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Adherent Raindrop
Modeling, Detection and Removal in Video
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Abstract—Raindrops adhered to a windscreen or window glass can significantly degrade the visibility of a scene. Modeling,
detecting and removing raindrops will, therefore, benefit many computer vision applications, particularly outdoor surveillance
systems and intelligent vehicle systems. In this paper, a method that automatically detects and removes adherent raindrops
is introduced. The core idea is to exploit the local spatio-temporal derivatives of raindrops. First, we explicitly model adherent
raindrops using law of physics, and then, detect them based on these models in combination with motion and intensity temporal
derivatives of the input video. Second, relying on an analysis that some areas of a raindrop completely occludes the scene,
yet the remaining areas occlude only partially, we remove the two types of areas separately. For partially occluding areas, we
restore them by retrieving as much as possible information of the scene, namely, by solving a blending function on the detected
partially occluding areas using the temporal intensity derivative. For completely occluding areas, we recover them by using a
video completion technique. Experimental results using various real videos show the effectiveness of the proposed method.

Index Terms—Outdoor vision, rainy scenes, raindrop detection, raindrop removal
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1 INTRODUCTION

OUTDOOR vision systems, employed for various
tasks such as navigation, data collection and

surveillance, can be adversely affected by bad weather
conditions such as rain, haze and snow. In a rainy
day, raindrops inevitably adhered to windscreens,
camera lenses, or protecting shields. These adherent
raindrops occlude and deform some image areas,
making the performances of many algorithms in the
vision systems (such as feature detection, tracking,
stereo correspondence, etc.) significantly degraded.
This problem occurs particularly for vision systems
that use a hand-held camera or a top-mounted vehicle
sensor where no wipers can be used.

Identifying adherent raindrops from images can
be problematic, due to a few reasons as shown in
Fig. 1. Foremost, adherent raindrops have various
shapes. Unlike opaque objects, they are transparent,
making their appearance and thus intensity values
vary depending on the environment. They suffer from
out-of-focus blur due to their proximity to the camera.
Moreover, most raindrops generate glare.

To address the problems, we analyze the appear-
ance of adherent raindrops from their local spatio-
temporal derivatives. First, a clear, non-blurred ad-
herent raindrop works like a fish-eye lens and signif-
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(a) Various shapes 

(c) Blurring 

(b) Transparency 

(d) Glare 

(e) Raindrop detection 

(f) Raindrop removal 

Fig. 1. (a-e) The various appearances of raindrops.
(e-f) The detection and removal result by our method.

icantly contracts the image of a scene. Consequently,
the motion inside raindrops is distinctively slower
than the motion of non-raindrops. Second, unlike
clear raindrops, blurred raindrops are mixtures of rays
originated from the points in the entire scene. Because
of this, the intensity temporal derivative of blurred
raindrops is significantly smaller than that of non-
raindrops. These two clues are the key idea of our
detection method. Base on it we propose the pixel
basis detection method, which is generally applicable
to handle any shape and size of raindrops. Fig. 1.e
shows a result of our detection method.

By further analyzing the image formation of rain-
drops, we found that some area of a raindrop com-
pletely occludes the scene behind, however the rest
occludes only partially. For partially occluding areas,
we restore them by retrieving as much as possible
information of the scene, namely, by solving a blend-
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ing function on the detected areas using the intensity
change over time. For completely occluding areas, we
recover them by using a video completion technique.
Fig. 1.f shows a result of our removal method.

The contributions of the paper are threefold:
• Adherent raindrops are theoretically modeled

and analyzed using the derivative properties with
few parameters, enabling the method to be ap-
plied to general video cameras, e.g., hand-held
and vehicle-mounted cameras.

• A novel real-time pixel-based detection method
is introduced.

• A relatively fast adherent raindrop removal
method is proposed. It utilizes not only a video
completion technique, but also the information
behind some blurred areas of raindrops.

The rest of the paper is organized as follows. Sec. 2
discusses the related work on raindrop detection and
removal. Sec. 3 explains the modeling of the spatial
derivative properties of the raindrop images, followed
by temporal derivative properties in Sec. 4. The de-
tailed methodology of the raindrop detection is de-
scribed in Sec. 5, followed by the detailed methodol-
ogy of the raindrop removal in Sec. 6. Sec. 7 shows the
quantitative experiments and results. Sec. 7 concludes
the paper.

2 RELATED WORK

Bad weather enhancement Removing the influence of
haze, mist, to some extent fog (e.g., [1], [2], [3], [4]),
rain and snow (e.g., [5], [6]) have been well exploited.
Dealing with rain, Garg and Nayar first model it [7],
and then detect and remove it [8], [6]. Later, Barnum
et al. [5] propose a method to detect and remove both
rain and snow. Later, single image based methods are
proposed by Kang et al.[9] and Chen et al.[10]. Unfor-
tunately, applying these methods to handle adherent
raindrops is rather not possible, since the physics
and appearance of falling raindrops are significantly
different from those of adherent raindrops.

Sensor dust removal Sensor dust removal is also a
related topic to raindrop detections. Willson et al. [11]
give a detailed analysis on the imagery model with
dust adhered to the lens. Dust will block the light
reflected from objects and scatter/reflect light coming
from the environment. The former is called a dark
dust artifact and the latter a bright dust artifact.
However, in their paper only detection of the dark
dust artifact is discussed. Later Zhou and Lin [12]
propose method to detect and remove small dark
dust artifacts. Gu et al. [13] extend the solution to
sufficiently blurred thin occluders which both dark
and lighten the image slightly. Although adherent
raindrops could also be considered as a kind of sensor
dust, they cannot be handled by existing sensor dust
removal methods, since raindrops could be large and
not sufficiently blurred.

Adherent raindrop detection and removal Meth-
ods for detecting adherent raindrops caused by light
rain have been proposed. Roser et al. attempt to
model the shape of adherent raindrops by a sphere
crown [14], and later, Bezier curves [15]. However,
the models are insufficient, since a sphere crown
and Bezier curves can cover only a small portion
of possible raindrop shapes (Fig. 1.a). Kurihata et
al. [16] and later Fergus et al. [17] approach it through
machine learning. However, as shown in Figs. 1.a-d,
collecting and aligning training images for all various
shapes, environment, illumination and blurring are
considerably challenging. Both of their methods are
limited to detect small, clear and quasi-round rain
spots. Yamashita et al. propose a detection and re-
moval method for videos taken by stereo [18] and
pan-tilt [19] cameras. The methods utilize specific con-
straints from those cameras and are thus inapplicable
for a single camera. Hara et al. [20] propose a method
to remove glare caused by adherent raindrops by
using a specifically designed optical shutter.

