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Abstract

Event cameras are novel sensors that offer significant ad-

vantages over standard cameras, such as high temporal res-

olution, high dynamic range, and low latency. Despite re-

cent efforts, event cameras remain relatively expensive and

difficult to obtain. Simulators for these sensors are crucial

for developing new algorithms and mitigating accessibility

issues. However, existing simulators that tackle realistic

scenes often fail at generalizing to novel viewpoints or tem-

poral resolutions, making the generation of realistic event

data from a single scene not feasible. To address these chal-

lenges, we propose leveraging neural radiance fields (NeRFs)

to enhance event camera simulators. NeRFs are capable of

synthesizing novel views of complex scenes from a low frame-

rate video sequence, providing a powerful tool for simulat-

ing event cameras from arbitrary viewpoints. This approach

not only simplifies the simulation process but also allows for

greater flexibility and realism in generating event camera

data, making the technology more accessible to researchers

and developers. We show that our simulator is able to ap-

proximate an event camera data stream.

1. Introduction

Event cameras represent a paradigm shift in visual sens-

ing technology, capturing dynamic scenes with remarkable

temporal resolution and high dynamic range. Unlike conven-

tional frame-based cameras, event cameras asynchronously

record changes in the intensity of the visual field, offering a

unique advantage in scenarios involving fast motion or chal-

lenging lighting conditions. Since these sensors are still rel-

atively expensive and difficult to obtain, various efforts have

been made to create simulators to further facilitate their re-

search. Previous simulators aim to generate event data from
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Fig. 1: Process flow of our method. A series of RGB im-

ages a) generate a radiance field b) which is sampled along

a camera path to generate an event stream c)

RGB video by either relying on ultra-high framerates [2, 3]

or by interpolation of the video sequence [4]. This comes

with the drawback of not being able to generate more data

from a single video. While simulators like ESIM [9] attempt

to tackle this issue with the use of 3D models, generating

data that resembles a realistic scene is both time and labor-

intensive, making it unsuitable for researchers who want to

generate their own data. To address this challenge, we pro-

pose a framework of a simulation shown in Fig. 1. The

framework generates synthetic event camera data using Neu-

ral radiance fields (NeRFs) [7], a recent breakthrough in the

field of computer vision that enables the reconstruction of

high-fidelity 3D scenes from a sparse set of 2D images by

leveraging neural networks to model the volumetric radi-

ance field. By integrating NeRF with event-based sensing

principles, we aim to create a versatile framework that can

produce realistic and diverse event camera data, facilitating

the advancement of event-based vision algorithms.

Our approach offers several significant advantages. First,

it allows for the creation of extensive datasets without the

need for labor-intensive data collection processes. Second, it

provides a controlled environment where various parameters

can be modified to evaluate the robustness of event-based al-

gorithms. Finally, the synthetic data generated through our

method can serve as a valuable resource for training deep

learning models, potentially improving their performance in

real-world applications.

In section 2, we introduce some of the most important

works concerning event camera simulation, explain their

working mechanism, as well as doing a quick review of the

formulation of neural radiance fields. In section 3, we detail
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the methodology for synthesizing event camera data using

NeRF, discuss the implementation and integration of these

technologies, and present experimental results demonstrat-

ing the effectiveness of our approach. By bridging the gap

between synthetic data generation and event-based sensing,

our work aims to accelerate research in the field of event

cameras, paving the way for their broader adoption and ap-

plication. In section 4, we discuss our results, comparing

them to actual event data streams and with other video-to-

event generation pipelines. Finally, in section 5, we discuss

the limitations of our method, as well as possible extensions

and future work.

2. Related Work

In recent years, event camera datasets and simulators have

been introduced. In this section, we briefly review the most

important ones and their specific application scenarios. We

also do a quick review of the mechanism behind neural ra-

diance fields. We then turn to the work on the simulation

of an event camera.

2.1 Event camera simulation

The number of event camera simulators publicly released

is small, and while some of them build upon previous re-

search, they mostly tackle the task in different manners.

