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Abstract

In this study, we propose a novel snapshot hyper-
spectral imaging method using a rock filter consisting
of a petrographic thin section between two linear polar-
izers. There is no need to use a complex process on the
scale of several micrometers or smaller to fabricate the
spectral sensor, as this can be achieved by using power
tools. Rock filter works as a spatial-spectral filter. Af-
ter encoding the spectral information in the scene using
rock filter, the spectral distribution is decoded by solv-
ing an optimization problem, and a spectral image can
be reconstructed. Through simulations reconstructing
the spectra of LED lights, we evaluate reconstruction
accuracy when the patterns and spatial resolution are
changed. Furthermore, we demonstrate that hyperspec-
tral imaging is feasible when a colorchecker is used as
a target in a real environment.

1 Introduction

Hyperspectral imaging is a technology that acquires
the intensity distribution for each wavelength of light,
enabling the extraction of richer features from scenes
that are difficult to distinguish using human percep-
tion or standard RGB cameras. Applications of hyper-
spectral imaging include food inspection, crop growth
monitoring, and mineral exploration [3, 8, 13].

General hyperspectral imaging methods include
line-scan method and snapshot method [5]. In the line-
scan method, a linear region is extracted through a slit,
light is dispersed in the wavelength direction using a
diffraction grating or prism, and it is projected onto
a two-dimensional sensor. This method enables high-
resolution acquisition of spatial-spectral cubes but has
drawbacks such as complex and expensive optical sys-
tems and long acquisition times, which limit its range
of applications.

In contrast, snapshot hyperspectral imaging meth-
ods can acquire spatial–spectral cubes in a single
shot, enabling faster measurements than the line-scan
method [2]. Among these, methods using spatial-
spectral filters [24, 19, 25, 23, 21, 22] achieve hyperspec-
tral imaging with a simple optical system consisting of
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Figure 1: Overview of rock filter. Among many rocks,
we chose lherzolite as a rock filter composition. (a)
Lherzolite before slicing. (b) Petrographic thin section
cut to a thickness of 100 µm. (c) Psuedo-color image of
rock filter. (d) Spectral transmittance samples in (c).

only a single filter and a camera by encoding spectral
information in the scene. However, the filters used in
existing studies require microfabrication technology on
the scale of several micrometers or smaller, including
photolithography, which requires expensive and large
machinery and clean rooms.

Thin petrographic sections are used mainly in the
field of petrology to investigate the formation process
of rocks by identifying the minerals they contain and
observing their important textures [20]. One of the an-
alytical methods used is the identification of minerals
using a polarizing microscope, which utilizes the bire-
fringence properties of minerals. This mineral-induced
birefringence has the potential for application as an
optical filter. For example, Sasaki et al. [17] proposed
a depolarization filter using calcite. Moreover, miner-
als can serve as spectral filters utilizing birefringence
properties such as waveplate [15], LCVR [1], and spa-
tial light modulator [16].

In this study, we propose a novel hyperspectral
imaging method using a rock filter, which consists of a
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Figure 2: Encoding process of rock filter.

petrographic thin section between two linear polarizers
(Fig. 1). Petrographic thin sections can be fabricated
using general power tools [4, 14], such as diamond cut-
ters and polishing machines, without the need for spe-
cial equipment such as semiconductor manufacturing
apparatus and clean rooms. Rock filters have a lower
border of manufacturing.

2 Method

Figure 2 illustrates the encoding process of the rock
filter. First, unpolarized incident light passes through
the first linear polarizer, and becomes linearly po-
larized. Subsequently, the petrographic thin section
which has birefringence properties generates phase re-
tardation, resulting in the conversion of linear polar-
ization to elliptical polarization. The phase retarda-
tion is determined by the birefringence of the minerals
at the position of the petrographic thin section x, its
thickness, and the wavelength of light λ [7]. The phase
retardation determines the degree of circular polariza-
tion, and it affects the intensity of light passing through
the second linear polarizer. This model is the same as
the conventional spectral filters utilizing birefringence
properties [15, 1, 16]. Consequently, the spectral trans-
mittance of rock filter t(x, λ) also becomes sinusoidal
waves along the spectral axis [12], as shown in Fig. 1(d).
However, it is difficult to completely model the spectral
transmittance of rock filter because rock filter is made
of naturally occurring rocks. To reconstruct the spec-
tral image, its measurement is required, and we cali-
brated it using a monochromator, as explained later in
Sec. 3.