As for raindrop removal, Roser and Geiger [14]
address it using image registration, and Yamashita et
al. [18], [19] utilize position and motion constraints
from specific cameras. Fergus et al. [17] use machine
learning and directly place the raindrop template with
clear template.

Image/Video inpaiting and completion Video com-
pletion has been intensively exploited by computer vi-
sion researchers. However, only those methods work
with large spatio-temporal missing areas can be used
to remove detected adherent raindrops. Wexler et
al. [21] propose an exemplar based inpainting method
by assuming the missing data reappears somewhere
else in the video. Jia et al. [22] exploit video com-
pletion by separating static background and moving
foreground, and later [23] exploit video completion
under cyclic motion. Sapiro and Bertalmio [24] com-
plete the video under constrained camera motion.
Shiratori et al. [25] and Liu et al. [26] first calculate
the motion of the missing areas, and then complete
the video according to the motion. Unfortunately,
outdoor environments are too complex to satisfy static
background, cyclic motion, constrained camera mo-
tion, etc. Therefore, we consider using cues from our
adherent raindrop modeling to help the removal.

3 CLEAR RAINDROP MODELING

In this section, we first consider the camera as pin-
hole camera so that both raindrop and background are
not blurred. Based on the analysis in this section, we
model blurred raindrops in the next section. Unlike
the previous methods [15], [16], [18], [19], [20], which
try to model each raindrop as a unit object, we model
raindrops locally from the derivative properties that
have only few parameters.
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Fig. 2. a. Balance at raindrop surface. A denotes a two-
phase point. B denotes a three-phase point. T denotes
a surface tensor, and P for pressure. At two-phase
point A, surface tensor T and pressure P are balanced.
b. Change of tangle angle along raindrop boundary.

Shape 

Smoothness 2π(6.28)  2π(6.28)  3π(9.42)  54.15  

Roundness 1/4π(0.080)  0.075 0.050 0.016 

Fig. 3. Smoothness and roundness of some typical
shapes.

3.1 Physical Attributes
Fig. 1.a and b are observations of real adherent
raindrops. As we can see, adherent raindrops have
various shape and size, and their appearance is totally
dependent on the environment.

Size Unlike estimating the size of airborne rain-
drops, which is mentioned in the work of Garg et
al. [6], estimating the size of adherent raindrops is
not trivial for it depends on the gravity, water-water
surface tensor and water-adhering-surface tensor and
many other parameters.

Fortunately, it is possible to give an upper bound
of the size by using few parameters. As illustrated
in Fig. 2.a, to prevent raindrop from sliding down,
both the two-phase point (water-air) and three-phase
points (water-air-material), the surface tensor should
balance the pressure. This also prevents the water
drop from breaking down. Although estimating the
balance and upper boundary of the three phase point
is intractable due to the unknown parameters of the
material, estimating the balance and upper bound of
two-phase point has been studied by physicists, and
can be used to derive an upper bound of raindrop
size, i.e., 5mm [27].

Shape While most existing methods assume the
shape of raindrops to be circle or ellipse, the real
raindrop shape varies in a large range. (Fig. 1). For-
tunately, we can still find some regular patterns of
raindrop shapes due to the surface tensor. Raindrop
boundaries are smooth and raindrops are convex in
most cases.

Hence, we quantitatively characterize raindrop
shape using two features: shape smoothness and
roundness. As illustrated in Fig. 2.b, given a rain-
drop area on the image plane, denoted as R, we can
integrate the change of the tangent angle along the

TABLE 1
Raindrop dynamic of scenes in Fig. 19

Data Camera speed 
Camera 

shaking 

Max raindrop 

speed observed 

Experiment 1 - 4 5km/h yes 0.48 pixel/s 

Car-mounted 30km/h yes 0.01 pixel/s 

Surveillance 0 no 0.40 pixel/s 

boundary. The integration is denoted as S(R):

S(R) =

∮
x∈∂R

|dθ(x)|, (1)

where ∂R is the boundary of the raindrop, and x =
(x, y) is the the 2D coordinate on the image plane. For
convex shape, S(R) ≡ 2π. For non-convex or zig-zag
shape, the smoothness will be greater than 2π. Fig. 3
shows some examples.

Roundness, denoted as O(R), is the area of the
shape divided by the square of perimeter:

O(R) =

∫∫
x∈R dxdy(∮

x∈∂R |dx|
)2 . (2)

A rounder shape would have a larger roundness
value and a perfect circle has the maximum roundness
value: πr2

(2πr)2 = 1
4π = 0.080. Fig. 3 shows some

examples.
Both the smoothness and roundness are invariant to

scaling and rotation. Unlike our previous method [28],
which used the roundness, in the current method we
utilize smoothness. This is because the computational
complexity of roundness is O(n2) while smoothness
is O(n).

Dynamics In rainy scenes, some raindrops might
slide sporadically. The sliding probability and speed
depend on a few attributes, such as, surface tensor co-
efficients, surface tilt, wind, raining intensity, raindrop
size, etc. An exact modeling of raindrop dynamics
is intractable. Fortunately, in light rainy scenes, we
find it reasonable to assume most raindrops are quasi-
static. We observe the motion of real adherent rain-
drops in scenes in Fig. 19. For a raindrop, we compare
the current location with the location one minute later
and convert it to speed (pixel per second). Table 1 lists
the maximum speed observed in each scene. In our
research, we only need to assume the raindrops to be
static within seconds, and we quantitatively evaluate
the tolerance of raindrop dynamics in Section 7.

