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Abstract
We propose a method of compensating for the temporal varia-

tion in environmental illumination in whisk-broom hyperspectral
imaging. In addition to the standard two-dimensional scan, we
propose the execution of an extra one-dimensional scan orthog-
onal to the scanline as a reference for the compensation. Our
method uses a low-dimensional structure in the spectral property
of illumination to robustly compensate for illumination changes.
We quantitatively evaluate the compensation methods in an ex-
periment conducted under controlled illumination and present the
results of a field experiment.

1. Introduction
In the field of computer vision, remarkable advances in cam-

era technology allow robots to better understand a scene visually
than humans. Spectral data recorded by specialized cameras are
superior to RGB images captured by the human eye in terms of
sensitive detection in, for example, chemistry and art conserva-
tion. Examples of such application are the monitoring of agricul-
tural crops, soil, and forests, biomedical engineering, biometrics,
and facial recognition in the field of computer vision.

Although some studies [1], [3], [4], [5] have inferred spectral
images from RGB images, there are still demands for measuring
spectral images accurately. As one device that meets such de-
mands, a whisk-broom sensor comprises a high-resolution spec-
trometer and a mechanical scanning system as shown in Fig. 1.
The spectrometer measures a spectral distribution at a single point
and the mechanical system thus scans a scene spatially to com-
pose an image row by row from top to bottom, and from left to
right within each row. Blue arrows in Fig. 1 (b) illustrate the
scanning.

While such a system allows the capture of a hyperspectral im-
age with thousands of spectral channels, it takes a long time (e.g.,
a few hours) to scan a whole scene. Any temporal variation in
the environmental illumination is therefore a problem, especially
when the system captures light passively.

The present paper proposes a method of compensating for
changes in environmental illumination using the high operabil-
ity of the scanner and low-dimensional structure in the spec-
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      Red: Extra column scan of the proposed method.

Fig. 1 Whisk-broom imaging system. (a) Overview of the system overview
developed in this study. (b) Blue arrows illustrate the whisk-broom
scanning in compose an image. Red arrow illustrates the extra 1D
scan conducted in the proposed method.

tral factor of illumination. We specifically introduce an extra
one-dimensional (1D) scan that is perpendicular to the scan line
and regularize the spectral volume using the low-rank nature of
the spectrum [6]. Through low-rank optimization, the proposed
method is robust against noisy measurements. The effectiveness
is confirmed in a field experiment and laboratory experiments.

The contribution of this paper is that by combining the advan-
tages of whisk-broom measurement and low-rank optimization,
a hyperspectral volume with high spatial and spectral resolution
is now available even under variable illumination. The specific
achievements of the paper are as follows.
• An extra 1D scan is proposed in addition to the standard

two-dimensional (2D) scan, using the high operability of the
whisk-broom sensor.

• The low-dimensional structure in high-dimensional spectral
data is utilized to improve the performance of compensation.

• A problem of instability is clarified through experiments
conducted in a controlled environment and in the field.

2. Mathematical model
A hyperspectral image is commonly called a spectral cube be-

cause it has many channels along the spectrum. The present pa-
per also considers a temporal factor of illumination change. We
therefore denote by S(u, v, t, λ) a spectral cube with the spatial
coordinate (u, v), time t, and spectrum λ.

Suppose that there are temporal changes in the environmental
illumination of a static scene. The spectral cube can be decom-
posed as

S(u, v, t, λ) = L(t, λ)R(u, v, λ), (1)

where L(t, λ) is the environmental illumination, which is spa-
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tially uniform, and R(u, v, λ) is the reflectance/transmittance of
the scene, which is temporally invariant.

Here, our goal is to recover a spectral cube under a constant
illumination Lr(λ) = L(tr, λ) at a time tr , which is mathemati-
cally defined as

Sr(u, v, λ) = Lr(λ)R(u, v, λ). (2)

If a reflectance or transmittance standard is captured at a pixel,
R(u, v, λ) is easily recovered if Sr(u, v, λ) is given.

