postures, and sequence of
movements of a participant such as sitting, standing, lying, walking,

running, walking up/down a slope, falling, driving, cycling, dressing,
working in an office, and cooking. Depending on the characteristics
of the actions, such as their complexity, periodicity, and dynamicity,
the optimal number of sensors and their placement, and recognition
method has been decided. We refer readers to a number of recent
reports and evaluations [8–14] for details.

There are two essential difficulties for inertial sensor-based
action recognition methods: the segmentation of action signals and
the relaxation of sensor attachment inconsistency between training
and test stages. Particularly, in the case of recognizing similar action
classes, an additional difficulty is low recognition accuracy.

Action signal segmentation is the first and most important step
toward extracting a signal sequence from an action so that it can be
classified. However, existing methods are sensitive to temporal and
intensity variation of action signals such as when the participant
changes their action speed or style.

The sensor attachment inconsistency problem occurs if locations
and/or orientations of the sensor are different between training
and testing stages. The existing methods can solve the orientation
inconsistency between training and test stages; however, they have
to pay a significant loss of signal information. For the details, they
have to sacrifice some signal dimension to deal with this problem.

Existing methods have usually been evaluated for relatively
different action classes, and hence there is no guarantee that they
work well for very similar action classes. Although some authors
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evaluated their methods with similar action classes such as gait
action [15–17], there is no existing method that tentatively solves
the problem of similarity of action classes.

In this study, we focus on similar gait action classes, which are
the most frequent actions of humans in daily life. We provide
solutions to the three above-mentioned problems in the case of
classifying similar gait actions:

1. Step signal is detected and segmented employing a scale-space
technique. The proposed step detection method can adaptively
work with a large amount of variation even if the participant
changes their walking speed or style.

2. To solve the practical sensor orientation inconsistency problem.
First, we employ a gyroscope for the sensor tilt correction.
Then, we apply an orientation-compensative matching algo-
rithm [18] to solve the remaining relative sensor orientation
angle between training and test signal sequences. As a result,
the proposed method does not experience the information loss
problem of existing recognition methods.

3. We propose an algorithm to deal with similar action classes.
When action classes are similar, the relationship between one
class and all others is more likely to have consistent and
distinguished patterns as in the case of gait action. We utilize
these relationship patterns to recognize gait action.

This paper is an extended version of our previous work [19].
First, while the previous work did not solve the sensor orientation
inconsistency problem, the proposed method does. We employs both
an accelerometer and a gyroscope sensors. The advantage of using a
gyroscope is that we can fix the sensor tilt (represented by pitch and
roll angles) in order to reduce the complexity before applying the
orientation-compensative matching algorithm [18] to estimate the
remaining orientation angle (yaw). Second, the robustness of step
detection against sensor orientation inconsistency is realized and
evaluated in this paper. Finally, the previous work evaluated perfor-
mance using only an attachment location of a single accelerometer of
96 participants. Meanwhile, the proposed method is evaluated
rigorously with three variations of sensor orientations and locations
and a fourfold increase in the number of participants (460).

2. Related work

2.1. Action signal segmentation

A fixed-size sliding window has frequently been used [20–27].
However, a fixed-size window sometimes introduces errors since
it may wrongly segment an action and cannot deal with temporal
variation of an action due to speed or user difference. A dynamic
window [28,29] has been proposed to solve the problem of the
fixed-size window. These methods rely on signal events detected
according to a fixed threshold of the signal intensity [28] or noise/
signal separation theory to control the size and location of the
window. The dynamic windows may, however, still fail when the
signal intensity of an action also varies [28]. In the case of gait
action recognition, there exist methods [30,31] that detect a gait
period (or gait cycle of two consecutive steps) to construct a gait
pattern; this is also considered to be using dynamic windows.
However, these methods rely on local peak and valley detection,
which is sensitive to variations in walking speed and/or style.

2.2. Gait period detection

In the field of inertial gait-based recognition, most existing
methods try to detect gait period as a gait primitive, since they
work better for the dynamicity of gait signals than those that use a

fixed-size sliding window. In such cases, walking is a homoge-
neous and periodic action, it is hence possible to detect the period
of the gait signal by dynamic programming [2], or matching with a
sample primitive [32]. However, there is no such method in the
field to cope with the situation where gait signal is drastically
varied by a number of factors such as intensity, speed, and sensor
orientation. The problem is more serious if these factors occur
simultaneously.

2.3. Sensor attachment inconsistency

Most existing action recognition methods assume that the
sensor is fixed at specific orientation and location on the partici-
pant's body. However, it is impractical and unnatural to fix the
sensor at the same orientation and location all the time, particularly
in daily life (e.g., the sensor orientation of a smartphone in a trouser
pocket is subject to change). There are various methods that can be
used to solve the sensor location inconsistency (or sensor displace-
ment) problem such as unsupervised adaption [33,34], extracting
invariant features from data of different sensor-locations [35], and
employing heuristic knowledge [36]. The most popular approach to
the sensor orientation inconsistency is to employ a 1D orientation-
invariant signal [37,38], which is the magnitude of a 3D signal from
an accelerometer or a gyroscope. Other researchers [39–41] use a
2D orientation-invariant signal, which relies on Mizell's research
[42], to correct the sensor tilt using a 3D gait acceleration signal.
However, these methods produce low performance because of the
significant information loss by the dimension reduction of the
signal. For the tilt correction, Mizell assumes that the average of
3D acceleration signal samples is the gravity vector in order to
correct the sensor tilt. In fact, this assumption does not base on any
theory. The averaging of the acceleration samples is performed
ignoring the fact that the sensor is rotated when the human body
moves. It is particularly incorrect for a short signal sequence that
does not contain a natural number of gait periods or when the
participant does not walk symmetrically.