3.2 Clear Raindrop Imagery
As shown in Fig. 4.a, each raindrop is a contracted
image of the environment, as if it is taken from a fish-
eye-lens camera. The numerical values indicated in
Fig. 4.c are the contraction ratios between the original
image and the image inside the raindrops calculated
from the black and white patterns. The contraction
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Fig. 4. (a) A raindrop is a contracted image of the
environment. (b) On the image plane, there is a smooth
mapping ϕ starting from the raindrop into the environ-
ment. (c) The contraction ratios from the environment
to a raindrop are significant.
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Fig. 5. The refraction model of two points on an image
plane (Pe and Pr) that are originated from the same
point in the environment. There are two refractions on
the light path passing a raindrop. The camera lens
cover or protecting shield is assumed to be a thin plane
and thus can be neglected.

ratio is around 20 to 30, meaning that the motion
observed inside the raindrops will be 1/30 to 1/20
slower than the other areas in the image.

In this section, we consider the camera as a pin-hole
camera, so that both the raindrop and environment
are not blurred. As illustrated in Fig. 5, there exists
point pairs on the image plane which are the images
of the same environment point. One of which the light
ray directly goes to the image plane, denoted as Pe,
and the other goes through a raindrop, denoted as Pr.

Let us consider the relation between Pe = (x, y) and
Pr = (u, v) on the image plane. As shown in Fig. 4.b,
there is a 2D to 2D mapping ϕ from (u, v) to (x, y):

(x, y) = ϕ(u, v) = (ϕ1(u, v), ϕ2(u, v)). (3)

Considering the refraction model in Fig. 5, to know
the function ϕ, we need: (1) the position and shape
information of the raindrop, (2) the camera inner pa-
rameters, and (3) the background depth information.
Fortunately, our analysis looks into the spatial deriva-
tive properties, and therefore can avoid obtaining ϕ
explicitly.

3.3 Spatial Derivative of Clear Raindrop: The Con-
traction Ratio
The scalar contraction ratio Eϕ is the derivative of ϕ
with respect to u and v in the direction (δu, δv):

Eϕ(u, v, δu, δv)

= lim
(δu,δv)→0

‖ϕ(u+ δu, v + δv)−ϕ(u, v)‖
‖(u+ δu, v + δv)− (u, v)‖

.
(4)

Unlike obtaining an explicit expression of ϕ, obtain-
ing an upper bound of Eϕ needs only the upper bound

of raindrop size and the lower bound of distance
from a raindrop to camera. The raindrop upper bound
has been discussed in Sec. 3.1. The raindrop-camera
distance lower bound depends on camera settings. In
our observation, normally d < 200mm.

Using the imaging model in Fig. 5, in outdoor
environment, we can prove that, for any (u, v) and
any (δu, δv):

Eϕ > 10� 1. (5)

The proof is provided in Appendices A and B.

3.4 Detect Raindrops Using Optical Flow
Raindrops not only contract the images of the environ-
ment, but also contract the motion between images.
Consider point pair Pe(t1) and Pr(t1) and their cor-
respondense in next frame Pe(t2), Pr(t1). We denote
the motion between Pe(t1) as M(Pe) = Pe(t2)−Pe(t1)
and the motion between Pe(t1), Pr(t2) as M(Pr) =
Pr(t2) − Pr(t1). Considering Eqs. 4 and 5, and using
the integral version triangle inequality, we have:

‖M(Pe)‖
‖M(Pr)‖

=
‖Pe(t2)− Pe(t1)‖
‖Pr(t2)− Pr(t1)‖

=
‖ϕ(Pr(t2))−ϕ(Pr(t1))‖
‖Pr(t2)− Pr(t1)‖

≥ Eϕ.
(6)

This means the motion in the raindrop area has been
significantly contracted. Thus, this gives us the idea
to use optical flow as a feature to identify raindrops.
Fig. 8.a and b is an example of optical flow on
raindrop and non-raindrop areas. As we can see, the
motion intensity on the raindrop area is significantly
smaller than that of the non-raindrop area. Based on
this, we will develop a detection algorithm in Sec. 5.

4 BLURRED RAINDROP MODELING

Unlike raindrop imagery with a pin-hole camera, for a
normal lens camera, when the camera focuses on the
environment scene, raindrops will be blurred. Con-
cerning this, we first model the blurred raindrop im-
agery, and theoretically derive the temporal property
of raindrop pixels, namely, a raindrop pixel has less
high frequency component. Based on this property,
we propose a pixel-wise raindrop detection feature:
intensity change.

4.1 Blurred Raindrop Imagery
As illustrated in Fig. 6, the appearance of a pixel on
an image plane depends the collection of light, which
can be light emitted from a focused environment point
(Fig. 6.A), light refracted from a raindrop (Fig. 6.B),
and a mixture of environment light and raindrop light
(Fig. 6.C).

Let us model the image intensity of blurred pix-
els using a blending function. We denote the light
intensity collected by pixel (x, y) as I(x, y), the light
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Fig. 6. Rows: The appearance and model of pixels on an image plane collecting light from A: environment, B: raindrop, C:
both. Columns: (a) The light path model. Green light: the light coming from environment point; Blue light: the light refracted
by a raindrop. (b) Raindrop-plane-cut of the model in (a). Green circle: the area of light collected. Blue circle: the raindrop.
α: percentage of light collected from the raindrop. (b’) Light path coverage when it is small. (c) The appearance of the 3
situations in (b). (c’) The appearance of the 3 situations in (b’).

intensity formed by an environment point that inter-
sects with the line of sight without being through a
raindrop as Ie(x, y), and the light intensity reached
(x, y) through a raindrop as Ir(x, y). Then, pixel (x, y)
collecting light from both the raindrop and the envi-
ronment can be described as:

I(x, y) = (1− α)Ie(x, y) + αIr(x, y), (7)

where α denotes the proportion of the light path
covered by a raindrop, as depicted in Figs. 6.b and
b’.

Blending coefficient α is determined by the area of
light path and the raindrop. Using the model in Fig. 6,
the diameter of the light path on the raindrop plane
can be estimated using

D

D + d
A =

D

D + d

f

N
, (8)

where f
N , called the f -stop, is the convention expres-

sion for the camera aperture setting.
A more convenient way to express α on the image

plane uses a blurring kernel. First, as illustrated in
Fig. 7.a, α is either 0 or 1 if the raindrop is clear. We
denote the blending coefficient of clear raindrops as
αc. Then, α of blurred raindrops can be calculated by
convoluting αc with a disk kernel, where the diameter
of the kernel is given by:

` =
(D − d)

(D − f)

f

d
A, (9)

which is proportional of the aperture size A. The
derivation of Eq. (16) can be found in the literature of
depth from defocus [29]. Consequently, if a raindrop
is significantly blurred, the blending coefficient is
smaller than 1. In such a case, the raindrop cannot
totally block the environment. Fig. 6.c’ is an example.

