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Abstract

Conventional fluorescence microscopy avoids the use of

fluorescent dyes with overlapping emission spectra to pre-

vent crosstalk, limiting the variety of usable dyes and in-

creasing experimental time for complex samples, such as

those with extensive RNAs. We propose a novel method

for direct quantification of fluorescent dye concentrations

from a limited number of images, bypassing the need to

restore the spectral distribution, typically an ill-posed prob-

lem. This is achieved by modulating light with a Liquid

Crystal Variable Retarder (LCVR) and modeling the LCVR

within an autoencoder framework using physics-based 2D

Multilayer Perceptron (MLP) regression. Our approach in-

novatively optimizes the LCVR voltage selector (encoder)

and concentration quantifier (decoder) simultaneously. The

effectiveness of our proposed methodology has been demon-

strated through both simulation experiments and measure-

ments, confirming its practical application.

1. Introduction

RNA sequencing (RNA-seq) has revolutionized biology by

enabling gene expression analysis across whole tissues and

cell populations. Spatial transcriptomics, an emerging tech-

nique, maps gene expression while retaining spatial infor-

mation within tissues, offering insights beyond conventional

RNA-seq. This method enhances our understanding of cel-

lular functions in vivo, with implications for developmental

biology and drug discovery. Traditional approaches, such

as seqFISH [3], detect numerous RNA species through re-

peated hybridization and fluorescence detection cycles using

fluorescent-labeled DNA probes. The method can detect up

to 24,000 different RNA molecular species. However, the

procedure requires a total of 80 rounds of hybridization and

image acquisition, with each round taking approximately an

hour. Notably, after every set of ten hybridizations, manual

experimental manipulations are necessary. Therefore, this

repetitive process is time-consuming and labor-intensive.
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If many fluorescent dyes can be used simultaneously, the

number of hybridizations and reprobing can be reduced,

thereby improving the efficiency of the analysis. However,

due to the limitation of overlapping fluorescence spectra,

general fluorescence microscopes can use only a few types of

fluorescent dyes at most.

The objective of this study is to develop a method that

can stably detect multiple fluorescent dyes without being af-

fected by the overlapping spectra of fluorescent dyes. This is

expected to enable high-throughput seqFISH analysis with

fewer rounds, facilitating spatial transcriptomics and leading

to speed and cost reduction. As a result, the whole research

field based on genome analysis will be further stimulated.

2. Related work

Fluorescence detection methods. While fluores-

cence microscopy struggles to detect multiple fluorescent

dyes due to spectral overlap, hyperspectral imaging offers

a solution by constructing spectral cubes. However, this

approach’s higher spectral resolution compromises signal

strength and lowers the signal-to-noise ratio, posing chal-

lenges for detecting weak signals [4], [6], [7].

Spectral Imaging with Liquid Crystal Variable

Retarder (LCVR). Alternative approaches include coded

sensing for indirect measurement, enhancing sensitivity.

LCVR combined with polarizers can maintain higher flu-

orescence intensity, reducing noise effects. August et al. [1]

and Yang et al. [8] demonstrated hyperspectral imaging with

LCVR, achieving high spectral resolution through dozens to

hundreds of observations. While these methods enable the

quantification of dyes with overlapping spectra, the recon-

struction of extensive spectral channels is often more than

needed for practical dye quantification.

Quantification of Fluorescent Dyes Concentra-

tion via Sparse Modeling. Direct quantification of fluo-

rescent dyes without reconstructing the spectral distribution

allows for the avoidance of ill-posed problems since the di-

mension of the concentration vector is significantly smaller

than the wavelength resolution of the spectral distribution.

We employed an LCVR as a spectral modulator to construct

a dye dictionary and utilized LASSO-LARS for quantifying
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Fig. 1 The spectral transmittance of the spectral modulator and
the result of MLP regression.

their concentrations [5]. This method has been validated

through simulation experiments; however, actual device vali-

dation has not been performed, and optimization of the volt-

age selection for the LCVR has not been conducted. Thus,

this study demonstrates the concept of directly quantifying

fluorescent dye concentrations without spectral distribution

reconstruction using a simplified implementation of the de-

coder.

