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Abstract

This study introduces a novel method for material classi-

fication using the transient responses obtained via a Single-

Photon Avalanche Diode (SPAD) sensor. SPAD possesses

the capability to perform temporally associated single pho-

ton counting, achieving a resolution on the order of pico-

seconds. The recorded data from such a time-resolved de-

tector are referred to as ‘transient,’ wherein the count of

photons is recorded for each arrival time and depicted in

a transient histogram. As each material exhibits a unique

transient response, our approach leverages the distinctive

transient signatures of each material, allowing for the cre-

ation of feature vectors within the pico-second time range.

This method accomplishes pixel-wise material classification

by employing one-dimensional deep-learning models.

1. Introduction

Material classification is vital in distinguishing scenes in

numerous computer vision and robotics tasks, such as object

segmentation, recognition, and acquisition. However, RGB

information alone is insufficient to differentiate materials.

To address this challenge, there is work in computer vision

that has proposed a solution using time-resolved imaging

sensors such as the Time-of-Flight (ToF) camera to capture

the correlation between a reference signal and the tempo-

ral response of the material. Then, the information is used

to differentiate visually similar materials with a structural

difference [1].

In this study, we used a Single-Photon Avalanche Diode

(SPAD) sensor based on the time-correlated single-photon

counting (TCSPC) technique to build a transient histogram

[2] instead of a ToF camera for its higher time resolution of

approximately 10 ps. Measuring the photon arrival time us-

ing a ToF camera in small intervals would be challenging due

to its limited resolution in the nanosecond range [3]. The

SPAD sensor is known for its remarkable ability to detect

individual photons with exceptional timing precision. This

sensor also has a wide range of applications in computer

vision, including low-light image classification, 3D imaging,
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Fig. 1 Overview of the imaging system designed for this study.
The galvanometer scanner performs raster scanning to col-
lect the histogram. Then, the transient response is used
to perform pixel-wise material classification.

Non-line-of-sight (NLOS) imaging, and colour classification

using distinct wavelengths [4], [5], [6], [7].

Becker et al. [8] utilized the AMS TMF8801 direct ToF

sensor to capture the transient response for material clas-

sification. Motivated by the approach that exploited the

transient response of materials, we aim to expand it to en-

able pixel-wise material classification. Due to the complex

and nonlinear nature of the transient response, traditional

image analysis methods may not be suitable for this clas-

sification task. To tackle this problem, we proposed one-

dimensional deep learning to perform pixel-wise material

classification based on the transient response to handle this.

This paper presents a novel approach to achieve pixel-wise

classification of transient response with multiple materials

using deep learning, specifically a Convolutional Neural Net-

work (CNN). The CNN-based pixel-wise classification en-

ables direct analysis of subsurface scattering from transient

responses, whereas spatial CNN relies only on visual features

in regular RGB images.

In our approach, illustrated in Fig. 1, the first step is to

gather pixel-wise transient responses, which are interpreted

as a histogram. A galvanometer scanner with a built-in

two-axis mirror is employed to do raster scanning, and the

resulting intensity image contains transient response infor-

mation of every pixel (Figure 2 shows an example of a his-

togram of different materials obtained from a SPAD sensor).

Then, the transient response is used as input for the one-

dimensional CNN classifier. Finally, the segmentation result

image would display each material class as a unique colour
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(b) polystyrene(a) plaster

(c) wood (d) wax

Fig. 2 Each material has a unique signature in its transient re-
sponse shape, but differentiating them can be challenging
due to the nonlinear nature of the transient shape.

based on the classifier’s output.

2. Method

2.1 Single-Photon Avalanche Diode
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Fig. 3 The 3D coordinates represent the volume obtained from
the raster scanning result. The x and y represent spatial
coordinates, and the z coordinates represent temporal res-
olution.

The SPAD sensor works by utilizing the TCSPC principle

[2], and it employs a Time-to-Digital Converter (TDC) for

measuring time. TDC acts as a stopwatch to measure the

time interval between a laser excitation pulse and the arrival

of the corresponding photon. Then, a transient response in

the form of a histogram is created based on the arrival time

of each new pulse. In Fig. 3, a particular pixel on the mate-

rial is illuminated by the photon-flux of waveform s(t) and

would reflect the waveform r(t) that is incident at the SPAD

r(t) can be expressed as:

r(t) = as

(
t− 2d

c

)
+ b, t ∈ {1, · · · , Tr} , (1)

where Tr is the repetition period of the pulse illumination.