(a) Alpha channel of a disk with varying blurring kernel 

(b) Observe a raindrop with varying f-stop      

(c) Observe the raindrop with varying angle (degree) 

0 5 10 15 20 25 30 35 40 45 50 

5.6 7.1 9 11 13 14 16 18 22 25 32 

-5 -4 -3 -2 -1 0 1 2 3 4 5 

Fig. 7. a. α channel of a disk (with radius as 20 pixel)
with varying blurring kernel (radius in pixel) b. Observe
a raindrop with varying f-stop. c. Observe a raindrop
with varying angle (degree). Raindrop appearance is
highly directional..

Fig. 7.b is an observation of real blurred raindrops.
In Roser et al.[14]’s work, other than α, it directly
convolutes a clear raindrop image with the blurring
kernel to obtain a blurred raindrop image. We notice
that this method is inaccurate, because the convolu-
tion with a uniform disk kernel assumes isotropic
refraction, which is not true for most raindrops. As
shown in Fig. 7.c, raindrop appearance are highly
directional.

4.2 Temporal Derivative of Blurred Raindrop

We avoid estimating the exact appearance of blurred
raindrops because this estimation is intractable. Alter-
natively, we explore the temporal derivative features.
In consecutive frames, we observed that the intensity
of blurred pixels (case B and C) does not change as
distinctive as that of environment pixels (case A). To
analyze this property more carefully, let us look into
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the intensity temporal derivatives of blurred pixels.
Referring to Figs. 6.a B and C, light collected from
raindrop is actually refracted from a large area in the
environment. We refer to the area as Ωr(x, y). At time
t, we expand Ir(x, y) in Eq. (7) as:

Ir(x, y, t) =
∑

(z,w)∈Ωr(x,y)

W (z, w)Ie(z, w, t), (10)

where W (z, w) is the weight coefficient determined
by the raindrop geometry. W (z, w) and Ωr(x, y) can
be considered to be constant in a short time period.

If we take the difference of intensity between time t1
and t2 in Eq. (10), and consider the triangle inequality,
we have:

|Ir(x, y, t1)− Ir(x, y, t2)|

≤
∑

(z,w)∈Ωr(x,y)

W (z, w)|Ie(z, w, t1)− Ie(z, w, t2)|.

(11)

Here, by considering Eq. (5), we know that the area
ratio is more than one hundred, namely,

E2
ϕ > 100� 1 (12)

(Notice ϕ is not conformal, a strict proof is provided
in Appendix C), and thus, we can consider Ωr(x, y)
to be a sufficiently large area. According to the law of
large number, we have:

E|Ir(x, y, t1)− Ir(x, y, t2)|�E|Ie(x, y, t1)− Ie(x, y, t2)|,
(13)

where E denotes the expectation.
Since the temporal derivative works as a high pass

filter, we may also consider Eq. (13) in a frequency
domain, where the temporal high frequency compo-
nent on a raindrop is significantly smaller than those
of the environment, described as:

Ir(x, y, ω)� Ie(x, y, ω), ω = ωth, ωth + 1, · · · , N (14)

where I is the Fourier transform of sequence
I(x, y, t), t = t1, t2, · · · , N , and ωth is currently unde-
termined threshold for high frequency.

4.3 Detect Raindrops Using Intensity Change

By taking into account Eq. (13) with Eq. (7), the
temporal difference for I(x, y, t) will be small when
α is large:

E|I(x, y, t1)− I(x, y, t2)|
= α(x, y)E|Ir(x, y, t1)− Ir(x, y, t2)|

+ (1− α(x, y))E|Ie(x, y, t1)− Ie(x, y, t2)|
≈ (1− α(x, y))E|Ie(x, y, t1)− Ie(x, y, t2)|.

(15)

Thus, we can use the temporal intensity change as a
feature to detect raindrops. Fig. 9 shows an example.

(a) Image sequence (b) Inter frame  

SIFT flow 

(c) Summation of (b) 

over 100 frames  

Fig. 8. The accumulated optical flow as a feature.

(a) Image sequence (b) Inter frame 

intensity change 

(c) Summation of (b) 

over 100 frames 

Fig. 9. The accumulated intensity change as a feature.

4.4 Discussion on Effects of Glare

As illustrated in Fig. 1.d, a raindrop will refract bright
lights from the environment, and generate glare. This
phenomenon will not affect the derivative properties
described in the previous subsections. The reasons
are, first, glare is caused by a light source emitting
high intensity light, and the spatial derivative intro-
duced in Sec. 3.1 is independent from light inten-
sity. Second, the appearance of glare in videos is
temporally smooth, i.e., the intensity monotonically
increases until it saturates, and then it monotonically
decreases until the glare fades out. The temporal
derivatives of this smooth change is still small, and
does not affect the analysis we have discussed.

5 RAINDROP DETECTION

5.1 Feature extraction

Based on the analysis of motion and the intensity
temporal derivative, we generate features for the de-
tection. First, we calculate dense motion, e.g., SIFT-
flow [30], as shown in Fig. 8.b. Second, we calculate
the intensity temporal change |I(x, y, t1)− I(x, y, t2)|,
as shown in Fig. 9.b.

In the examples, the two features are calculated us-
ing only two consecutive frames. In fact, the features
would be more informative if they were calculated
using data accumulated over more frames. Statisti-
cally the more frames used, the more descriptive the
features are. However, raindrop positions can shift
over a certain period of time. In our observation,
with moderate wind, raindrops can be considered
static over a few seconds. As default, we calculate the
features over 100 frames which is about 4 seconds if
the frame rate is 24 frames per second. Figs. 8.c and
9.c are examples of the two accumulated features.

We employ both features to achieve optimal accu-
racy. If time is a concern, we use only intensity change.
Real time detection is described in Sec. 5.3.
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Fig. 10. The detection workflow. Our method can work in real time if using only intensity change.

5.2 Refined detection

Having calculated the features, we use level sets [31]
to identify raindrops. First, a convolution with Gaus-
sian (σ = 2 pixels by default) is employed to reduce
noise. Then, level sets are calculated, as illustrated in
Fig. 10.