3. Method

Building upon the concept of fluorescence detection with-

out spectral cube reconstruction using a spectral modulator

from our prior study [5], we employ an Multilayer Percep-

tron (MLP) for “Concentration Quantification”, which acts

as the decoder in an Autoencoder framework, where the en-

coder serves dual roles, functioning as an “LCVR Voltage

Selector” in addition to the spectral modulator in the imag-

ing process. By training this Autoencoder, we can simul-

taneously achieve voltage settings optimization and efficient

quantification of fluorescent dye concentration.

3.1 Spectral coding

The spectral modulator consists of an LCVR and two po-

larizers. The LCVR is oriented at 45◦ to the axis of the

polarizers. The spectral transmittance can be modulated

according to the voltage applied to the LCVR as

t(λ, Vk) ∝
1

2
− 1

2
cos

(
∆n(Vk, λ)d

λ

)
, (1)

where λ is the wavelength, d is the thickness of LCVR,

∆n(Vk, λ)d is the birefringence at LCVR voltage Vk and

λ [9]. Also, ∆n(Vk,λ)d
λ is the amount of phase difference of

LCVR and is called retardance. Figure 1(a) show the spec-

tral transmittance of the spectral modulator.

When a spectral modulator is placed in front of the sen-

sor, the spectral distribution incident on the image sensor

becomes the multiplication of the spectral distribution of

the fluorescent-labeled targets, the spectral sensitivity char-

acteristics of the sensor, and the spectral transmittance of

the spectral modulator. Then, the intensity observed by

the sensor is obtained by integrating it over the observable

range. The spectral distribution of the fluorescent targets
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Fig. 2 Encoder module of spectral encoder.

can be expressed as a sum of individual dye contributions [2].

The intensity at a given voltage Vk is described by

ik =
P∑

j=1

cj

∫
rj(λ)t(λ, Vk)s(λ)dλ, (2)

where s(λ) is the spectral sensitivity of the sensor, P is the

number of different fluorescent dyes present in the whole

sample, cj and rj(λ) represents the concentration and the

emission spectrum of the j-th fluorescent dye, respectively.

This intensity ik varies with voltage, and by changing the

voltage N times, we can obtain an N -dimensional spectral

code that is unique to the input spectral distribution. The

N -dimensional spectral code is described by

i =
[

i1 · · · ik · · · iN
]⊤

. (3)

3.2 Modeling the Spectral Modulator through

Physics-Based 2D MLP Regression

In our approach, the spectral modulator functions as the

encoder within the autoencoder framework. For effective

optimization, it’s crucial that this component be differen-

tiable. Given the disparity between the ideal mathematical

models and the actual behavior of spectral modulators, as

illustrated by Eq. (1), the development of a continuous and

differentiable surrogate model is imperative. Therefore, we

have adjusted Eq. (1) to introduce a model that better aligns

with real-world behavior, as detailed below:

t

(
1

λ
,
1

V

)
= a

(
1

λ
,
1

V

)
cos

(
R

(
1

λ
,
1

V

)
+b

(
1

λ
,
1

V

))
+ c
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1
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,
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)
(4)

where R represents the retardance. The ability to set each

variable non-linearly offers high expressiveness, making it

adequate for modeling the spectral modulator.

For capturing the complex spectral transmittance charac-

teristics of the spectral modulator, we adopt a physics-based

2D MLP regression (Fig. 2) that consists of fully connected

layers and uses 1/λ and 1/V corresponding to the transmit-

tance tobs measured by a spectrometer as inputs. It outputs

the estimated variables R̂, â, b̂, and ĉ. These estimates allow

for the calculation of the estimated transmittance T̂ using

Eq. (4), effectively functioning as a physics-based decoder.

Figure 1(b) show a result of MLP regression.

Using the encoder module, we synthesize concentrations

drawn from a prior distribution and corresponding spectral

codes (Eq. (3)) for training autoencoder. Subsequently, we
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Fig. 3 Network overview of the autoencoder.

train a decoder that outputs concentration from the spec-

tral code. Unlike a simple model that generates spectral

codes from given voltages, the encoder model takes a volt-

age as input and optimizes it as a trainable parameter via

back-propagation.