Assuming that a laser is illuminating a material with re-

flectance a and d represents the distance or depth to a cer-

tain point on the object. At the same time, c is the speed

of light, and b is the background flux caused by external

light [9]. The SPAD quantum efficiency η, which depends

on the flux of the incoming light and the physical properties

of the SPAD, can be expressed as:

η = (1−R)eαD
(
1− e

αW
)
, (2)

if we let α be the absorption coefficient of silicon (the used

SPAD is based on a reliable silicon avalanche photodiode

sensitive in the visible spectral range), W be the thickness

of the depletion region, D be the depth of the junction, and

R be the power reflection coefficient for an interface between

air and silicon [10], then assuming a constant background

flux and the use of a single detector, we can express the rate

function λ using equations Eq. (1) and Eq. (2) as follows:

λ(t) = η

(
as

(
t− 2d

c

)
+ b

)
, t ∈ {1, · · · , Tr} , (3)

Time bins are time units with a width that typically cor-

responds to the resolution of a stopwatch, which is usually

some picoseconds. To create a histogram that represents

photon numbers over time, we can map them to the corre-

sponding time bins. Let’s assume that the time bin size is

∆, and the repetition period pulse illumination is Tr. The

pulse width is Tp for the sequence of Ns pulses. Then, we

can define the total number of time bins that captured the

photon as M = Tr/∆. Let the histogram h be the vector of

size M ×1 that contains the photon counts at each time bin

after we illuminate the pixel Ns times with pulse waveform

s(t). Then, from the low-flux photon-counting theory [11],

for the specific pixel i, j we have that:

h(i, j)k ∼ Poisson

(
Ns

∫ k∆

(k−1)∆

λ(t)dt

)
, k = 1, · · · ,M.

(4)

The full-time bins of the respected pixel h are illustrated

in Fig. 3 as a histogram. A histogram for the specific pixel

h(i, j), could be expressed as below:

h(i, j) = [h1, · · · , hk, · · · , hM ] ∈ RM , (5)

because the same process could be applied to other pixels,

we can omit i, j.

h ∈ RM . (6)

Light transport (scattering) also differs depending on each

material, and this affects a histogram’s shape due to the dif-

ferent number of photons acquired per time bin.

2.2 Classification

A one-dimensional Fully Convolutional Neural Network

(FCN) is a type of architecture used for material classifica-

tion. Each layer of the FCN contains a one-dimensional time

series. We utilize transient response histograms as input for

the CNN. Afterwards, the function f maps each transient

histogram h to corresponding material classes C. The 1-D

FCN architecture used can be seen in Fig. 4.

f(h) : RM → RC . (7)
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Fig. 4 1-D FCN architecture uses a transient histogram as an
input. The result would be the class with the highest
probability from the softmax function.

3. Experiment

3.1 Lab Prototype

The layout of our experiment can be seen in Fig. 5. We

used SPAD ID100 and time controller ID900, which were

manufactured by ID Quantique company, for the experi-

ment. ID900 has a function generator and a Time-to-Digital

Converter (TDC). A pulse laser and the TDC can be syn-

chronized by sending a synchronization signal from the in-

ternal function generator. The TDC has 10, 000 bins, and

the shortest time resolution (∆) of 13 ps from the TDC

was used. We used a pulsed laser light source manufac-

tured by Tama Denshi Co., Ltd. LDB-160C-639nm, with

a pulse profile width of around 300 ps. An external trig-

ger from the function generator drove the laser. In this

experiment, a computer-controlled galvanometer mirror will

perform raster scanning, while the target material will be

illuminated by pulsed laser light transmitted through the

mirror. The distance between the SPAD and the target

is approximately 40 cm. To achieve picosecond-level accu-

racy in measuring the arrival times of photons, a timing

histogram is constructed using a time-correlated single pho-

ton counting (TCSPC) technique. This method utilizes a

time-to-digital converter (TDC) to correlate a synchroniza-

tion signal from the laser as the start signal, and the stop

signal is provided by photons detected by the single-photon

avalanche diode (SPAD).

3.2 Dataset

The data used to train the model was stored in UCR for-

mat [12]. In this dataset, the target class was the type of

material, and the variable was the number of photons per

time bin, represented by a transient histogram. We gen-

erated a histogram of the transient response for seven ma-

terials by scanning each pixel. Five materials are used as

a database: plaster, polystyrene, wood, wax, and leather,

which are shown in Fig. 6. The time variable was fixed at

a length of 10, 000, which is the same as the transient his-

togram time bin.

