3タップ短パルス変調 Time-of-Flight 計測における 単一散乱モデルに基づく霧の影響除去

 喜島 大揮^{1,a)}
 北島 大夢¹
 櫛田 貴弘¹

 田中 賢一郎¹
 久保 尋之^{1,2}
 舩冨 卓哉¹
 向川 康博¹

概要

Time-of-Flight (ToF) カメラは,シーンの距離画像と輝 度画像を同時に取得するカメラであり,車の自動運転など への応用が期待されている.しかし,霧が生じた環境下で は,光の散乱の影響で距離も輝度も正しく計測できない. 本研究では,霧中における光の伝播を単一散乱を考慮して モデル化し,それに基づいた3タップの露光により,霧の 影響を除去した距離と輝度を計測する手法を提案する.実 環境実験により本手法の有効性を確認した.

1. はじめに

近年,シーン中の物体の距離と輝度を画像として同時に 計測可能な Time-of-Flight (ToF) カメラが急速に普及して いる.1台の ToF カメラの出力から,物体認識と距離計測 が可能なため,車の自動運転への応用が期待されている.

市販の ToF カメラでは,主に振幅変調連続波 (AMCW) 方式または短パルス変調 (SPM) 方式により変調した近赤 外光を照射し,複数のタップを用いた複数回の露光により その反射光を観測することで距離と輝度を計測する.しか し,どちらの方式でも,霧が生じた環境下では物体からの 反射光だけではなく,霧の粒子で散乱した光も観測される ため,正しく距離と輝度を計測することができない.

そこで AMCW ToF 計測を対象として,霧の影響を除去 する手法がいくつか提案されている.連ら [2] は,複数の 変調周波数を用いることで,霧の影響を除去して距離を推 定する手法を提案した.また藤村ら [1] は,霧による散乱 光のみが観測される領域を仮定することで散乱パラメータ を推定し,霧の影響を除去した距離と物体領域を推定する 手法を提案した.これらの手法では距離をある程度正しく 推定できるが,輝度画像の鮮明化は実現されておらず,こ れが自動運転などに利用する際の課題となっている.一方 SPM ToF 計測は,霧の影響を除去する取り組みがほとん

```
1 奈良先端科学技術大学院大学
```

```
<sup>2</sup> 東海大学
```

```
<sup>a)</sup> kijima.daiki.kb8@is.naist.jp
```


図1 提案手法の概要

どなされていない.しかし,SPM ToF 計測はハードウェ アに大きな変更を加えずに光源照射や露光のタイミングを 自由に設定することができるなど,計測の自由度の観点で AMCW ToF 計測よりも工夫の余地が大きい.

そこで本研究では、3 タップ SPM ToF カメラを用いて、 霧中でも正確な距離画像と鮮明な輝度画像を出力する手法 を提案する.霧が発生した環境における光の伝播を単一散 乱を考慮してモデル化し、3 タップのうちの1つを霧によ る散乱光の計測へ割り当てることで、シーンを伝播する光 の消滅係数を推定し、霧の影響を除去した距離と輝度をモ デルに基づいた計算により復元する.

本手法の有効性を,実験室において霧発生装置を用いて 霧を発生させた実環境実験により確認する.

2. 霧中における ToF 計測のモデル化

本節では, 3 タップ SPM ToF 計測の原理を述べた後, 霧 中における ToF カメラの計測をモデル化する.

2.1 3 タップ SPM ToF 計測の原理

ToF カメラは,光源から照射された光が物体表面で反射 してカメラに到達するまでの時間遅れ τ を計測し,物体ま での距離 dを光速cをもとに算出する.

$$d = \frac{c\tau}{2} \tag{1}$$

図 2 に示すように, 3 タップ SPM ToF カメラは, パルス

変調された光を数十ナノ秒間 (Tとおく) 照射し,3つの タップを用いて順に露光することでシーンからの反射光 L_{ret} を観測する.本稿では各タップに蓄積された電荷を Q_1, Q_2, Q_3 とする.通常, Q_1 は光源照射前に露光して計 測誤差要因となる環境光成分の計測に用い,対象物体から の反射光は Q_2, Q_3 によって観測する.ただし各タップの 露光時間はパルス発光時間 T と同じに設定する.このとき Q_1, Q_2, Q_3 は光源照射時間をt = 0として次式で表される.

$$Q_1 = \int_{-T}^{0} L_{ret}(t)dt \tag{2}$$

$$Q_2 = \int_0^1 L_{ret}(t)dt \tag{3}$$

$$Q_3 = \int_T^{2T} L_{ret}(t)dt \tag{4}$$

図 2(左)のように霧がないシーンでは輝度 *I*,時間遅 れ τ は 3 つの電荷から以下のように算出できる.

$$I = (Q_2 - Q_1) + (Q_3 - Q_1) \tag{5}$$

$$\tau = (Q_3 - Q_1)T/I \tag{6}$$

なお,計測は画素ごとに独立なため,座標は省略した.