The following criteria are applied further for deter-
mining raindrop areas:

1) Feature threshold. As analyzed previously, rain-
drop areas should have smaller feature values.
Specifically, we normalized the accumulated fea-
ture with the mean value at 0 and variance at 1.
In our experiment, those pixels with feature val-
ues less than −0.7 are considered to be raindrop
pixels.

2) Smoothness. As analyzed in Sec. 3.1, (Eq. 1),
raindrop contours usually have a smoothness
value at 2π. Thus, we set the threshold for
smoothness as 2.5π.

Note that, unlike [28], we do not use the clo-
sure explicitly, since it is already represented by the
smoothness, which cannot be defined to non-closed
lines. We also do not use size, as it varies significantly.
Fig. 10 shows the detecton workflow for one phase.
For each detection, we accumulate the feature for
the past 4 seconds and compute the level set to
detect raindrops. The overall detection algorithm is
described in Algorithm. 1.

5.3 Realtime detection

The detection method can work in real time if we
use only the intensity change as the feature. We
ran our program on a 3.1GHz CPU and Matlab
(Windows) with no parallelization. The video was
1280*720, 24fps. We used the profiling tool in Matlab
for recording the computational time. Accumulating
the feature took 0.0086s per frame, which was 0.10s
for 12 frames. Gaussian filter took 0.04s. The level sets
took 0.22s. Selecting contours took 0.06s. The overall
computing time for each detection phase was 0.42s.

Algorithm 1 Raindrop detection
Default parameter settings

Video: 1080 ∗ 720, 24fps
Feature accumulating period: 4s(96frames)
Number of detection phases: 2 per second
Feature threshold:
−0.7 for intensity change
−0.4 for optical flow

Smoothness threshold: 2.5π

while (not video end)
compute the feature for new frames
Accumulate the feature in specified period
if (Detection phase)

reduce noise of feature, σ = 2 Gaussian filter
normalize feature to average = 0, variance = 1
calculate level sets of the feature image.
for (all contours)

if (feature < threshold
& smoothness < threshold )
This contour circles a raindrop

end
end
Displace result for current detection phase

end
end

6 RAINDROP REMOVAL

While the existing methods try to restore the entire
areas detected as raindrops by considering them as
solid occluders [14], [19] it will be more factual if
we can restore the raindrop areas from the source
scenes whenever possible. Based on Eq. (7), we know
that some area of a raindrop completely occludes the
scene behind, however the rest occludes only partially.
For partially occluding areas, we restore them by
retrieving as much as possible information of the
scene, and for completely occluding areas, we recover
them by using a video completion technique.
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Algorithm 2 Raindrop removal
if (default)

N = 100, ωth = 0.05N , ∆x = ∆y = ±1pixel
th1 = 250, th2 = 40

end
Load N continuous frames
Calculate α(x, y) for each pixel I(x, y, ·).
if (max(I(x, y, ·)) > th1 & α(x, y) > 0) {(x, y) is glare}
for (non-glare pixels and 0 < α(x, y) < 0.9)

for ((R;G;B) channel separately)
while (∃ pixel unprocessed)

Find pixel with smallest α (I(x, y, ·))
Find neighbors of (x, y) in (x+ ∆x, y + ∆y)
Remove neighbors (intensity difference > th2)
Do DCT: I(x, y, ω) = I(x, y, t)
I(x, y, ωth : N) = 1

1−α(x,y)I(x, y, ωth : N)

I(x, y, 1 : ωth) = mean(I(x+∆x, y+∆y, 1 : ωth))
Do inverse-DCT

end
end

end
Repair the remaining areas using an inpainting
method.

6.1 Restoration
A blurred image can be recovered by estimating
Ie(x, y) in Eq. (7), in the condition that the blending
value is moderate, i.e., α(x, y) < 1.

To do this, we first have to calculate α in Eq. (7).
Note that, based on the detection phase, the position
and shape of raindrops on the image plane are known.
Using the out-of-focus blur model in Fig. 6.a, the
diameter ` of the equivalent light path area on the
image plane is given by:

` =
(D − d)

(D − f)

f2

Od
, (16)

where f is the focal length. O is the relative aperture
size (also called f-stop) which can be found in the
camera setting. D can be assumed to be infinite,
and d is estimated by experiments (though, it is not
a strict parameter and is constant throughout our
experiments). The derivation of Eq. (16) can be found
in the literature of depth from defocus [29]. Thus, a
circle centered at (x, y) with diameter ` on the image
plane can be drawn, as in Figs. 6.b and b’. α(x, y)
is the proportion of the circle that overlaps with the
raindrop.

Having obtained α, we recover Ie from the fre-
quency domain. According to Eq. (14), the high fre-
quency component of raindrop Ir is negligible. Thus,
for frequency higher than a threshold ωth, we have:

Ie(x, y, ω) =
1

1− α(x, y)
I(x, y, ω), ω > ωth, (17)

where I(x, y, ω) is the Discrete Cosine Fourier Trans-
form (DCT) of I(x, y, t) on N consecutive frames. ωth

is set as 0.05N as default. As for the low frequency
component, we replace it with the mean of its spatial
neighborhood:

Ie(x, y, ω) = mean(I(x + ∆x, y + ∆y, ω)), ω ≤ ωth,
(18)

where (x + ∆x, y + ∆y),∆x,∆y ≤ 1 pixel are spa-
tial neighborhood of (x, y). When averaging, we ex-
clude neighboring pixels that have intensity difference
larger than 40 (in 8-bit RGB value). By combining
Eqs. (17) and (18), and performing inverse-DCT, we
recover Ie(x, y, t).

6.2 Video Completion
After restoring the partially occluding raindrop pixels,
there are two types of remaining areas need to be
completed:
• When α is close or equal to 1.0, Ie will be too

scarce to be restored, as shown in Eq. (17). We do
not restore pixels with α > 0.9.

• When there is glare, the light component from
raindrop will be too strong and therefore satu-
rated.

For those areas, we adopt Wexler et al.’s [21] space-
time video completion method. As discussed in the
related work, the method [21] only assumes that
missing data reappears elsewhere in the video, which
is most likely to be satisfied in outdoor scenes. The
overall algorithm of our proposed raindrop removal
algorithm is shown in Algorithm 2.

7 EXPERIMENTS AND APPLICATIONS

We conducted quantitative experiments to measure
the accuracy and general applicability of our pro-
posed detection and removal method. Results in video
are included in the supplementary material.