Assuming a spectral distribution in the scene s(x, λ),
the encoded spectral measurement i(x) is expressed as

i(x) =
∑
λ

s(x, λ) t(x, λ). (1)

Reconstructing a spectral image from a single encoded
spectral measurement is an ill-posed problem, and the
solution is not uniquely determined. Therefore, N ×N
pixels on the sensor are grouped into a patch Xp, and
the spectra in the patch are assumed to be uniform. Us-
ing all pixels x ∈ Xp, the spectral distribution s(Xp, λ)
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Figure 3: (a) Implemented optics system. (b) Optical
diagram of the system.

Table 1: PSNR (in dB) of each estimated LED spec-
trum in Fig. 5(b).

filters Blue Green Red
rock filter (2× 2) 17.5 14.1 16.0
rock filter (8× 8) 32.0 30.2 42.8
rock filter (32× 32) 51.0 35.7 46.2
RGB 21.9 13.7 17.7
10 waveplates [15] 27.8 17.7 24.3

is estimated by solving the following optimization prob-
lem,

ŝ(Xp, λ) =

argmin
s≥0

∑
x∈Xp

(
i(x)−

∑
λ

s(Xp, λ) t(x, λ)

)2

+ α
∥∥∇2

λ s(Xp, λ)
∥∥2
2

}
. (2)

Here, we use a spectral smoothness prior as a regu-
larization term as well as a non-negativity constraint.
Since the spectral transmittance of the rock filter is
non-uniform, as long as the assumption of having uni-
form spectra within the patch is valid, the spectral im-
age reconstruction accuracy improves as the patch size
increases.

3 Hardware Implementation

We used a thin section of lherzolite as a rock fil-
ter composition among many rocks due to the signif-
icant variation in birefringence exhibited by the com-
positions of lherzolite, which include olivine, orthopy-
roxene, and clinopyroxene [9].

Figure 3 shows the optical system for real environ-
ment verification. Because we could not remove the
glass filter on the image sensor and combine it with
the rock filter, as Zhao et al. [26] did, we used a re-
lay system. We used a 50mm f/2.4–16 objective lens
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Figure 4: Calibration setup. (a) Optical diagram of
the calibration system. Monochromatic light from a
light source is selected by a monochromator and passed
through a diffuser for uniform illumination. (b) Mea-
sured images for the wavelength of 450 nm, 550 nm, and
650 nm.

(FUJINON HF50XA-5M), two 65mm f/9 0.5X tele-
centric lenses (Edmund Optics WD CompactTLTM),
and a 4096×2160 pixels 3.45 µm pixel pitch CMOS im-
age sensor (LUCID PHX089S-CC). The petrographic
thin section is a 100 µm thick lherzolite from Horoman
in Hokkaido, Japan, fixed using soda glass and optical
adhesive. The thicker the petrographic thin section,
the greater the range of phase retardation, and it may
lead to higher spectral diversity. However, if it is too
thick, the color of the rock itself will affect the rock
filter and make it harder for the incident light to pass
through. We chose this thickness to balance this out.

For the measurement of spectral transmittance
t(x, λ), a monochromator (Optometrics Manual Mini-
Chrom Monochromator) and a xenon lamp (Ocean Op-
tics HPX-2000 Xenon Light Source) were used (Fig. 4).

4 Simulation Experiment

The spectral transmittance of the rock filter is spa-
tially non-uniform, and the reconstruction accuracy de-
pends on the pattern of the rock and the patch size
N×N . Therefore, we obtained overlapped 170 patches
from the measured spectral transmittance data while
changing the patch size from 2 × 2 to 32 × 32 and es-
timated the spectral image in the scene with an ide-
ally uniform spectrum on simulation. The scene spec-
tra are three types of LED lights from Thorlabs: red
(630 nm LIU630A), blue (470 nm LIU470A), and green
(525 nm LIU525B). In the experiment, 21 bands were
reconstructed with a resolution of 10 nm in the range of
450 nm to 650 nm. When creating the encoded spectral
measurements from the spectral images and the spec-
tral transmittance of the rock filter, we added random
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Figure 5: Estimation results of LED lights spectra in
the simulation experiment. (a) RMSE for each patch
size N ×N . (b) Comparison of estimated LED spectra
with ground truth.

noise following a Gaussian distribution with a standard
deviation of 2%.