2.2 単一散乱モデルに基づく霧中での ToF 計測

本節では霧中での光の伝播を考えることで,短パルス波 を照射したときの反射光波形 *L_{ret}* をモデル化する.ただ し,遠方物体も視認できる程度の比較的薄い霧を想定し, 霧の中を伝播する光は高々1度しか散乱しない単一散乱モ デルで近似する.また,光源は理想的な点光源とし,照射 光の強度は距離の二乗に反比例して減衰するものとする.

反射光波形 $L_{ret}(t)$ は,照射光波形 $L_{emit}(t)$ にシーンの時間応答 i(t) を畳み込んだものとなる.

$$L_{ret}(t) = (L_{emit} * i)(t) \tag{7}$$

照射光波形 L_{emit}(t) は,照射光強度を I₀ とすれば,照

図3 畳み込みによって表現される反射光波形の例

射時間 T を用いて下式で表される.

$$L_{emit}(t) = \begin{cases} I_0 & 0 \le t \le T\\ 0 & otherwise \end{cases}$$

時間応答 i(t) は、単一散乱を考慮すると、物体からの反 射成分 $i_r(t)$ と霧からの散乱成分 $i_s(t)$ の 2 成分から成る.

$$i(t) = i_r(t) + i_s(t) \tag{8}$$

物体からの反射成分 $i_r(t)$ は霧中を伝播する過程で散乱と 吸収による減衰を受けて観測される成分であり,霧からの 散乱成分 $i_s(t)$ は物体手前の霧の粒子で散乱して観測され る成分である.これらは,物体の距離 d,反射率r,および 霧の消滅係数 σ_t を用いて下式で表すことが出来る [3].

$$i_r(t) = \frac{1}{d^2} r e^{-2\sigma_t d} \delta\left(t - \frac{2d}{c}\right)$$
(9)
$$i_s(t) = \begin{cases} \frac{1}{(ct/2)^2} \omega_0 \sigma_t p(g, \theta) e^{-2\sigma_t (ct/2)} & 0 < t \le 2d/c \\ 0 & otherwise \end{cases}$$
(10)

なお ω_0 は霧の散乱アルベド, p は散乱の偏りを表す位相関数, $g \in [-1,1]$ は位相関数の平均方向余弦で散乱の前方・後方への偏りを表すパラメータ,および θ は散乱角である.

図3に、霧あり/なしにおける反射光波形をモデル化した一例を示す.霧なし($\sigma_t \approx 0$)の場合、反射光波形は物体からの反射成分のみからなる.このとき式(1),(5),(6)により正しく距離と輝度を計測できる.一方で霧ありの場合、散乱の影響により反射光波形は照射光波形に対して歪むため、図2(右)に示すように各タップの電荷量も変化する.そのため、霧の中で式(1),(5),(6)に基づいて距離と輝度を計測しても、正しい計測結果を得ることができない.

3. 距離と輝度の計測手法

本章ではモデル化した反射光波形に基づいた距離と輝度 の計測手法について述べる.なお,霧の散乱アルベドおよ び位相関数は一定かつ既知とし,霧の特性は消滅係数 *σ*_t の みに依存すると仮定する.また環境光は十分小さいとする.

3.1 各タップの露光タイミング設定

図3の反射光波形を見ると、物体からの反射光が初めて 観測される時間以前では、物体に依存しない霧からの散乱 光のみが観測されていることがわかる.したがって、1つ 目のタップを光源照射と同時に短時間 Δt だけ露光するこ とで霧による散乱光のみを取得するように設定すると,得 られる電荷は消滅係数 σ_t のみの関数として $Q_1(\sigma_t)$ と表す ことができる.本研究ではこれを利用するため,物体が存 在する距離を $d > c\Delta t/2$ と仮定し, Q_1, Q_2, Q_3 をそれぞれ 光源照射後 $t = [0, \Delta t], [\Delta t, T], [T, 2T - \Delta t]$ に露光するよ うに設定する.このとき, Q_2, Q_3 は対象物体からの反射光 および散乱光を観測する.したがって得られる電荷は,物 体の距離 d,反射率 r,および消滅係数 σ_t の関数としてそ れぞれ $Q_2(d, r, \sigma_t), Q_3(d, r, \sigma_t)$ と表せる.