In whisk-broom imaging, the scanning consists of multiple row
scans as presented in Fig. 1 (b). We assume that illumination
changes are negligible in each row. Accordingly, the captured
spectral cube is formulated as

Swb(u, v, t(v), λ) = L(t(v), λ)R(u, v, λ), (3)

where the time of the scan is represented as a function of the row
of the image.

3. Compensation for illumination changes
3.1 Extra 1D scan in a minute for compensation

Each row of Swb is independently affected by changes in tem-
poral illumination; however, there is no clue with which to com-
pensate for changes along a column. We therefore execute an
extra single-column scan, which corresponds to the red arrow in
Fig. 1 (b), in addition to the imaging scan that comprises multiple
row scans. The illumination changes can also be negligible in the
column as well as in each row. Accordingly, the extra 1D scan is
formulated as

Sr(ur, v, λ) = Lr(λ)R(ur, v, λ), (4)

where ur represents the scanned column. We propose a
method of compensating for temporally varying illumination in
Swb(u, v, t(v), λ) to be fit to the spectral cube Sr(u, v, λ) =

S(u, v, tr, λ), where tr is the time when the extra scan is con-
ducted.

3.2 A naı̈ve method for compensation
Because any row in the image and the column of the extra scan

share one pixel, which corresponds to any of the intersections of
the blue arrows and the red arrow in Fig. 1 (b), we can extract
the spectral factor of the illumination change at the pixel. By
comparing the corresponding pixel in Swb and Sr , we obtain a
coefficient Cn(v, λ) of illumination change for each spectrum:

Cn(v, λ) =
Sr(ur, v, λ)

Swb(ur, v, t(v), λ)
=

Lr(λ)

L(t(v), λ)
(5)

By multiplying the coefficients with the spectrum at other pixels
in the row, we estimate the spectraof the row under the illumi-
nation at the moment when Sr is captured. As a naı̈ve method,
illumination changes are compensated for according to

Sn(u, v, λ) = Cn(v, λ)Swb(u, v, t(v), λ), (6)

where Sn(u, v, λ) is a spectral cube compensated using the naı̈ve
method.

The naı̈ve method will work well if the shared pixel has a uni-
form spectral feature, such as a reflectance/transmittance stan-
dard. However, if the pixel captures a colored object, some spec-
tra could have low intensity in both Swb and Sr . As a result,
the coefficients of such spectra become unstable because both the
numerator and denominator are small values and errors are dom-
inant.

When another pixel in the row captures a target with a differ-
ent spectral feature, the spectral distribution can be distorted at
the spectra owing to the unstable coefficients. Accordingly, the
corrected spectra has large error at such a pixel.

3.3 Extracting a low-dimensional spectral factor of illumi-
nation

We introduce a constraint to the coefficients to suppress the
effects of unstable coefficients. It is naturally assumed that il-
lumination has a low-dimensional spectral structure [6]. We thus
approximate the spectral distribution of illumination using a small
number of bases:

L(t, λ) '
∑
k

wk(t)lk(λ), (7)

where lk(λ) and wk(t) denote the spectral bases and their
weights. Lr(λ) can be treated as a constant and we thus approxi-
mate Eq. (5) as

Cn(v, λ) '
∑
k

wk(t(v))
Lr(λ)

lk(t(v), λ)
=

∑
k

w′k(v)l′k(λ).

(8)
Note that we can represent 1

Cn(v,λ) as the linear combination of
bases more precisely than Cn(v, λ). However, it turns out that
using 1

Cn(v,λ) leads to numerical instability in the compensa-
tion calculation of Eq. (6) in practice. We therefore approximate

1
Cn(v,λ) using other bases l′k(λ) even though this is not mathe-
matically ideal.
Cn(v, λ) is now ideally approximated as

∑
k w
′
k(v)l′k(λ);

however, it may have outliers where S(ur, v, λ) is dominated
by error. In practice, therefore, Cn(v, λ) needs to be treated
as a superposition of a low-rank coefficients matrix Cl(v, λ) =∑
k w
′
k(v)l′k(λ) with rank k and a sparse component of outliers

expressed as Cs:

Cn(v, λ) = Cl(v, λ) + Cs. (9)

We adopt robust principal component analysis [2] to extract the
low-dimensional structure, which is achieved by solving

min
Cl(v,λ),Cs

||Cl(v, λ)||∗ + µ||Cs||1

subject to Cn(v, λ) = Cl(v, λ) + Cs,
(10)

where || · ||∗ denotes the nuclear norm, || · ||1 refers to the l1-norm
that serves as convex relaxations of rank and sparsity, and µ is a
regularization parameter, which is set as 10−6 here.