3.3 Autoencoder with Simultaneous Optimiza-

tion of LCVR Voltage Selector and Quantifier

Under the constraints of a given number of observations

N and a specific set of dyes (total number P ), a set of N

encoder modulators allow it to function as an LCVR Volt-

age Selector selecting the optimal set of voltages. Thus,

unlike simple autoencoders that only utilize a decoder, our

approach enables the simultaneous optimization of both the

LCVR Voltage Selector and Concentration Quantifier, as il-

lustrated in Fig. 3. The encoder must faithfully replicate the

spectral coding process described in Section 3.1. Utilizing

the spectral transmittance model of the spectral modulator

shown in Fig. 2, we designed the encoder as a custom layer

that generates spectral codes corresponding to a specific set

of fluorophores based on Eq. (2) and Eq. (3).

The decoder is designed using an MLP with fully con-

nected layers. By extracting only the decoder part from the

autoencoder, we can construct a network that takes spectral

codes as input and outputs the concentration of fluorescent

dyes. This enables the decoder to function as a Concentra-

tion Quantifier. Our autoencoder employs a conventional

loss function defined as:

Loss = MSE(c− ĉ), (5)

where ĉ =
[
ĉ1 ĉ2 · · · ĉP

]⊤
represents the estimated

concentration vector.

Through training with this loss function, our autoencoder

achieves the simultaneous optimization of the LCVR Volt-

age Selector (Encoder) and Concentration Quantifier (De-

coder), distinguishing our method from existing techniques.

This approach allows for the accurate quantification of fluo-

rescent dye concentrations while efficiently utilizing the com-

plex characteristics of the spectral modulator.

Fig. 4 Quantification results of simulation experiment.

4. Experiments

4.1 Spectral modulator modeling using 2D MLP

regressor

To implement the spectral modulator modeling in actual

devices through physics-based 2D MLP regression, we built

a spectral modulator and measured its spectral transmit-

tance. We employed Thorlabs LCC1115-A as an LCVR

and Thorlabs WP25M-VIS visible wire grid polarizer for

the polarizers. We measured the transmittance using an

Ocean Optics Maya2000 Pro spectrometer. By consulting

the retardance data of LCC1115-A at 633 nm and 25 ◦C pro-

vided by Thorlabs, we selected 331 voltage values Vk to en-

sure constant retardance changes within the voltage resolu-

tion of the function generator (Rigol DG4162), expecting to

achieve more varied spectral transmittances. This approach

yielded real-world measurements of spectral transmittance,

tobs, corresponding to λ and Vk. The outcomes of the 2D

MLP regression can be visually examined in Fig. 1.

4.2 Principle Verification through Simulation

A simulation based on seqFISH fluorescence images was

performed to verify the quantification principle. We pre-

pared seven distinct fluorescence images representing vari-

ous RNA molecule species as the ground truth. To add re-

alism to our simulation and introduce a prior distribution of

concentrations, an additional set of RNA distributions was

prepared and randomized before inclusion in our training

dataset. After setting up normalized fluorescence spectral

distributions and a selection of ten voltages within the learn-

ing dataset for the autoencoder depicted in Fig. 3, the LCVR

Voltage Selector identified an optimal set of ten voltages,

and the Concentration Quantifier was trained accordingly.

By applying the Concentration Quantifier to quantify fluo-

rescence using the spectral code derived at these optimized

voltages, the results displayed in Fig. 4 were obtained.

These results demonstrate the capability of our method to

quantitatively determine concentrations with high accuracy,

indicated by PSNR values over 45, for seven dyes using a

reasonable number of voltage selections. This highlights the

feasibility of our approach under ideal conditions.

4.3 Experiment using real setup

Experimental setup. We built an experimental setup
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Fig. 6 Spectral distribution of ink from fluorescent pens.

as shown in Fig. 5. Though monochrome camera would

suffice for imaging, we constructed a system capable of de-

tailed hyperspectral imaging for obtaining a reference data.