$$Q_1(\sigma_t) = \int_0^{\Delta t} \left(L_{emit} * i_s \right)(t) dt \tag{11}$$

$$Q_2(d, r, \sigma_t) = \int_{\Delta t}^T \left(L_{emit} * (i_r + i_s) \right)(t) dt \tag{12}$$

$$Q_{3}(d,r,\sigma_{t}) = \int_{T}^{2T-\Delta t} \left(L_{emit} * (i_{r}+i_{s}) \right)(t) dt \quad (13)$$

3.2 距離と輝度の計測

前節の露光設定による観測値 (*Q*^{obs}, *Q*^{obs}, *Q*^{obs}) から以 下の手順により霧の影響を除去した距離と輝度を算出する.

(1) 消滅係数の推定

 Q_1 は霧の消滅係数 σ_t の関数であり、物体の距離 d、物体の反射率 r には依存しない、そのため、まずは最小二乗法により Q_1 から霧の消滅係数の推定値 $\hat{\sigma}_t$ を得る.

$$\hat{\sigma_t} = \underset{\sigma_t}{\operatorname{argmin}} \left| Q_1(\sigma_t) - Q_1^{obs} \right|^2 \tag{14}$$

(2) 距離・反射率の推定

次に最小二乗法により,推定された消滅係数 $\hat{\sigma}_t$ および Q_{2},Q_{3} から物体の距離および反射率の推定値 \hat{d},\hat{r} を得る.

$$\hat{d}, \hat{r} = \underset{d,r}{\operatorname{argmin}} \left| Q_2(d, r, \hat{\sigma_t}) - Q_2^{obs} \right|^2 + \left| Q_3(d, r, \hat{\sigma_t}) - Q_3^{obs} \right|^2$$
(15)

(3) 輝度の算出

最後に推定された距離 *d*,反射率 *r*,および式 (11)–(13) から,霧の影響を除去した輝度画像 *Î*を得る.

$$\hat{I} = Q_1(0) + Q_2(\hat{d}, \hat{r}, 0) + Q_3(\hat{d}, \hat{r}, 0)$$
(16)

4. 人工的な霧を用いた実験

図 4 (左) に示すような実験室において, 霧発生装置に より人工的な霧を発生させ実験を行った.

4.1 実験設定

本実験では図4(右)に示すように,株式会社ブルックマ ンテクノロジ製の3タップSPM ToFカメラ (BEC80T)の 前方に道路を模したシーンを設置し,霧の濃度を変えなが ら撮影を行った.ただし,光源の照射光強度は $I_0 = 0.008$,

図 5 霧中での距離計測および輝度計測の比較

照射時間は T = 31.8ns とし, Q_1, Q_2, Q_3 をそれぞれ光源照 射後 t = [0, 5.3ns], [5.3ns, 31.8ns], [31.8ns, 58.3ns] に露光す るように設定した.また計測値から環境光成分を除去する ため,光源を照射しない計測を続けて行い,これを差し引 いた.また各計測は 30 fps で行い,計測値として 30 フレー ム平均をとった.また,霧の散乱アルベド $\omega_0 = 0.98$ とし, 位相関数 $p(g, \theta)$ には Henyey-Greenstein 関数を用い,霧は 前方散乱媒質で g = 0.9 とした [4].また,本実験で用いた ToF カメラのセンサと光源は,同軸と見なすことができる ため、カメラが捉える散乱光は一様に散乱角 $\theta = \pi$ とした.

4.2 実験結果・評価

通常設定の ToF 計測(以降,通常 ToF と呼ぶ)および提 案手法を用いて距離と輝度を計測した結果を図 5 に示す. 距離の計測結果

霧がないときの通常 ToF の距離画像は真値と見なすこと ができる.図5を見ると,通常 ToF は霧が生じたシーン では距離を大きく手前に間違える一方で,提案手法は霧の 有無にかかわらず比較的精度よく距離を計測することがで きた.このときの通常 ToF および提案手法の各距離計測 における真値との絶対誤差を図6に示す.提案手法は画像 中の特定領域だけではなく画像全体で誤差が少なく距離を 推定することができた.また,シーン中の物体それぞれに ついて,真値との絶対誤差の領域平均を表1に示す.車体 (奥)および標識については,霧の濃さによらず誤差0.03m

図 6 距離における真値との絶対誤差 [m]

表 1 距離計測の物体領域ごとの平均絶対誤差 [m]