Some simulators [4, 5] attempt to model the unique charac-

teristics of the sensor and its parameters. However, none of

the simulators described take into account the geometry of

the scene, nor can they generate an event stream outside of

the original path followed by the camera. ESIM [9] (part

of the Vid2E pipeline [4], leverages a deep learning-based

approach in order to upsample a video stream and generate

a continuous event stream from sparse images.

2.2 Neural radiance fields

Neural radiance fields represent a scene utilizing a multi-

layer perceptron (MLP) Fθ : (x,d) → (c, σ) that maps a

position in 3D space x = (x, y, z) and a 2D viewing di-

rection d = (θ, ϕ) to its corresponding directional emitted

radiance, in other words, its color c = (R,G,B) and volume

density σ. From this representation, the estimated emitted

radiance L̂ at a given pixel u can be calculated using the

volume rendering equation [11] with quadrature, as follows:

L̂(u) =
N∑

k=1

Tk(1− exp(−σkδk))ck,

where Tk = exp(−
k−1∑
m=1

σmδm),

(1)

where σk and ck are the volume density and the emitted

radiance, respectively, of a sampled position xk along the

back-projected ray r through a pixel, which has a direc-

tion d and an origin o at the camera center. The sample

xk = o+ sid has a distance sk from the camera center and

a distance of δk = sk+1 − sk between its adjacent sample

xk+1.

Fig. 2: A pixel u of the intensity image It in the event gener-

ation model. A positive or negative event is generated when

the brightness change exceeds the threshold C in a logarith-

mic scale. Represented in blue and red, respectively.

3. Method

3.1 Problem formulation

Following the convention of ESIM [9] event camera data

is represented as ek = (tk,uk, pk), denoting brightness

changes asynchronously registered by a pixel at time tk,

pixel location uk = (xk, yk) in the camera frame, with a

polarity pk ∈ {−1, 1}. The polarity of an event indicates

a positive or negative change in illumination according to a

logarithmic scale, quantized by negative and positive thresh-

olds ±C. The change in brightness between two timestamps

can be estimated by the difference of intensity images It and

It−1 in the logarithmic scale. This mechanism is illustrated

in Fig. 2.

∆ log(I) = log(It)− log(It−1), (2)

epk =

−1 if C ≤ ∆ log(I),

1 if C ≥ ∆ log(I).
(3)

3.2 Event data generation by sampling radiance

fields

We aim to generate a simulated event camera data stream

from a sequence of RGB images. We first train a radiance

field F on that sequence. Following the methodology be-

hind ESIM’s event generation from 3D models, our method

approximates the per pixel value of the intensity image

∆ log(I) by sampling a camera path along F, and calculat-

ing the color of each pixel by accumulating the contributions

from all sampled points along the ray following equation (1).

Since event cameras operate in brightness pixels, we convert

the sampled color images using the ITU-R Recommendation

BT.601 for luma, i.e., according to the formula:

Y = 0.299R + 0.587G+ 0.114B, (4)

with RGB channels in linear color space. This yields the

following equation:

I(u) = Y (L̂(u)). (5)

Generating a pair of logarithmic intensity images log(It)

and log(It−1) based on user-defined parameters, such as
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(a) Ground truth

(b) Ours

Fig. 3: Comparison of event streams, positive and negative

events are colored red and green, respectively.

maximum number of events per camera position, pixel re-

fraction period, and brightness change threshold C. The

exact threshold of an actual event camera is not known, so

we decided to set C = 0.25 for our experiments.

We can then determine the number of predicted events at

a certain pixel location during that time window with the

following equation:

eu =


∆ log(I(u))

+C
if ∆ log(I(u)) ≥ 0,

∆ log(I(u))

−C
if ∆ log(I(u)) ≤ 0.

(6)

4. Experiments

We conduct our experiments on the dataset provided by

Mueggler et al. [8] for our comparisons since it contains im-

ages generated by a DAVIS sensor [1] which are used to train

the radiance field, as well as camera positions from an exter-

nal tracker, eliminating the need to use COLMAP [10] for

camera pose estimation.

4.1 Experimental results

4.1.1 Comparison with real event camera data

In order to perform our tests, we interpolate five equidis-

tant positions between each camera pose along the initial

camera path, akin to the frame interpolation V2E does. The

result of our simulation can be observed in Fig. 3.