A method that corrects the sensor orientation so that all the
three dimensions of the signal can be used also exists. However,
this method [43] relies on an assumption that the first principal
component of the horizontal acceleration data corresponds to the
forward (or backward) motion vector. This assumption is not
always correct (e.g., when the participant turns), and hence the
robustness of the method is reduced. There also exists a method
that can estimate 3D relative orientation between a pair of
acceleration signal sequences [18]. However this must be carried
out for any pair of gallery and probe signal sequences, which is
very time-consuming and only suitable for small database pro-
blem. In our research, taking the advantage of the gyroscope, we
solve the 3D orientation by first estimating the absolute gravity
vector to correct the sensor tilt at the pre-processing step and then
employing [18] for only solving the remaining relative yaw angle.
Consequently, the solution to the sensor orientation inconsistency
problem in the proposed method is more advantageous in com-
putational cost, robustness, and accuracy.

Ustev et al. [44] rely on a fusion of sensors to cope with the
sensor orientation inconsistency. They use an accelerometer, a
compass, and a gyroscope simultaneously to estimate the sensor
orientation, hence the captured acceleration signal sequence can be
corrected. The limitations of this approach are that the magnetic
field is influenced by nearby electronic devices and the signal from
the gyroscope is subject to the sensor drift. Moreover, their method
needs to know the initial sensor orientation at the beginning of a
capturing session of all the participants that limits the application of
the method.
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2.4. Score normalization

Since the matching scores outputted by the single or multiple
matchers are usually heterogeneous, score normalization is needed
to transform these scores into a common domain for proper
comparison. Score normalization methods, such as Z-normalization
[45], T-normalization [46], and cohort-analysis-based normalization
[47], find statistical parameters of the score (or similarity) distribu-
tion for the transformation model. After a normalization, a new
score is computed for each test sample. These score normalization
methods are usually used in verification (single matcher case) and in
score level fusion (multiple matcher case) [45] for further decisions.

In the proposed method, we use all the matching scores of a
test action to all action galleries as an input pattern for the action
classifier. This pattern is in fact the interclass relationship pattern
of the test action to all the action galleries. Although the magni-
tude of the pattern is simply normalized, these relationships to all
action galleries do not change. This normalization is effective only
when the action classes are similar which is the case in this paper.
It is used to construct the interclass relationship pattern in an
identification problem but not to compare and find the best
similarity in a verification problem.

2.5. Interclass relationships

Neeraj et al. [48] proposed a simile classifier for face verifica-
tion, which uses interclass relationships between a test face and a
set of reference faces for recognition with respect to small parts of
the face such as the nose, eyes, eyebrows, mouth, and forehead.
Our method also employs interclass relationships to improve the
recognition performance, but in a much simpler manner. Since all
gait action classes are similar, we do not have to tackle the
problem of how to choose reference classes and how to divide
the feature vectors into smaller feature vectors. In our situation,
the whole feature vector is used in the comparison and all gallery
action classes are used as reference classes.

3. Assumption and problem setting

Since using one sensor (such as a smartphone) is more practical
and natural in real applications than using multiple sensors, and
the sensor location about the participant's waist produces good
results [43] for these gait actions, we use one inertial sensor that
includes a triaxial accelerometer and a triaxial gyroscope.

A participant walks while the sensor is firmly attached to their
waist. The orientation of the inertial sensor is therefore fixed in a
local coordinate system at the attachment location during each
data capturing session for training or testing. On the other hand,
sensor orientations in a body coordinate system originated at the
body center among participants and sessions may be different.

An action can be recognized using just a gait period, which is
considered as the action sample in our problem setting.

The duration of a walking gait period is assumed to be between
Tmin¼700 ms and Tmax¼1600 ms by considering the prior knowl-
edge on natural walking gait styles on large scale and large
population databases [49,50].2 Other gait styles with gait periods
outside this range are not considered in this research.

4. Sensor orientation inconsistency and invariants

4.1. Sensor orientation inconsistency problem

For an inertial sensor fixed on a participant, it can capture the
i-th sample of a 3D signal (acceleration or rotational velocity) of
the participant's gait at the relative sampling time t ¼ iδ is
described as vector si ¼ ðsx;i; sy;i; sz;iÞT , where δ is the sampling
period of the sensor (e.g., δ¼10 ms). If another inertial sensor is
fixed to the body of the participant at the same location, and the
relative sensor orientation between the two sensors is described
by a rotation matrix R0, the second sensor observes a different
signal s0i:

s0i ¼ R0si: ð1Þ
In the same way, the rotation of a signal sequence Su ¼ 〈si〉ði¼
1;…;NSÞ by rotation matrix R0 results in another signal sequence
S0u ¼ 〈s0i〉ði¼ 1;…;NSÞ, where NS is the number of samples in the
sequence, and u stands the acceleration or rotational velocity. This
transform is defined as

R0 � Su≔〈R0si〉¼ S0u; ð2Þ
where � is a rotation operator that is applied to a signal sequence.

Therefore, although these inertial sensors capture the same
motion, they observe different signals in general and the differ-
ence is described by a rotation matrix, which is the relative
rotation between two sensor coordinate systems. Thus, in the
recognition problem, we cannot directly compare signals captured
under different sensor orientations.

4.2. Sensor orientation invariants

Although signal varies due to the sensor orientation change,
there are several invariants that help us to deal with the sensor
orientation inconsistency.

4.2.1. Magnitude of 3D signal
If we have two inertial sensors whose relative orientation is

described by a rotation matrix RaI, their captured signals si and s0i
are different. However, the rotation of a signal does not change its
magnitude because Jsi J ¼ Js0i J . In other words, the magnitude of
a 3D inertial signal is invariant to sensor orientation. This invariant
information is obviously useful in solving the sensor orientation
inconsistency problem. It is called the resultant signal of a 3D
inertial signal (3D acceleration or 3D rotational velocity signal).

4.2.2. The earth's gravity
An accelerometer attached to a participant captures both their

motion and the earth's gravity. It is difficult to separate the gravity
from the captured signal. However, the earth's gravity is a constant
vertical acceleration vector in a world coordinate system at the local
ground. Although it cannot be used to solve the full 3D sensor orien-
tation, it is still helpful for correcting the sensor tilt as demonstrated
in [42].

In the proposed method, we utilize both the invariants in
conjunction with a sensor orientation-compensative matching algo-
rithm to solve the full 3D sensor orientation inconsistency problem.