Figure 5(a) shows the change in root mean squared
error (RMSE) with respect to the number of pixels in
a patch, presented as an error plot with standard de-
viation for all samples. For comparison, we used RGB
Bayer pattern and polarization-induced spectral filters
using waveplates (10 shots) [15]. On the condition
scene is ideally uniform, the reconstruction using these
filters can also be done using Eq. (2). Since the particle
size of the petrographic thin section is larger than the
pixel size of the image sensor, it is confirmed that when
the number of pixels in a patch is small (around 2×2),
the spatial diversity of the spectral transmittance in
the rock filter is low, resulting in RMSE comparable
to that of not using the rock filter. Additionally, the
petrographic thin section contains grain boundaries,
and the spectral transmittance becomes almost zero de-
pending on the angle between this plane and the petro-
graphic thin section. This results in incomplete encod-
ing and, in some cases, worse reconstruction accuracy
compared to the RGB Bayer pattern. On the other
hand, increasing the number of pixels in a patch im-
proves the diversity of the spectral transmittance and
reduces the reconstruction error. Specifically, when the
number of pixels reaches approximately 8×8, the error
decreases to below that of 10 measurements taken by
polarization-induced spectral filters using waveplates.
Additionally, Fig. 5(b) shows the comparison results of
the estimated spectra, and Table 1 shows peak signal-
to-noise ratio (PSNR) of each estimated spectrum. It
can be seen that when the patch size is larger than 8×8
pixels, the LED spectra are estimated almost correctly.
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Figure 6: Estimation results of the spectral reflectance
of colorchecker in the real experiment. (a) Reference
image. (b) Encoded spectral measurement (1900px ×
1200px). (c) Psuedo-color image of estimated hyper-
spectral images for N . These images are synthesized
by an open-source Python package for colour science
[11]. (d) Comparison of sample spectra in each color
patch for N = 35 within estimation and ground truth.

Table 2: PSNR (in dB) and SAM (in degree) of esti-
mated color patches for each patch size in Fig. 6(c).

patch sizes PSNR SAM
5× 5 22.5 9.6
10× 10 24.1 7.5
35× 35 25.8 5.9

5 Real Experiment

Next, real environment verification was conducted
using a colorchecker (X-Rite ColorChecker Passport
Photo 2) as the target (Fig. 6). The illumination spec-
trum was estimated using a gray balance target (X-Rite
ColorChecker Passport Photo 2). It was also used for
the spatial alignment of spectral transmittance data to
an encoded spectral measurement. After the optimiza-
tion, median filter of kernel size 3 × 3 was applied to
each reconstructed band image for noise suppression.
Patch sizes were set to 5×5, 10×10, and 35×35. Fig-
ure 6(a) shows pseudo-color images of the estimated
spectral images for each patch size, and Table 2 shows
PSNR and spectral angular mapper (SAM) of all color
patches. The results confirm that increasing the patch
size improves the estimation accuracy within the color
patches. However, for the ’colorchecker’ text written in
white on the left side of the colorchecker, reducing the
patch size enables better recognition of the text. Patch

size should be adjusted to the target object. Further-
more, Fig. 6(d) shows a comparison between the esti-
mated and ground truth spectra for each patch when
the patch size is 35×35. It can be seen that the spectral
reflectance is estimated approximately correctly for all
patches.

6 Limitation

We exploit the microstructure of lherzolite, which
has inherent variability, and it leads to inconsistent re-
construction performance. However, by avoiding thick
grain boundaries, excessive performance degradation
can be avoided.

7 Conclusion

In this study, we propose a novel snapshot hyper-
spectral imaging method using rock filter. Rock fil-
ter does not require complex manufacturing apparatus
because the microstructure of rocks itself is a natural
product of the Earth’s interior. This characteristic can
contribute to simpler manufacturing machinery and
environment. The measurement of its spectral trans-
mittance and the results of the simulation experiment
demonstrate that the rock filter exhibits a high diver-
sity in spectral transmittance. Experimental results
confirm that the spectral image can be reconstructed
accurately using the rock filter in a real environment.

Future work includes improving the performance of
the spatial-spectral resolution and developing a more
compact optical system. Although this study used lher-
zolite for validation, there may be other petrographic
thin sections with smaller grain sizes and richer varia-
tions in birefringence. In addition, the combination of
a rock filter with other optical elements, such as lens
arrays [10] and Kaleidoscopic Imaging [6, 18], could be
explored. Due to the non-uniform spectral transmit-
tance of the rock filter, duplicating the scene changes
the encoding pattern, potentially enabling more effi-
cient reconstruction. Furthermore, the implemented
optical system is bulky compared to other spatial-
spectral filters. By removing the glass filter on the
image sensor and integrating it with the rock filter, the
optical system can be as compact as other systems.
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