7.1 Quantitative analysis on detection
In our experiments, we evaluated how raindrop size,
blur, motion, scene complexity affect the detection
using synthetic data, and estimated the optimal pa-
rameters. We also conducted the detection on various
real scenes and compared the performance with that
of the state-of-art methods. Note that, we use the
precision-recall curve for our investigation, where pre-
cision is defined as the number of the correct detection
divided by the number of all the detection, and recall
is defined as the number of correct detection divided
by the number of the detectable raindrops.

Raindrop Size and Blur As discussed in Sec. 3.2,
our detection method is based on the fact that rain-
drops behave like a fish-eye lens and contract the
environment. Obviously, a larger raindrop contracts
less than a smaller raindrop does. Hence, raindrop
physical size, which is limited by the raindrop tensor,
affects the contraction ratio. Moreover, since our input
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Fig. 11. Synthetic raindrops with various sizes and
blurring levels. The image size is 720*480, raindrop
size (long axis) varies from 20 to 60 pixels, and the
radius of the disk-blurring-kernel varies from 0 to 40
pixels.

is an image, the distance between the raindrop and the
camera lens also affect the contraction ratio.

When raindrops are close to the lens, we also need
to consider the effect of out-of-focus blurring. Since,
the closer to the lens, the more blur the raindrop is,
implying lesser visibility.

In our experiment, we explored how raindrop size
and blur affect the detection accuracy. As illustrated in
Fig. 11, we generated synthetic raindrops with fixed
positions, but with various sizes and blurring levels.
We fixed the detection thresholds. The thresholds
of the normalized intensity-change and optical flow
feature were set to -0.4 and -0.3, respectively, and the
smoothness was set to 2.5π.

The detection precision and recall were evalu-
ated using two methods: pixel-based and number-of-
raindrop based methods. For the pixel-based method,
the ground truth is the pixels with the raindrop
blending coefficient α > 0.1. Fig. 12 shows the results.

As we can see, for highly visible raindrops, the
detection precision and recall rate was not obviously
affected by raindrop size. The recall rate was mainly
affected by raindrop visibility. When the raindrops
were too small and hardly visible, the detection recall
rate dropped, and when the raindrops were blurred,
their visibility decreased and the recall rate went
down accordingly.

When evaluated by the number of pixels, the pre-
cision rate was higher on detecting larger raindrops.
When evaluated by the number of raindrops, how-
ever, the precision rate was about the same for rain-
drops with any size. As the raindrop visibility de-
creased, the precision did not drop drastically, which
indicated a low false alarm rate of our method.

Raindrop Motion and Detection Latency As dis-
cussed in Sec. 5, our features are more accurate if

0
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Fig. 13. Appearance of synthetic moving raindrops.
The raindrop size were 40 pixels and were blurred with
a 5 pixel disk kernel. The speed of raindrops varied
from 0 to 4 pixels/frame (100 pixels per second).

they are accumulated overtime. In our experiment, we
accumulated the features over 100 frames, which took
4 seconds for a video with a frame rate of 25 fps.
Hence, we assumed the raindrops need to be static
within 4 seconds.

We investigated the tolerance of our method on
detecting raindrops which is not quasi-static. As il-
lustrated in Fig. 13, we generated synthetic rain-
drops with controlled motion speed. The raindrop size
were 40 pixels and were blurred with a 5 pixel disk
kernel. The speed of raindrops varied from 0 to 4
pixels/frame ( 0 to 100 pixels per second).

Accumulating features will increase the distinction
between raindrop and non-raindrop areas. However,
when raindrops are moving, this is inapplicable any-
more. Hence, we need to know how many frames
needed to reliably detect raindrops robustly. An exam-
ple is illustrated in Fig. 14. Here, the threshold for the
normalized intensity change and optical flow features
were set to 0.4 and 0.3 respectively. The raindrop
parameter was set to 60 pixels to 120 pixels. The
smoothness was set to 2.5π. The precision and recall
of all data is listed in Fig. 15.

As shown, when raindrops are quasi-static, the
detection accuracy was stable. The detection accuracy
dropped significantly when using less than 10 frames.
When using 100 frames and the raindrop moving
speed was less than 0.4 pixel per frame (10 pixel
per second), the detection accuracy was considerably
stable. However, when the speed was increased to
more than 0.4 pixel per frame, accumulating less than
100 frames increased the accuracy. In this experiments,
the optimal number of accumulated frames was 20.
The limit raindrop speed of our method was 4 pixel
per frame (100 pixel per second). When raindrops
moves faster and 4 pixels per frames, our method
failed to detect them. Fortunately, 4 pixels per frames
is considerably fast, which is rare in light rainy scenes.

Textureless Scenes Our method assumes the envi-
ronment is sufficiently textured. Hence, in this exper-
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Recall: pixel based 