5. Robust step detection

5.1. Gait period

It is well known that a normal gait period consists of a stance
phase and a swing phase for each leg [51], the durations of these
phases are about 60% and 40% of a gait period, respectively. For a

2 While [Tmin,Tmax] was found to be [660 ms, 1330 ms] and [740 ms, 1350 ms] in
[49,50], respectively, we set it a little bit wider in our implementation.
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normal human walk, when the left heel hits the ground in a short
moment at the start of the left leg's stance phase, the right foot
remains on the ground. The strong impulse of the collision force is
transmitted from the left foot to the body center through the left
leg, which results in quick motion of the body center. The same
phenomenon happens to the motion of the right leg as illustrated
in Fig. 1. Therefore, a 3D accelerometer attached at the waist can
capture a strong signal at the moment of the heel strike (HST) for
both legs. Within a gait period, we can observe strong signal
vibration at two such moments for the two legs. Beyond the two
HSTs, the acceleration signal is smooth and varies gradually, as
illustrated in Fig. 2(a). On the other hand, observing the energy
consumption of the rectus femoris muscle of a gait period, a clear
energy peak can be observed during a HST and it is lower where
else [51]. The internal energy consumption can be seen by the
externally observed force magnitude at the body center (in form of
acceleration magnitude). These characteristics of gait prompt us
two statistical observations on signal energy and local peaks/
valleys that we use to detect step in the following sections.

Fig. 2 shows an example of a gait period, where the inertial
sensor is attached at the center back waist of a participant and its
coordinate system coincides with the body coordinate systems so
that it can capture up/down, left/right, and backward/forward
acceleration as well as the pitch, yaw, and roll of the participant,
see Fig. 3. However, if the sensor coordinate system does not
coincide with the body coordinate system, a different signal may
be observed. This causes the sensor orientation inconsistency
problem described in the previous section.

5.2. Step detection based on HST likelihood

Since the gyroscope does not capture HST force, the proposed
step detection relies only on the 3D acceleration signal, although a
6D signal is used for recognition.

From the characteristics of gait acceleration described above,
we can detect and segment a step based on the characteristics of
the HST relying on the computation of its likelihood.

To compute the likelihood of an HST from only the 3D
acceleration signal, we rely on two observations on the appearance
of an HST:

� Observation1: Energy of the acceleration signal is relati-
vely high,

� Observation2: The density of local feature points (e.g., peaks
and valleys) in all channels is relatively high.

5.2.1. Likelihood based on signal energy
Based on Observation1, we regard the energy of the acceleration

signal as the likelihood of an HST. Energy e(i) at location iδ in the
time domain is computed as the magnitude of the 3D acceleration
signal eðiÞ ¼ Jsa;i J , which is the orientation-invariant resultant
signal. For robustness against temporal variation and noise, we
compute different smoothed signal energies êσe ;i with Gaussian

filters, f ðx;σeÞ ¼ 1ffiffiffiffiffiffiffiffi
2πσ2

e

p e� x2=2σ2
e of different smoothing parameters

σe. The likelihood of an HST based on the signal energy is

peðiÞ ¼∏
σe

êσe ;i: ð3Þ

In implementation, since we expect to have two peaks of energy
for each gait period with different sizes, we set σeAfTmin=4; Tminþ
Tmax=8; Tmax=4g, which practically works for different gait periods

Temporal axis

HST                       HST

Fig. 1. Time spend on each limb during a gait period of a normal man [51]. The
vertical motion of the gait is always influenced by earth gravity, which results in a
relatively strong up/down signal.
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Fig. 2. Example of a 6D inertial signal sequence of a gait period: (a) 3D acceleration and (b) 3D rotational velocity signals. The gait period contains 111 signal samples and its
duration is 1110 ms.

Fig. 3. Initial sensor orientation inconsistency problem. The same human motion may
be observed and captured with different signals due to different sensor orientations.
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from Tmin to Tmax. For σeoTmin=4, the smoothed energy would
contain many peaks, valleys. For σe4Tmax=4, smoothed energy
would be flattened, and hence would not change the quality of the
likelihood. Integrating a larger number of over-smoothed energy
signal does not improve the quality of energy likelihood, but
consumes a higher computational cost. In experiments, we only
need one more parameter in the middle of {Tmin=4 and Tmax=4},
say ðTminþTmaxÞ=8, that works for the medium step duration. Of
course, we can use more parameters between {Tmin=4 and Tmax=4},
but it is more time-consuming. Fig. 4(b) shows an illustration for
different smoothed energies with these values of σe.

5.2.2. Likelihood based on feature density
Based on Observation2, we use the locations of local peaks and

valleys for each channel of the signal as the signal features. To get rid
of some noise, the signal needs to be smoothed properly. However, it
is impossible to get an optimal smoothed signal and the feature
detector cannot distinguish HST from non-HST features. There are
several phenomena that a feature detector can experience:

� At a fine level of smoothness (signal is weakly smoothed), there
are more non-HST features than meaningful HST ones.

� At coarser level, fewer non-HST and more HST features are
detected. The total number of detected features decreases.

� At very coarse level (signal is over-smoothed), both HST and
non-HST features disappear.

This encourages us to employ a scale-space idea [52,53], in
which we consider smoothing the signal at different smoothness

levels. When combining the detection results of all smoothness
levels, the density of features (regardless whether they are HST or
non-HST) is high at the moment of an HST and low otherwise.