Due to the inherent challenge in accurately modeling the

noise characteristics of an event camera sensor, as well as

the randomness it introduces into the firing pixels, we have

chosen to simulate its ideal operation instead. However, it

Table 1: Comparison of PSNR (dB) values obtained in

scenes from the dataset [8] (higher is better).

Scene name Ours V2E [4]

slider 30.01 29.40
boxes 6dof 28.32 28.06
poster 28.04 28.57

is possible to set a noise parameter, as well as a hot pixel

parameter.

4.1.2 PSNR of accumulated event frames

In order to measure the correctness of the simulated

events, we perform an accumulation operation on both the

ground truth and simulated event streams to generate a

frame representation. The accumulation operation inte-

grates events over time into a frame-by-frame basis, aggre-

gating changes captured by the sensor. As shown in [8], a

logarithmic intensity image log Î(u; t) can be reconstructed

from the event stream at any point in time t by accumulating

events:
log Î(u; t) = log I(u; 0) + γδ(t− tk),

where γ =
∑

0<tk≤t

pkCδ(u− uk),
(7)

We utilize a modified version of this functions which ap-

plies a decay parameter to reduce the noise of the generated

frame. The accumulator function applies an exponential de-

cay d(t, τ) to equation (7):

log Î(u; t) = log
(
I(u; 0)d(t, τ) + I(u;n)(1− d(t, τ))

+ γd(t− tk, τ)
)
,

where d(t, τ) = exp

(
− t

τ

)
,

(8)

where log(I(u; 0)) is the logarithm of the intensity of the

pixel at the previous accumulated frame, log(I(u;n)) is a

neutral potential and the decay parameter is the time con-

stant τ . For our experiments we set τ = 1× 10−5 microsec-

onds and log(I(u;n)) = 0.5.

After accumulating all the events and generating a video

sequence, we calculate the peak signal-to-noise ratio between

the ground truth and the simulated event stream. We also

utilize V2E as a baseline for video-to-event simulation. The

results of this experiment can be seen in Fig. 4.

5. Limitations and extensions

As demonstrated in Fig. 3, our simulator correctly ap-

proximates the positive and negative events measured by

an actual event camera. It is worth noting that due to not

including both noise and hot pixel simulation in our exper-

iments, some areas of the simulation appear to not show

any information registered; a zoom-in of an extreme case is

illustrated in Fig. 5

While this paper primarily focuses on the application of

radiance fields for static scene reconstruction, it is important

to note several limitations and potential avenues for future

research.
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(a) Ground truth (b) Ours (c) V2E [4]

Fig. 4: Visual comparison of accumulated frames

(a) Ground truth

(b) Ours

Fig. 5: Comparison of event streams, positive and negative

events are colored red and green, respectively.

5.1 Dynamic scene reconstruction

Radiance fields have the ability to reconstruct dynamic

scenes, the NeRF backbone utilized did not have the capa-

bilities to represent dynamic scenes, so we leave their imple-

mentation as a task for future research.

5.2 Integration with different representations

Our simulator, by its design, does not rely on a specific

representation of radiance fields. This flexibility allows for

easy integration with alternative rendering techniques such

as Gaussian splatting [6].

5.3 Generalization to Real-world Applications

While our simulator demonstrates promising results in

controlled environments, generalizing these findings to real-

world applications presents additional challenges. Factors

such as varying lighting conditions, occlusions, and reflec-

tive surfaces can significantly impact the performance and

accuracy of radiance field reconstruction.

6. Conclusion

In this paper, we introduced a novel method for event

camera simulation using neural radiance fields. Our ap-

proach leverages the capabilities of NeRFs to synthesize

novel views of complex scenes, enabling the generation of

realistic and diverse event camera data from arbitrary view-

points. Experimental results demonstrate that our simu-

lator matches or outperforms existing methods in terms of

accuracy and realism, providing a valuable tool for the de-

velopment and evaluation of event-based vision algorithms.

The key contributions of this work include the integration of

NeRFs with event-based sensing principles and the develop-

ment of a versatile and efficient event camera simulator. We

believe that this method represents a significant advance-

ment in the field of event camera simulation, making this

technology more accessible to researchers and developers.
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