Raindrop size 20 30 40 50 60 

Blur  0 0.92 0.97 0.98 0.98 0.84 

5 0.83 0.89 0.91 0.91 0.91 

10 0.60 0.71 0.74 0.76 0.77 

20 0.10 0.25 0.39 0.47 0.46 

30 0.03 0.04 0.09 0.15 

40 0.03 0.03 0.01 

50 0.02 0.01 

60 0.00 

Recall: number of raindrops based 

Raindrop size 20 30 40 50 60 

Blur 0 0.6 0.75 0.85 0.95 0.8 

5 0.6 0.8 0.95 1 0.9 

10 0.25 0.65 0.8 0.95 1 

20 0 0.05 0.05 0.65 0.75 

30 0 0 0.05 0.2 

40 0 0 0.05 

50 0 0 

60 0 

Precision: number of raindrops based 

Raindrop size 20 30 40 50 60 

Blur 0 1 1 1 1 1 

5 1 1 1 1 1 

10 1 1 1 1 1 

20 1 1 1 1 1 

30 1 1 1 1 

40 1 1 1 

50 1 1 

60 1 

Recall: pixel based 

Raindrop Size 20 30 40 50 60 

Blur 0 0.40 0.65 0.82 0.94 0.67 

5 0.39 0.65 0.85 0.91 0.84 

10 0.11 0.42 0.63 0.69 0.74 

20 0 0.01 0.07 0.18 0.27 

30 0 0 0.01 0.03 

40 0 0 0.00 

50 0 0 

60 0 

Precision: pixel based 

Raindrop Size 20 30 40 50 60 

Blur 0 0.58 0.56 0.61 0.68 0.72 

5 0.74 0.75 0.77 0.83 0.90 

10 0.95 0.93 0.94 0.95 0.97 

20 1 1 1 1 1 

30 1 1 1 1 

40 1 1 1 

50 1 1 

60 1 

Recall: number of raindrops based 

Raindrop size 20 30 40 50 60 

Blur 0 0.95 1 1 1 0.85 

5 1 1 1 1 1 

10 0.95 1 1 1 1 

20 0.2 0.7 0.9 1 1 

30 0.2 0.4 0.65 0.75 

40 0.25 0.65 0.15 

50 0.35 0.15 

60 0.05 

Precision: number of raindrops based 

Raindrop size 20 30 40 50 60 

Blur 0 0.59 0.74 0.87 0.74 1 

5 0.65 0.80 0.95 0.91 1 

10 0.61 0.87 0.95 0.83 1 

20 0.27 0.82 0.72 0.83 1 

30 0.36 0.57 0.87 1 

40 0.63 0.76 1 

50 0.78 1 

60 1 

Precision: pixel based 

Raindrop Size 20 30 40 50 60 

Blur  0 0.53 0.76 0.86 0.88 0.94 

5 0.70 0.90 0.97 0.98 0.99 

10 0.76 0.95 0.99 0.98 1 

20 0.44 0.93 0.95 0.98 1 

30 0.39 0.74 0.93 1 

40 0.64 0.79 1 

50 0.83 1 

60 1 
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Fig. 12. The precision and recall on detecting raindrops with various size and blur ( Fig. 11). The detection
threshold was fixed for all of the data. The threshold of the normalized feature was set to 0.4 for the intensity
change, and 0.3 for the optical flow. And the smoothness threshold was set to 2.5π
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Fig. 14. The influence of number of frames for feature accumulation. Row 1, the accumulated feature. Row 2,
the detection result. Row 3, the detection result where the white area indicate raindrop. The raindrop size were
40 pixels (long axis) and blurred with a 5 pixel disk kernel, raindrops were moving with a speed 1.2 pixel per
frame (30 pixel per second).

Frame 100 90 80 70 60 50 40 30 20 10 8 6 5 4 3 2 

Speed0 1 1 1 0.95 1 1 1 1 1 1 1 1 1 0.95 0.9 0.85 

20 1 1 1 1 1 1 1 1 1 1 1 1 1 0.95 0.95 0.8 

40 0.9 0.85 0.85 0.9 0.95 1 0.95 1 1 1 1 1 1 0.95 0.85 0.9 

72 0.9 0.9 0.85 0.9 0.95 0.95 0.9 1 0.95 0.95 0.95 0.9 0.95 0.9 0.8 0.9 

120 0.6 0.65 0.75 0.65 0.75 0.85 0.85 1 1 0.95 1 0.95 0.85 0.8 0.85 0.85 

152 0.65 0.7 0.75 0.65 0.75 0.8 0.85 1 1 0.95 0.95 0.9 0.95 0.9 0.9 0.85 

200 0.65 0.6 0.55 0.55 0.65 0.75 0.75 0.9 1 1 0.95 0.95 1 0.85 0.85 0.85 

300 0.6 0.6 0.55 0.55 0.6 0.7 0.85 0.9 1 0.95 0.95 0.95 0.85 0.85 0.85 0.95 

400 0.15 0.2 0.15 0.2 0.35 0.3 0.35 0.35 0.65 0.75 0.85 0.85 0.75 0.7 0.75 0.65 

Frame 100 90 80 70 60 50 40 30 20 10 8 6 5 4 3 2 

Speed0 1 1 1 1 1 1 1 1 1 0.95 1 0.95 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 0.95 1 0.94 1 1 1 0.5 

40 1 1 1 1 1 1 1 1 1 0.95 1 0.95 1 1 1 1 

72 1 1 1 1 1 1 1 1 1 0.95 1 0.94 1 1 1 1 

120 1 1 1 1 1 1 1 0.91 1 1 1 1 1 1 1 1 

152 1 0.66 1 1 1 1 1 0.95 1 1 1 1 1 1 1 0 

200 1 1 1 1 1 1 1 0.88 1 1 1 1 1 1 1 0 

300 1 1 1 1 1 1 1 0.40 1 0.86 1 1 1 1 1 0 

400 1 1 1 1 1 1 1 0.33 0.50 0.50 1 1 1 1 1 1 

Frame 100 90 80 70 60 50 40 30 20 10 8 6 5 4 3 2 

Speed0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

40 1 1 1 1 1 1 1 0.95 0.95 1 1 1 1 1 1 1 

72 0.95 1 1 1 1 1 0.95 1 1 1 1 1 1 1 1 1 

120 1 1 1 0.93 1 1 1 1 1 1 1 1 1 1 1 1 

152 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

200 0.81 0.67 0.85 0.92 0.87 1 1 1 1 1 1 1 1 1 1 0.95 

300 0.86 0.8 0.85 1 1 0.82 1 1 1 1 1 1 1 1 1 1 

400 0.6 1 0.75 0.8 1 1 1 1 0.93 0.94 1 1 1 1 1 1 
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Frame 100 90 80 70 60 50 40 30 20 10 8 6 5 4 3 2 

Speed0 1 1 1 1 1 1 1 1 1 0.95 1 0.95 0.9 0.85 0.65 0.1 

20 1 1 1 1 1 1 1 1 1 0.95 0.9 0.85 0.85 0.8 0.45 0.1 

40 1 1 1 1 1 1 1 0.95 0.95 0.95 0.9 0.9 0.8 0.75 0.6 0.15 

72 0.8 0.9 0.95 1 1 1 1 1 1 0.95 0.9 0.8 0.75 0.65 0.3 0 

120 0.25 0.4 0.4 0.7 0.85 0.85 1 1 1 0.9 0.85 0.6 0.5 0.5 0.2 0 

152 0.05 0.1 0.2 0.3 0.6 0.65 0.9 0.95 1 0.7 0.65 0.7 0.55 0.3 0.1 0 

200 0 0 0.05 0 0.15 0.35 0.5 0.7 0.85 0.6 0.6 0.45 0.3 0.2 0.15 0 

300 0 0 0 0 0 0 0.1 0.1 0.35 0.3 0.25 0.1 0.1 0.05 0.05 0 

400 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.05 0 0 0 

Fig. 15. The precision and recall on detecting raindrops with various raindrop speed and detection latency (
Fig. 13). The detection threshold was fixed for all the data. The normalized feature threshold was set to 0.4 for
the intensity change, and 0.3 for the optical flow. The raindrop roundness threshold hold was set to 2.5π

iment, we investigated how significant the absence of
textures influences the detection accuracy.