The computation of feature density using scale-space idea
is illustrated in Fig. 4 as follows. First, the 3D signal sequence,
illustrated in Fig. 4(a), is smoothed by several Gaussian filters,
f ðx;σf Þ, with different smoothing parameters σf. We then detect all
the signal features (peaks and valleys) for each channel and each
smoothness level, the combined result for each smoothness level is
illustrated in Fig. 4(c). Finally, from all the detected feature locations
in the time domain filδgðl¼ 1;…;Nf Þ, where Nf is the number of
detected features, the probability density function pf ðiÞ of features
at location i is computed by kernel density estimation as:

pf ðiÞ ¼ 1

Nf b
∑
Nf

l ¼ 1
K

ði� ilÞδ
b

� �
; ð4Þ

where K is a kernel function used for the estimation, and b is the
bandwidth or smoothing parameter used in K. In our implementation
we used Epanechnikov kernel [54] and b is set to one half of the
minimum duration of a step, b¼ Tmin=4. The illustration of pf ðiÞ is
shown in Fig. 4(d) for all the features in Fig. 4(c). This probability
density function is used as another likelihood of an HST. We use a
simple local maximum andminimumwithin a fixed window of 50 ms
in case the sensor's sampling period is 10 ms to detect sharp peak and
valley. The smoothing parameter σf is initialized with a small value
such as 50 ms. A following coarser level is generated by incrementally
adding 50ms to σf of its previous level. We can stop smoothing and
detecting features when the number of newly detected is less than a
threshold (e.g., one feature/sec/signal channel).

Fig. 4. Illustration of the proposed step detection and segmentation algorithm for a 3D acceleration signal sequence (a) of 5 steps on flat ground, 2 steps upstairs, 2 steps on
flat ground, and 4 steps down a slope. All graphs have the same temporal axis as Fig. 2; (a) and (c) use the same color legends. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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5.2.3. Joint likelihood of HST
Considering both Observation1 and Observation2, the likelihood

of HST pi is computed as the product of two likelihoods peðiÞ and
pf ðiÞ:

pðiÞ ¼ peðiÞpf ðiÞ: ð5Þ
Because the HST should contain meaningful information for
classifying actions, it would be better to segment the signal into
steps so that an HST is located at the center of the segmented step
rather than at the segmentation boundaries. The reason is that
nonlinear signal matching methods, such as dynamic time warp-
ing, would sacrifice some amount of information at the sequence
boundaries for matching optimization. A simple local peak detec-
tor using a sliding window with size of Tmin=2 can be used to
detect HST locations. For illustration, the local peaks of p(i),
denoted by dashed green lines in Fig. 4(e), are considered as
approximations to the HST locations. A local valley between two
adjacent local peaks is used as the segmentation location. Steps
are then segmented by all these local valleys, denoted by black
lines in Fig. 4(e). Finally, an action sample for recognition is a short
signal sequence constructed by two consecutive steps for both
acceleration and rotational velocity as illustrated in Fig. 2.

With regard to the robustness to sensor orientation variation, we
can obviously compute the feature-based likelihood of an HST
relying only on the resultant signal. However, with the resultant
signal, we lose several important features as a significant amount of
information is lost. Therefore, we also include 3D orientation-
dependent signals in computing the feature density-based like-
lihood to increase the number of HST features at the cost of
orientation dependency. However, since the statistical observation
on the feature density does not change for any sensor orientation,
we will show that this orientation dependency is insignificant in
terms of step detection by experiments.

6. Signal matching against sensor orientation inconsistency

To carry out matching between a gallery and test action
samples, first, the 6D signals are tilt-corrected, then orientation-
compensative matching is carried out with 3D acceleration signals,
and finally the distance between 3D rotational velocity signals is
computed. The output of this matching algorithm is a pair of
distances for acceleration and rotational velocity signals. The flow
of the whole matching algorithm is described in Fig. 5.

Before going into the details, we describe the notations for the
signals that are used in this section. An action sample of a gait
period is described by S ¼ 〈ðsTa;i; sTr;iÞT 〉ði¼ 1;…;NSÞ, where Sa ¼ 〈sa;i〉
and Sr ¼ 〈sr;i〉 are 3D acceleration and rotational velocity signal
sequences of S, respectively. The subscripts a and r denote the data
for acceleration and rotational velocity, respectively. The bold

upper-case character (e.g., S) stands for a 6D signal sequence;
the bold upper-case character with a subscript (e.g., Sa or Sr)
stands for a 3D signal sequence of acceleration or rotational
velocity; and a bold lower-case character (e.g., s) stands for a 3D
(acceleration or rotational velocity) signal sample.

6.1. Tilt correction at pre-processing

For each 6D action sample of a gait period S ¼ 〈ðsTa;i; sTr;iÞT 〉
ði¼ 1;…;NSÞ, we can compute a rotation matrix Ri of the sensor
at the ith frame and ith acceleration signal ai in a fixed coordinate
system f0 that coincides with the sensor coordinate system at the
first frame:

Ri ¼ ∏
i

j ¼ 1
Rðδsr;jÞ; ð6Þ

ai ¼ Risa;i; ð7Þ
where Rðδsr;jÞ is the relative rotation matrix of rotation angles δsr;j.
In a world coordinate system, such as Oxyz in Fig. 3, in which
gravity g¼ ð0; �1;0ÞT , the acceleration vector ai is described by
aw
i :

aw
i ¼ Rwai; ð8Þ

Rw is an unknown constant rotation matrix describing coordinate
system transformation. The participant's acceleration aw;s

i can be
derived by removing gravity:

aw;s
i ¼ aw

i �g¼ Rwai�g: ð9Þ
The velocity πw;s

i of the participant in the world coordinate system
is computed by integration:

πw;s
i ¼π0þ ∑

i

j ¼ 1
ðRwaj�gÞδ; ð10Þ

where π0 is an unknown initial linear velocity in the world
coordinate system. If S is an ideal periodic gait period, πw;s

1 ¼ πw;s
NS

,
and Rw is known, then the integration:

MS ¼ ∑
NS

j ¼ 1
ðRwaj�gÞδ¼ 0: ð11Þ

Thus, π0 defines the direction of participant's motion. For instances, if
the participant walks down some stair or a slope, the vector π0 points
downwards; if the participant walks up a stair of a slope, vector π0

points upwards; and if the participant walks on a flat ground, the
vector π0 is parallel to the ground. Otherwise, if Rw is unknown, we
can also find it easily based on the constraint in Eq. (11).