		霧なし	薄い霧	濃い霧	非常に濃い霧
車体	通常 ToF	-	0.04	0.19	0.34
(手前)	提案手法	0.00	0.06	0.12	0.19
車体	通常 ToF	-	0.40	1.00	1.40
(奥)	提案手法	0.03	0.01	0.01	0.03
標識	通常 ToF	-	0.53	1.04	1.31
	提案手法	0.02	0.00	0.00	0.01
建物	通常 ToF	-	0.52	1.25	1.66
	提案手法	0.05	0.11	0.29	0.43

表 2 霧中における輝度評価 [dB]

		i i i i i i i i i i i i i i i i i i i				
		薄い霧	濃い霧	非常に濃い霧		
PSNR	通常 ToF	26.31	17.28	13.15		
	提案手法	34.41	27.65	24.13		
SSIM	通常 ToF	0.96	0.81	0.65		
	提案手法	0.97	0.88	0.76		

以内の精度で距離を推定することができた.また車体 (手前) および建物についても,提案手法は通常 ToF と比較して計測誤差を大幅に小さくすることができた.

輝度の計測結果

輝度については通常 ToF と提案手法それぞれで,霧がな いときの計測値を真値と見なす.図5より,通常 ToF は霧 が濃くなるにつれて散乱光を強く観測するため,全体的に 白くなりコントラストが低下した不鮮明な画像となった. 一方で提案手法は,霧が濃くてもコントラストの低下を抑 えることができた.また,輝度画像鮮明化における定量的 評価の指標として PSNR および SSIM を用いた結果を表 2 に示す.両指標とも値が大きいほど良い結果であり,提案 手法は両指標において通常 ToF よりも優れている.

反射率・消滅係数の推定結果

提案手法により推定された反射率および消滅係数を図 7 に示す.消滅係数は,霧がないシーンでの推定値の画像平 均が0.0002 ≈ 0.0 であり,霧が濃くなるにつれて画像全体 でほぼ一様に大きくなっていることからうまく推定できた ことがわかる.一方で反射率は霧が濃くなるにつれて画像 として暗くなりさらにボケが生じている.提案手法では霧 による観測の時間的な影響のみを考慮しており,空間的な 点像の拡がりによる影響については考慮していない.した がってこれは本手法の限界であるが,図 5 および表 2 に示 すように,この反射率を用いることで通常 ToF の計測より

図 7 反射率および消滅係数 [m⁻¹] の推定値

は鮮明な輝度画像を得ることができ、ある程度有効である.

5. 結論

本研究では、3 タップ SPM ToF 計測における霧の影響 除去に取り組んだ. ToF カメラが短パルス光を照射したと きの物体からの反射光波形を単一散乱を考慮してモデル 化し、3 タップのうちの 1 つを散乱光の観測に用いること で、霧の影響を除去した距離と輝度を計測する方法を考案 した. 霧発生装置を用いて人工的に霧を発生させた実環境 実験により本手法の有効性を確認した.

本手法では消滅係数を推定するために光源照射から数ナ ノ秒間で1回目の露光を行う.この露光時間中に物体から の反射光を観測してしまうと正しく消滅係数を推定するこ とができないため、計測物体が存在する距離に関して制約 が存在する.この問題を解決するためには1回目の露光時 間 Δt を極力小さくすることが考えられるが、現状 ToF カ メラの時間分解性能の向上が必要である.

本手法では単一散乱のみを考慮してモデル化を行い,多 重散乱による影響を無視できないような霧が濃いシーンで もある程度距離と輝度を復元できた.しかし,自動運転に 安全に適用するためには,多重散乱などの複雑な光学現象 も考慮してモデル化を行う必要があり今後の課題である. 謝辞

本研究の一部は,JST CREST JPMJCR1764,科研費 JP18H03265,JP18K19822,JP19H04138からの助成,な らびに株式会社小糸製作所からの協力を受けた.

参考文献

- Fujimura, Y., Sonogashira, M. and Iiyama, M.: Simultaneous Estimation of Object Region and Depth in Participating Media Using a ToF Camera, *IEICE Transactions* on Information and Systems, Vol. 103, No. 3, pp. 660–673 (2020).
- Muraji, T., Tanaka, K., Funatomi, T. and Mukaigawa, Y.: Depth from phasor distortions in fog, *Optics Express*, Vol. 27, No. 13, pp. 18858–18868 (2019).
- [3] Narasimhan, S. G., Nayar, S. K., Sun, B. and Koppal, S. J.: Structured Light in Scattering Media, *Proceedings* of the IEEE International Conference on Computer Vision (ICCV), Vol. 1, pp. 420–427 (2005).
- [4] Narasimhan, S. G. and Nayar, S. K.: Shedding light on the weather, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 1, pp. 665–665 (2003).