In this experiment, the threshold for normalized
features was set to 0.4 for the intensity change while
0.1 for the optical flow. The smoothness was set to 2.5,
and features were accumulated over 100 frames. As
illustrated in Fig. 16, we performed Gaussian blur on
the scene, with σ varying from 0 to 10, and generated
synthetic raindrops with a fixed size (40 pixels) and
position.

As illustrated in Fig. 17, when the scene was tex-

tureless, the intensity change was affected. The non-
raindrop areas changed less on a less textured scene.
The optical flow, however, was not affected. The preci-
sion recall is listed in Fig. 18, which shows that when
σ > 5, the accuracy of the intensity change based
method dropped because the feature on a textureless
scene was less distinctive, and the false alarm rate
increased.
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Fig. 16. Gaussian blurred on a scene, with σ varying
from 0 to 10. The patch size is 120 * 120 pixels.
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Fig. 17. The accumulated feature using intensity
change and optical flow on textured and textureless
scenes. 100 frames are used for accumulation.

7.2 Quantitative comparison with existing meth-
ods on detection

Real Scenes with Groundtruth We created a real
data by dropping water on a transparent panel as the
ground truth and taking videos in the real world. We
had a few scenarios for the experiments. Experiment 1
included the disturbance of the light sources. Exper-
iment 2 emphasized on the varying shape and size
of raindrops. Experiment 3 focused on significantly
blurred raindrops. Experiment 4 included glare. The
input and results are shown in the first four columns
in Fig. 19.

We compared our method with Eigen et al.’s [17],
Roser et al.’s [14] and Kurihata et al.’s [16] method.
Yamashita et al.’s [18], [19] methods require stereo
cameras or a pan-tile camera and were, thus, not
included in the comparison. The results are shown
in the last two columns of Fig. 19.

We used the precision-recall curve to quantitatively
analyze the performances. The results for each exper-
iment are shown in Fig. 20. According to the results,
both of our proposed method outperformed the ex-
isting methods. By combining IC with OF, we get the
best performance to sensitively detect all of the rain-
drops, (because of IC) while keeping a low false alarm
rate (because of OF). The detection using the intensity
change performed best. Unlike the existing methods
that only detect the center and size of raindrops,
our proposed method can detect raindrops with a
large variety of shapes. Our method also achieved
high robustness in detecting highly blurred and glared
raindrops.

Real Scenes without Groundtruth Fig. 19 shows
the results of our detection method in the following
3 situations: (1) A daily use hand held camera, as
in experiments 1-4. (2) A vehicle-mounted camera,
which is widely used for navigation and data collec-
tion. (3) A surveillance camera which was stuck into a
fixed location. Our method outperformed the existing
methods in the all three situations as shown in the
figure.
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Fig. 18. The precision and recall of raindrop detection
on textured and textureless scenes. The threshold for
normailzed features was set to 0.4 for the intensity
change and 0.1 for the optical flow. The raindrop
parameter was set to 60 pixels to 160 pixels. The
roundness threshold was set to 2.5π. Features were
accumulated over 100 frames.
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Fig. 20. The precision(R)-recall(R) curves of our meth-
ods and the two existing methods. The thresholds of
our normalized features are labeled.

7.3 Raindrop Removal

Quantitative Tests on Raindrop Removal As illus-
trated in the first two columns of Fig. 22, the syn-
thesized raindrops were generated on a video, and
used as an input. Our method was compared with the
method proposed by Wexler et al. [21]. In [14], there is
insufficient description for the removal algorithm and
thus it was not compared here. The results are shown
in the last four columns of Fig. 21.

As shown in Fig. 21, for the quantitative evaluation,
we ran each of them on 100 continuous frames and
calculated the average error per pixel for each frame.
The same as Wexler et al. [21], the error was calculated
on both the 8 bit (R;G;B) value and spatial-temporal
gradients (dx; dy; dt). The proposed method benefits
from the restoration in all the 3 situation. Using the
same computer, our method needed 5 seconds per
frame to remove raindrops, and Wexler et al.’s needed
2 minutes.
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Fig. 19. The detection experiment using our methods and the existing methods.
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Fig. 21. The average (R;G;B; dx; dy; dt) error on
recovering 100 continuous frames of the experiments
shown in Fig. 22.

Quantitative evaluation We show a few results of
removing raindrops in videos taken by a handle held
camera and a vehicle-mounted camera, as shown in
the first and second row of Fig. 23 we can see the
significant improvement. To demonstrate the perfor-
mance of our raindrop removal method, the manually
labeled raindrops were also included.

Overall Evaluation The overall automatic raindrop
detection and removal results in videos taken by a
hand held camera and a car mounted camera are
shown in the third row of Fig. 23, where we can see
the significant visibility improvement. 1

8 CONCLUSION

We have introduced a novel method to detect and
remove adherent raindrops in video. The key idea
of detecting raindrops is based on our theoretical
findings that the motion of raindrop pixels is slower
than that of non-raindrop pixels, and the temporal
change of intensity of raindrop pixels is smaller than
that of non-raindrop pixels. The key idea on raindrop

1. Video: http://www.cvl.iis.u-tokyo.ac.jp/∼yousd/CVPR2013/
Shaodi CVPR2013.html
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Fig. 22. The raindrop removal results using our methods and the method of Wexler et al.[21].
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Fig. 23. The raindrop removal using the our method. First row: the input sequence. Second row: the removal
result with the raindrops manually labeled. Third row: the removal result with the raindrops automatically
detected.

removal is to solve the blending function with the
clues from detection and intensity change in a few
consecutive frames, as well as to employ a video
completion technique only for those that cannot be
restored. To our knowledge, our automatic raindrop
detection and removal method is novel and can ben-
efit many applications that suffer from adherent rain-
drops.
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