However, in practice, it is difficult to obtain a perfect gait period S
(e.g., NS is shorter or longer than the true value, or the participant
does not walk at constant speed), and physically MSa0. We find a
solution for Rw by the least squares method:

ðrn;πn

0Þ ¼ arg min
r;π0

∑
NS

i ¼ 1
π0þ ∑

i

j ¼ 1
ðRðrÞaj�gÞδ

 !2

ð12Þ

~R
w ¼ RðrnÞ; ð13Þ

where r is the pitch-yaw-roll vector and RðrÞ is the rotation matrix
made from r. The minimization is initialized with rotation vector r0
of that Rðr0Þ forces MS to be zero. This initialization is different from
Mizell's solution [42] in which coordinate system the summation is
performed. Mizell sums all acceleration samples without projecting
them into the same coordinate system, but we do. Given ~R

w
, we can

correct for the tilt of the sensor, and then the gait period signals as
follows: swa;i ¼ ~R

w
sa;i, swr;i ¼ ~R

w
sr;i.

Because there is no reference information in the horizontal
plane (perpendicular to the gravity), the estimation of yaw angle

Fig. 5. Signal matching flow. It is noted that tilt correction is performed in advance
right after the gait period segmentation.
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by the minimization is not correct, and therefore any pair of gait
periods may differ in their associated yaw angles. In the mini-
mization Eq. (12), we integrate both acceleration and rotational
velocity, which may introduce some accumulation error. However,
since a gait period is relatively short (about 100 sensor readings if
the sensor samples at 100 Hz), the accumulation error is negligi-
ble. In this implementation, we use the Levenberg–Marquardt
algorithm [55] to solve this minimization.

In the following sections, whenever we mention a gait period,
it is assumed to be tilt-corrected at the pre-processing step.

6.2. Orientation-compensative signal matching

In this section, we describe the solution to match a pair of
gallery action sample G¼ 〈ðgT

a;i; g
T
r;iÞT 〉ði¼ 1;…;NGÞ and probe

action sample P ¼ 〈ðpT
a;j;p

T
r;jÞT 〉ðj¼ 1;…;NPÞ, where NG and NP are

the number of signal samples of the action samples G and P,
respectively. The problem is that these signal sequences are given
with different yaw angles, as mentioned above, and hence they
cannot be compared directly.

Algorithm 1. Gallery and probe signal registration algorithm.

Require: The gallery and probe signal sequences G, P
Ensure: Rotation matrix Rn and signal correspondence Cn

C0 ¼DTWð〈Jga;i J 〉; 〈Jpa;j J 〉Þ {Initialization step}

γ0 ¼ arg minγdaðGa;Pa;C0;RðγÞÞ
l¼0
repeat
l¼ lþ1

Cl ¼DTWðGa;Rðγl�1Þ � PaÞ
γl ¼ arg minγdaðGa;Pa;Cl;RðγÞÞ

until Cl and γl are converged

Rn ¼ RðγlÞ
Cn ¼ Cl

There exists an iterative signal matching method [18], named
the orientation-compensative signal matching algorithm, that can
efficiently solve the sensor orientation inconsistency problem
without reducing signal dimensions. This method simultaneously
finds the relative sensor orientation Rn and signal correspondence
Cn ¼ fðik; jkÞgðk¼ 1;…;KÞ to minimize the difference between two
acceleration signal sequences Ga ¼ 〈ga;i〉 and Pa ¼ 〈pa;j〉, where
ðik; jkÞ is the kth pair of signal correspondence between the ikth
and jkth samples of Ga and Pa, respectively, and K is the number of
correspondence pairs. We then compute the dissimilarity pair
ðda; drÞ between G and P separately for acceleration and rotational
velocity using the rotation matrix Rn and signal correspondence Cn

as follows:

duðGu;Pu;Cn;RnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

∑
K

k ¼ 1
‖gu;ik �Rnpu;jk‖

2

s
; ð14Þ

where uAfa; rg stands for acceleration or rotational velocity and
ðik; jkÞACn.

The matching algorithm needs to be carried out for each pair
of gallery and probe action samples, which may require a large
amount of processing time to match a probe sample with all gallery
samples. Since the signals are tilt-corrected, we need to solve only
the yaw angle γ difference between these signal sequences, which
reduces the computational cost of matching. The matching algo-
rithm is relaxed as summarized in Algorithm 1, where DTW (.,.) is
the dynamic time warping between two signal sequences and RðγÞ
is the rotation matrix of the yaw rotation angle γ.

7. Action recognition

7.1. Dissimilarity score to individual action class

A gallery of action templates G is constructed using 6D action
samples generated by training sequences for various participants:
G¼ fGigði¼ 1;…;nÞ, where Gi is a collection of action classes i and
n is the number of classes. Gi can be divided into two subsets Ga;i

and Gr;i for acceleration and rotational velocity, respectively.
Given a test action sample P, we compute a pair of dissimilarity

ðDaðPa;Ga;iÞ;DrðPr ;Gr;iÞÞ between P and gallery action class Gi for
acceleration and rotational velocity, respectively. These dissimila-
rities can be computed by considering the m smallest dissimila-
rities between P and the individual gallery action template GAGi:

DuðPu;Gu;iÞ ¼
1
m

∑
Gu ANNuðPu ;Gu;i ;mÞ

duðGu;Pu;Cn;RnÞ ð15Þ

where uAfa; rg, NNuðPu;Gu;i;mÞ is a set of m (e.g., 10 in our
experiment) nearest neighbors of Pu in Gu;i, and duðGu;Pu;Cn;RnÞ
is computed by Eq. (14).

7.2. Recognition using interclass relationship

7.2.1. Feature vector
Conventional action recognition approaches usually classify the

action by selecting the minimum dissimilarity to template action
classes. However, when we try discriminating the similar gait
action classes, such minimum criteria are weak at classifying the
action.

In addition, we note that not only the dissimilarity to a target
action class but also those for the other action classes may contain
discriminative information. Therefore, we describe a test sample P
by a feature vector composed of normalized dissimilarities to all
the gallery action classes separately for acceleration and rotational
velocity, vP ¼ ðva;1;…; va;n; vr;1;…; vr;nÞT such that:

vu;i ¼
DuðPu;Gu;iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j ¼ 1
DuðPu;Gu;jÞ2

s ; ð16Þ

where uAfa; rg, i¼1,…,n.
Similarly, each template action sample GAGi is also described

by a feature vector vG in a leave-one-out manner. In other words,
vG is computed when G is excluded from G. An example of a
feature vector that is generated from the level walk sample
described in Fig. 2 is illustrated in Fig. 6, in our experiments.