We employed RobotEye REHS25 scanner (Ocular Robotics

Ltd), a Maya2000 Pro spectrometer (Ocean Optics, Inc.),

a bifurcated optical fiber, LCC25 LCVR voltage controller

(Thorlabs). We input 520nm laser light as excitation into

one fiber and collect reflected light containing fluorescence

from the other fiber. Additionally, a detachable spectral

modulator and an excitation filter were placed between the

spectrometer and scanner to cut the laser light.

Measurement Targets. Instead of RNA, ink from flu-

orescent pens was used as the target in our experiments.

Specifically, orange fluorescent pen ink (Mitsubishi Pencil

PUSR-80.4, referred to as Orange) and pink fluorescent pen

ink (ZEBRA RWK8-P, referred to as Pink) were used as

shown in Fig. 6. We attempted to separate two types of flu-

orescent dyes that could be linearly separated through spec-

tral measurement, establishing a baseline and comparing it

with estimated results. Standard solutions of the original

inks were used to create three mixtures of the dyes in ra-

tios (Orange, Pink) = (30, 10), (20, 20), (10, 30) [µL]. The
original inks of Orange and Pink, as well as their mixtures,

were applied to Japanese paper.

Experimental Method. Using the constructed setup,

we measured the fluorescent spectrum of the targets. Spec-

tral measurements were taken with the spectral modulator

inserted to acquire rj(λ)t(λ, Vk)s(λ), and without the mod-

ulator to obtain rj(λ)s(λ). The voltage input to the spectral

modulator was determined by training the autoencoder de-

picted in Fig. 3 with the same dataset as in Section 4.2,

setting the spectral distribution of the normalized inks and

the number of voltage selections to ten. Different from the

simulation experiment, we measured the spectral transmit-

tance of the spectral modulator at the optimized voltages to

Amount [µL] Estimated c̃j [%]
x Residual

Orange Pink Orange Pink
30 10 60.9 39.1

1.78
8.5

(a) 20 20 49.2 50.8 6.0
10 30 28.4 71.6 4.8
30 10 54.4 45.6

2.21
2.7

(b) 20 20 36.3 63.7 5.5
10 30 8.2 91.8 4.7

Table 1 Quantitative results of fluorescent quantification by
(a) our method and (b) baseline from spectra.

fill the gap between simulation and real setup, and retrained

the Concentration Quantifier accordingly.

Evaluation. While the molar concentration of RNA dyes

is known, it is not for the inks of the fluorescent pens. There-

fore, even when mixing different concentrations of fluores-

cent inks at known ratios, the ratios do not correspond to

cj . However, the molar concentration of the standard solu-

tion should be consistent across different mixtures, and this

consistency was used for evaluation. Specifically, the ratio of

cj estimated from the three types of mixtures (c̃j) was used

to estimate the molar concentration ratio x between Orange

and Pink, and the residual was calculated for quantitative

evaluation.

Experimental Results and discussion. The fluores-

cent intensity i of the measurement targets was calculated

by summing the spectral distribution obtained through the

spectral modulator at ten selected voltages determined by

the Voltage Selector. The learned Concentration Quantifier

was then used to estimate the concentrations of Orange and

Pink. The estimated concentration ratios c̃j for each mix-

ture are shown in Table 1(a). For comparison, c̃j estimated

using spectral distributions measured without the spectral

modulator are shown in (b). The molar concentration ratio

x estimated from the three mixtures’ c̃j and the residual be-

tween the estimated and reconstructed ratios of cj are also

presented. Although the true molar concentration ratio is

unknown, the residuals indicate that our method, despite a

slight degradation, was able to estimate ratios from a limited

amount of data compared to the traditional method.

5. Conclusion

This study presents a novel method for directly quan-

tifying fluorescent dyes with overlapping spectra using a

LCVR within an autoencoder framework. Our approach

successfully optimizes LCVR Voltage Selector and Con-

centration Quantificator simultaneously. Through simula-

tions and real-world experiments, we’ve demonstrated the

method’s feasibility. Future work will aim to further refine

the optimization process, including optimizing the number

of voltage selections and the set of dyes, promising more

efficient and broad applications in biological research and

related fields.
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