We conducted our experiment in an environment free from

external light and collected the measurement data for each

material separately. During the training phase, we utilized a

63× 63 pixels resolution dataset. However, we only trained

the model using representative pixels belonging to the mate-

rial, not the background. We determined which pixels were
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Fig. 5 Experimental Layout: pulsed illumination light is pro-
vided by a picosecond laser. Galvanometer scanners per-
form raster scanning across the target, and the SPAD is
used to detect the scattered photons from the material.
Photons detected by the SPAD are correlated with a sync
signal from the laser using a TDC to measure the photon
arrival timestamps.

plaster waxwoodpolystyrene leather

Fig. 6 In our materials database, we exclude the background re-
gion to collect the reference of the transient histogram
from each material.

representative by analyzing their intensity. The material

intensity is typically higher than the background intensity

since we used a black diffused background. This approach

enabled us to train our model using transient data specific

to each material. Table 1 presents the number of training

datasets (number of transient responses from the several pix-

els of the material database) and the respective colourmap

assigned to each material class.

Table 1 Material Class Datasets.

Class Material Colourmap Datasets
0 plaster blue 1217
1 polystyrene orange 1217
2 wood green 1217
3 wax red 925
4 leather brown 816

The reference transient histogram for each material can

be seen in Fig. 2, and the curve plot colour represents the

shape and colourmap of the transient histogram from each

material.

3.3 Preprocess

In the preprocessing step, we reduce the time bin from

10, 000 to 250 due to an important feature represented by

the pulse. The pulse begins from the change in the initial
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Fig. 7 Pixel-wise material classification comparison is used for different acquisition times.

slope of the transient histogram pulse and ends with the

tail, which could be captured in the range of 250 time bins.

To reduce the peak difference for each material object, we

can ignore the difference in object depth ∆d (Fig. 8). Here,

we try to use the arg-max function to identify the peak of

each object, which is an axis with a maximum number of

photons. In Fig. 8, we can compare the peak for each ob-

ject’s material before and after alignment. We also perform

hz-normalization; as the intensity of the histogram obtained

by SPAD is changed depending on the number of accumu-

lation photons that are captured (sometimes the number

of photons that are reflected by the same materials is var-

ied and could give misinterpretation due to different peak

heights). The transient histogram for each class is already

going through a z-normalization process in Eq. (8):

hz =
h− µ

σ
, (8)

where hz is the histogram that already normalized, µ is the

mean of the photon count rate, σ is the standard deviation

of the photon count rate. We choose z-normalization due

to its robustness to outliers, such as the common hot pixel

in the measurement. Also, z-normalization could be used to

remove offset and scaling in the time series classification [13].
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Fig. 8 We can ignore the difference in object depth ∆d by trying
to align the pulse peak for every material

4. Result

For the classifier, we used CNN architectures for 1-

dimensional time series classification, namely FCN [14]. The

Tsai [15] framework for the time series classification is be-

ing used with a learning rate of lr = 1e − 3 for a total of

100 epochs. The classifier tries to distinguish between tran-

sient histograms in pixel-wise order, and the result would

be a class represented by different colours for each material.

In the process, the classifier will form one hot encoding to

translate the result from the classification into a class num-

ber, and each class has a different colour label. Then, the

results of pixel-wise segmentation based on the transient his-

togram will be given as a pixel map, which can be seen in

Fig. 7.

Table 2 Accuracy Result

Acquisition Time (s) Accuracy (%)
0.03 79.47
0.09 83.63
0.27 83.28
0.81 82.33
2.43 81.38

Table 2 presents the accuracy results for various acqui-

sition times. On average, the accuracy is approximately

83(%) when the background (yellow colourmap) is not con-

sidered. The noise contributed to misclassification due to

the acquisition time being too short at 0.03 seconds. Longer

acquisition time may reduce noise but could also lower accu-

racy. Temporal resolution is also a factor that can improve

classification accuracy, assuming that finer time resolution

would lead to better accuracy. We intend to further investi-

gate the impact of time resolution on classification accuracy

in the future.

5. Conclusion

In our paper, we introduced a new method for classifying

materials at the pixel level using deep learning and tran-

sient responses. We used the features extracted from the

transient responses dataset as inputs for the deep learning

models. Our experiments showed that adjusting the acqui-

sition time improved the accuracy of material segmentation.