7.2.2. Recognition
Once a training data set V¼ fVigði¼ 1;…;nÞ of 2n-dimensional

feature vector is prepared, where Vi consists of feature vectors of
Gi, a classifier such as SVM or kNN is constructed, and a test action
sample P associated with feature vector vP is then classified.

The summary of the proposed method is shown in Fig. 7.

Fig. 6. Example of a generated feature vector for the action sample in Fig. 2.
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8. Experiments

8.1. Experimental setup

In our experiments, 3 IMUZ sensors [56] were fixed at the back,
left, and right waist of a participant and captured data at a
sampling period of 10 ms. Sensors were mounted on a waist belt
as shown in Fig. 8(a). The belt was covered by a soft cushion to
protect the sensors and avoid direct contact with the participant.
When attached, the sensor orientations of the left and right
sensors were set at approximately 901 away from the center IMUZ
and sensor orientations between the left and right sensors were
about 1801 (see Fig. 8(c)). In our case, we note that the largest
orientation difference corresponded with the largest distance
between the sensors. Each participant was asked to walk straight
on flat ground, up stairs, down a slope, up a slope, down stairs, and
walk straight out of the same environment as shown in Fig. 8(d).

8.2. Datasets and ground-truth

We collected data from 460 participants aged between 8 and 78,
the gender ratio was almost equal. All of the data for level walk, and
up/downslope walks are published in [57]. We set up two datasets in
our experiments. The first dataset contained the whole database
captured by three sensors for 460 participants, the dataset was
divided randomly into two subsets containing 231 and 229 partici-
pants to make training and test action samples, respectively. The
details of the age distribution for training and test data are shown in
Fig. 9. Since our simulation experiments for the sensor orientation
inconsistency problem required a very large number of randomly
simulated sensor orientations, we created the second dataset, which
is a small subset of the first dataset, containing 125 participants (66
for training and 59 for testing) and captured by the center back IMUZ.

Ground-truth action labels for the signal sequence from the
center IMUZ were assigned manually by synchronizing with simul-
taneously captured videos. Since three IMUZ sensors were easily
synchronized, the action labels for signal sequences of the left and
right IMUZs were also prepared.

8.3. Benchmark and reference methods

We compared the proposed method (denoted as PROPOSED)
with four of the latest benchmark methods, which are summarized
in Table 1. The first benchmark method (BOF2012) [26] applies the

well-known bag-of-features model to represent the inertial signal
by a newly coded string for recognition. The second benchmark
method (SIIRTOLA2012) [37] uses the resultant signals from the
accelerometer and gyroscope as the orientation-invariant signals to
overcome the orientation inconsistency problem. Acknowledging
that a significant amount of information is lost using the 1D
resultant signal of a 3D acceleration or rotational velocity signal,
the third benchmark method (APIWAT2011) [43] corrects the
sensor orientation at pre-processing. The fourth benchmark method
(NGO2012) [19] is the initial version of the proposed algorithm; the
only difference is that it does not solve the sensor orientation
inconsistency problem.

We also made some references that were variants of PROPOSED
for analysis, as listed in Table 1. INVAR2D, INVAR4D, and INVAR6D
use the same step detection and recognition using interclass
relationships for recognition, but do not use the orientation compen-
sative matching algorithm. However, these reference methods use
orientation-invariant signals (INVAR2D, INVAR4D) or orientation-
corrected signals (INVAR6D) to overcome the orientation inconsis-
tency problem. INVAR2D uses a 1D resultant signal from a 3D
acceleration or rotational velocity signal that is used by a number of
research works [37,38], and thus 2D orientation-invariant signal is
used instead of the original 6D signal. Meanwhile, INVAR4D first
corrects the vertical motion of an inertial sensor based on Mizell's
research [42], where horizontal motion is described by the magnitude
of the horizontal signals. Hence, a 2D (1D for vertical and 1D
for horizontal motion) orientation-invariant signal is used instead of
each 3D signal (acceleration or rotational velocity signal). This 2D
orientation-invariant signal is presented in [39–41]. As a result, a 4D
orientation-invariant signal is used instead of the original 6D signal. In
contrast, INVAR6D corrects the full 6D orientation-invariant signal,
similar to APIWAT2011 [43], at pre-processing.

On the other hand, FUS_PRODUCT and FUS_SUM directly use
the dissimilarities of the individual action classes without taking
the advantage of the interclass relationship for recognition. They
use a score-level fusion technique to integrate dissimilarities from
the accelerometer and gyroscope. FUS_PRODUCT uses the product
rule [58], while FUS_SUM uses the sum rule [58]. Z-normalization
[45] is applied before the fusion in these two methods.

For signal segmentation, several parameters of BOF2012 were
tuned: primitive size, sample size, and vocabulary size (the number
of primitives). The maximum sample size was limited to 200 ms,

Fig. 7. Flowchart of the proposed recognition algorithm.
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which is assumed to be the upper limit for a normal human walking
cycle. We carried out an exhaustive search to find the best para-
meters for BOF2012: a primitive size of 5 ms, vocabulary size of 14,
and sample size of 200 ms. For APIWAT2011 and SIIRTOLA2012, the
fixed-size window was 1 s, which is the same as in their original
experiments. For the machine learning technique in APIWAT2011,
SIIRTOLA2012, and all variants of the proposed method, SVMLib [59]
was selected with the option of multiple binary classifiers using a
linear kernel.

8.4. Results and discussion

8.4.1. Evaluation of step detection
First, we performed the proposed step detection to find a

segmentation boundary set flg (illustrated by black lines in Fig. 4(e))
for the action signal sequence of the center back IMUZ of the first
dataset. Then, we manually checked the results relying on the actual
signal intensity and captured videos. The proposed algorithmworked
perfectly on the action signal sequences from the center back IMUZ.
In any experiment in this section, we first detect a new set of
segmentation boundaries fl0g, then the average difference compared
with the baseline flg was used to evaluate the segmentation
performance.

In the first experiment, we carried out a simulation experiment
for step detection with the center IMUZ of the first dataset. For each
trial, a random 3D rotation using Rodrigues' rotation formula was
generated. The step detection performance was checked under
various simulated sensor orientations. The average result of 10
random trials for each rotation magnitude is shown in Fig. 10. At
zero sensor orientation, the step detection performance was the
same as the baseline. The difference occurred if the sensor orienta-
tion differed from the original configuration as we also include the
original (orientation-dependent) signal in the detection, which is
mentioned at the end of Section 5. However, the average step
location difference was just about 2 ms, which is insignificant since
the sampling period was 10 ms and the walking gait period was
about 1000 ms.

In the second experiment, the step detection performances was
measured from the left and right IMUZs of the first dataset. Since

the three sensors were easily synchronized, the step detection
performance on the center IMUZ was used to evaluate those on
the left and right ones similar to the first experiment. In our sensor
setup, the left and right IMUZs were set at an orientation of about
901 away from the center IMUZ and the distance between the left
or right and the center sensor differentiated the acceleration
signals captured across them. However, the average difference
was less than 3 ms as shown in Table 2.

In addition, we made a histogram of actual detected periods,
shown in Fig. 11 for the center IMUZ of the first dataset. We can
see that the existing parameters of Okumura2010 [49] ([660 ms,
1330 ms]) and Oberg93 [50] ([740 ms, 1350 ms]) with narrower
ranges also fit our database. Therefore, it is unlikely that we need
to change our parameters for a new walking database. However,
we made an additional experiment trying different parameters for
the same dataset to evaluate the scale-space technique in our step
segmentation, which is summarized in Table 3. We borrowed the
parameters of Okumura2010, Oberg93, and a new, wider setting:

Table 1
Summary of benchmark and reference methods.

Denotation Signal
segmentation

Interclass
relationship?

Robust to sensor
orientation?

Signal dimension & additional description

BOF2012 [26] Fixed-size
window

No No 6D

by exhaustive
search

SIIRTOLA2012
[37]

Fixed-size
window

No Yes 2D orientation-invariant signal

of 1 second
APIWAT2011

[43]
Fixed-size
window

No Yes 6D orientation-corrected signal

of 1 second
NGO2012 [19] Robust step

detection
Yes No 6D

PROPOSED Robust step
detection

Yes Yes 6D

INVAR2D Robust step
detection

Yes Yes A variant of the proposed method, 2D sensor orientation invariant resultant signals, same as
SIIRTOLA2012, are used

INVAR4D Robust step
detection

Yes Yes A variant of the proposed method, 4D sensor orientation invariant signals are used

INVAR6D Robust step
detection

Yes Yes A variant of the proposed method, orientation of inertial sensor is corrected, same as
APIWAT2011, at the pre-processing, 6D

FUS_PRODUCT Robust step
detection

No Yes A variant of the proposed method, product rule fusion of accelerometer and gyroscope is
used instead of interclass information, 6D

FUS_SUM Robust step
detection

No Yes A variant of the proposed method, sum rule fusion of accelerometer and gyroscope is used
instead of interclass information, 6D
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Fig. 10. Performance of step detection against simulated sensor orientation.

Table 2
Average step location differences from the baseline for left and right sensors.

Diff. (ms) Left IMUZ Right IMUZ

Mean 2.71 2.75
Std. Dev. 1.11 1.41
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[600 ms, 1600 ms]. Other parameters such that Tmino600 ms and
Tmax41600 ms are out of scope. We can clearly see that the
difference between these segmentation results and the baseline
(with our parameter setting) is insignificant. This also implies that
the proposed period segmentation can be applied for broader
range of gait activity including jogging, running, and sprinting
with slightly shorter gait period.

Overall, from the results in this section, we can see that
the proposed step detection is robust and accurate (manually
checked). The reason for the robustness to sensor orientation
inconsistency is that we rely on statistics that do not depend on
the sensor orientation: the magnitude and feature density of the
acceleration signal. The reason for the robustness to parameter
setting is explained by the merit of scale-space technique.

8.4.2. Segmented gait action samples and interclass relationship
feature vectors

Examples of segmented action samples are shown in Fig. 12(a)
for five action classes of the whole training set. In Fig. 12(b), the

distribution of feature vectors for each action class is described by a
mean vector and standard deviations that are illustrated by a bar
graph with error bars. We see that the gait action periods are well
segmented, and that the interclass relationships have clear and
relatively distinguished patterns for each action class, which strongly
encourages the use of the proposed recognition algorithm.

For example, upslope patterns sometimes appear very similar
to level walk patterns. Given an upslope sample, its dissimilarities to
the level walk and the upslope classes are therefore very similar (see
Fig. 12(b4), the first and the fourth bar (va;1 and va;4) for acceleration,
and the sixth and the ninth bar (vr;1 and vr;4) for rotational velocity),
and we may often mis-classify the upslope sample when we use
only the individual dissimilarities. On the other hand, when we
consider the level walk sample and the upslope sample from the
viewpoint of the interclass relationship feature vector, we notice
that the upslope sample produces larger dissimilarities to the
downslope class than to the level walk class (see Fig. 10 (b1) and
(b4), the fifth and tenth bars for acceleration and angular velocity,
respectively). This implies that the interclass relationship pattern
helps us to more accurately classify the similar gait action classes
than individual dissimilarities.

8.4.3. Recognition experiment against simulated sensor orientation
In the first recognition experiment, we evaluated the proposed

method against various simulated sensor orientation differences
between training and test signals from the second dataset. Signals
from the test dataset were rotated by random 3D rotation vector
using Rodrigues' rotation representation to simulate the sensor
orientation inconsistency. We compared the performance of PRO-
POSED with those of the benchmark and references methods. The
average results of 10 random trials for each magnitude of sensor
orientation are described in Fig. 13.