In future work, we aim to investigate how temporal resolu-

tion affects accuracy.

Acknowledgements This work was supported by JSPS

KAKENHI Grant Number JP20K20629.

4



The 27th Meeting on Image Recognition and Understanding

References

[1] Su, S., Heide, F., Swanson, R., Klein, J., Callenberg, C.,
Hullin, M. and Heidrich, W.: Material Classification Us-
ing Raw Time-Of-Flight Measurements, Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2016).

[2] Wahl, M., Bülter, A., Buller, G., Collins, R., Lauritsen,
K., Riecke, S., Schönau, T., Dertinger, T., Ruettinger, S.,
Ishii, K., Otosu, T., Tahara, T., Barth, A., Voithenberg, L.,
Lamb, D., Grußmayer, K., Herten, D.-P., Ruedas-Rama, M.,
Alvarez-Pez, J. and Erdmann, R.: Advanced Photon Count-
ing: Applications, Methods, Instrumentation (2015).

[3] Kitano, K., Okamoto, T., Tanaka, K., Aoto, T., Kubo, H.,
Funatomi, T. and Mukaigawa, Y.: Recovering temporal PSF
using ToF camera with delayed light emission, IPSJ Trans-
actions on Computer Vision and Applications, Vol. 9, No. 1,
p. 15 (2017).

[4] Morimoto, K., Ardelean, A., Wu, M.-L., Ulku, A. C., An-
tolovic, I. M., Bruschini, C. and Charbon, E.: Megapixel
time-gated SPAD image sensor for 2D and 3D imaging ap-
plications, Optica, Vol. 7, No. 4, pp. 346–354 (2020).

[5] Sun, Q., Dun, X., Peng, Y. and Heidrich, W.: Depth and
Transient Imaging with Compressive SPAD Array Cameras,
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 273–282 (2018).

[6] Fujimura, Y., Kushida, T., Funatomi, T. and Mukaigawa,
Y.: NLOS-NeuS: Non-line-of-sight Neural Implicit Surface,
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 10532–10541 (2023).

[7] Yao, D., Connolly, P. W. R., Sykes, A. J., Shah, Y. D., Ac-
carino, C., Grant, J., Cumming, D. R. S., Buller, G. S.,
McLaughlin, S. and Altmann, Y.: Rapid single-photon color
imaging of moving objects, Opt. Express, Vol. 31, No. 16, pp.
26610–26625 (2023).

[8] Becker, C. N. and Koerner, L. J.: Plastic Classification Us-
ing Optical Parameter Features Measured with the TMF8801
Direct Time-of-Flight Depth Sensor, Sensors, Vol. 23 (2023).

[9] O’Toole, M., Heide, F., Lindell, D. B., Zang, K., Diamond,
S. and Wetzstein, G.: Reconstructing Transient Images from
Single-Photon Sensors, 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2289–2297
(2017).

[10] Zappa, F., Tisa, S., Tosi, A. and Cova, S.: Principles and fea-
tures of single-photon avalanche diode arrays, Sensors and
Actuators, A: Physical, Vol. 140, pp. 103–112 (2007).

[11] Shin, D., Xu, F., Venkatraman, D., Lussana, R., Villa, F.,
Zappa, F., Goyal, V. K., Wong, F. N. and Shapiro, J. H.:
Photon-efficient imaging with a single-photon camera, Na-
ture Communications, Vol. 7 (2016).

[12] Dau, H. A., Bagnall, A. J., Kamgar, K., Yeh, C. M., Zhu,
Y., Gharghabi, S., Ratanamahatana, C. A. and Keogh, E. J.:
The UCR Time Series Archive, CoRR, Vol. abs/1810.07758
(2018).

[13] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G.,
Westover, B., Zhu, Q., Zakaria, J. and Keogh, E.: Address-
ing Big Data Time Series: Mining Trillions of Time Series
Subsequences Under Dynamic Time Warping, ACM Trans.
Knowl. Discov. Data, Vol. 7, No. 3 (2013).

[14] Wang, Z., Yan, W. and Oates, T.: Time series classifica-
tion from scratch with deep neural networks: A strong base-
line, 2017 International Joint Conference on Neural Net-
works (IJCNN), pp. 1578–1585 (2017).

[15] Oguiza, I.: tsai - A state-of-the-art deep learning library for
time series and sequential data, Github (2022).

5