We can clearly see that BOF2012 and NGO2012 could only work
when the sensor orientation difference between training and test data
was small. This is also when orientation-compensative matching in
PROPOSED is considered unnecessary. However, the performance of
NGO2012 is worse than that of PROPOSED. The fact is that although
we planned to fix the IMUZ at the same orientation, it was difficult to
do so for all the participants as their body tilt could unexpectedly
change while they were walking. That resulted in a slight sensor
orientation inconsistency problem. That is why PROPOSED, which is
equipped with the orientation-compensative matching algorithm,
produced a slightly better result compared with that of NGO2012.
We also can see that for larger orientation differences, BOF2012
and NGO2012 gave worse accuracy. This problem arose because they
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Table 3
Average step location differences from the baseline for parameter settings.

Diff. (ms) Okumura2010 Oberg93 [600, 1600]

Mean 2.18 1.96 2.36
Std. Dev. 1.16 1.12 1.21

Fig. 12. Segmented gait action samples of training feature vectors: (a) raw action samples of gait periods on the up/down acceleration signal of 5 classes, and (b) the
distributions of their represented feature vectors.
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did not consider the sensor orientation inconsistency problem. Mean-
while, all other reference and benchmark methods were robust
against the simulated sensor orientation, their performance remained
similar for any sensor orientation difference between training and
test data.

Although SIIRTOLA2012 and APIWAT2011 were robust against
the sensor orientation inconsistency problem, their recognition
accuracies were relatively low due to the limitation of the fixed-
size window.

With regard to approaches to generating sensor orientation
invariant signal, INVAR2D was inferior to INVAR4D due to larger
amount of information loss (1D resultant signal compared with 2D
resultant signal for acceleration and rotational velocity separately,
see Section 8.3). INVAR6D was inferior to INVAR4D because addi-
tional horizontal 2D signals are not compensated correctly in theory
as mentioned in Section 2.3. PROPOSED outperformed these refer-
ences, because the proposed method treats full 6D signal whose
orientation is correctly compensated.

With regard to the usage of interclass relationships, we can see
that PROPOSED with interclass relationships outperformed FUS_SUM
and FUS_PRODUCT without interclass relationships for recognition.

Overall, PROPOSED gave the best accuracy and robust perfor-
mance against various sensor orientations.

8.4.4. Overall experiment
In this section, we carried out an overall experiment on the first

dataset. For each IMUZ sensor, we had a training (denoted as a
single capital character T) subset and a test (denoted as E) subset.
Considering 3 training and 3 test subsets of left (L), right (R), and
center (C) IMUZ sensors, we had 9 combinations in total and they
could be categorized in term of sensor orientation difference
between a training and a test subsets: 0-degree-difference combi-
nations {(LT,LE), (CT,CE), (RT,RE)}; 90-degree-difference combina-
tions {(LT,CE), (RT,CE), (CT,LE), (CT,RE)}; and 180-degree-difference
combinations {(LT,RE), (RT,LE)}.

The average accuracies of all the action classes and their average
are shown in Fig. 14 with a standard deviation error bar for each
method. We can see a similar trend to that shown in Fig. 13. The
performance of SIIRTOLA2012 was robust to sensor orientation
inconsistency while the performances of NGO2012 and BOF2012
decreased as the sensor orientation difference became larger.
The performance of NGO2012 at the same sensor configuration (0-
degree-difference) was also slightly worse than that of PROPOSED
for the same reasons as explained in the previous experiment,
Section 8.4.3. The performance of APIWAT2011 differed from that in
Fig. 13. The reason is explained as follows. Although APIWAT2011
applied the sensor orientation correction, its assumptions were not
correct for the sensors attached at different locations on waist. It is
because, since accelerations at different locations on the same
participant are mechanically different, so are the statistical proper-
ties. That is why its performance was not as robust as we have seen
in Fig. 13, where the sensor was at the same location. In contrast, the
performance of PROPOSED was accurate and robust for any sensor
orientation difference.

We also prepared the average accuracies of all combinations for
each action class as shown in Fig. 15. The performances of BOF2012
and SIIRTOLA2012 were high for the level walk action but low for
the other action classes. A large variation in performance was also
seen in NGO2012 and APIWAT2011. In contrast, PROPOSED accu-
rately and stably worked for all five action classes.

The average confusion matrix for PROPOSED, used in Fig. 15, is
shown in Table 4 for the details on the recognition performances
of the five actions. From the table, upslope and downslope walks
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Table 4
Average confusion matrix (%) of proposed method.

Test action Predicted action

LW UT DT UL DL

Level walk (LW) 84.76 0.00 0.00 11.36 3.88
Upstairs (UT) 0.05 98.44 0.00 1.46 0.05
DownStairs (DT) 0.00 0.00 98.22 1.09 0.69
Upslope (UL) 7.36 0.02 0.10 90.84 1.67
Downslope (DL) 4.43 0.02 0.02 1.01 94.53
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are sometime confused with level walk. Meanwhile, upstairs and
downstairs walks are the two most distinguishable among the five
gait actions. The results can partially be seen by checking the
magnitude of the vertical acceleration illustrated in Fig. 12.

From this experiment, we also can see that the proposed
method can practically overcome some amount of sensor displa-
cement around the participant's waist.

9. Conclusions

We proposed a recognition method for similar gait actions
represented by signal sequence as short as a gait period (about
1 s) using an inertial sensor. First, we proposed a robust step
detection method based on scale-space technique to segment a
signal into action samples. The method is designed to work well
even if the action drastically varies in speed or intensity. Second, we
presented a solution to deal with the sensor orientation inconsis-
tency problem. Third, we also proposed a recognition method using
interclass relationships to overcome the problem of similar action
classes. Experiments for five similar gait action classes (walking on
flat ground, up stairs, down stairs, up a slope, and down a slope) of a
very large number of participants (460) positively validated the
proposed method, while the existing methods have been evaluated
with less than a hundred participants.

Although the proposed method is designed to overcome the
sensor orientation inconsistency, it has the practical possibility to
work against some amount of sensor location inconsistency.

In future, we would like to extend the number of gait action
classes for real application and find out if the recognition method is
useful for other data in which the sample classes are very similar.
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