This allows us to decompose Cn(v, λ) into low-rank coeffi-
cients Cl(v, λ) and a sparse outlier matrix Cs. Using the low
dimensionality in Cl(v, λ), the unstable coefficients can be ex-
actly recovered from the coefficients of spectra with sufficient
intensity. The recovered coefficients are expected to effectively
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Fig. 2 Setting for experiments. A variable halogen light and two LEDs are
set to illuminate a color chart.

compensate for illumination changes at other pixels.
In addition to Eq. (6), the compensation for the illumination

changes is

Ses(u, v, λ) = Cl(v, λ)Swb(u, v, t(v), λ), (11)

where Ses(u, v, λ) is the compensated spectral cube by the pro-
posed method.

4. Experiments
We developed an imaging system comprising a single-point

spectrometer and scanner. Figure 1 (a) illustrates the composition
of the system. The spectrometer is a Maya2000 Pro (Ocean Op-
tics, Inc.), which covers the wavelength range of 200–1100 nm

with a resolution of about 0.5 nm and outputs 2068 bands. The
scanner is a RobotEye REHS25 (Ocular Robotics Ltd.) that scans
with spatial resolution up to 0.01◦ through 360◦ in the pitch di-
rection and 70◦ in the yaw direction. These devices are connected
using an optical fiber.

4.1 Laboratory Experiment
We first evaluated the compensation methods under a con-

trolled environment in the laboratory as shown in Fig. 2. We
prepared a variable halogen light and two light-emitting diodes
(LEDs). We imitated a measurement under illumination changes
by temporally changing the intensity of the halogen light by hand.
We captured a hyperspectral image with constant illumination
where only the LEDs are on. The image is considered the ground
truth Sgt(u, v, λ) and one of the columns is used as an extra 1D
scan Sr(ur, v, λ) for the compensation. We also captured a hy-
perspectral image Swb(u, v, t(v), λ), which comprised multiple
row scans, with illumination changes. We evaluate the methods
by comparing the compensated results with the ground truth.

We use the mean of the absolute error in wavelength as our
metric with which to verify the quantitative accuracy of the com-
pensation for illumination changes:

err(u, v) =
1

|Λ|
∑
λ∈Λ

||(S(u, v, λ)− Sgt(u, v, λ)||, (12)

where |Λ| is the number of bands at the pixel.
We present RGB images by extracting three channels (λ =

635.8, 546.0, 435.8 nm) of the results of compensation for the il-
lumination changes in Fig. 3. Both compensated results are much
closer to the ground truth than the input image captured under
temporally variable illumination.

Figure 4 presents an error map of the results of the naı̈ve and

Ground Truth Input

Naive Low-rank

Fig. 3 The results of the experiment in the lab. The top row consists of cap-
tured images under constant and temporally variable illumination.
The bottom row consists of the compensated results using the naı̈ve
and the proposed methods.
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Fig. 4 Error map of the results of the naı̈ve and the proposed methods rela-
tive to the ground truth.
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Fig. 5 Spectral distributions at a POI and corresponding reference point.
Both compensated results are close to the ground truth; however, the
result of the naı̈ve method has large error for some spectra.

proposed methods relative to the ground truth and illustrates the
column ur in the image used for compensation. The figure shows
that the error when using the naı̈ve method is greater than that
when using the proposed method. Figure 5 presents the spec-
tral distributions at a point of interest (POI) and the correspond-
ing reference point. Both compensated results are close to the
ground truth; however, the result of the naı̈ve method has large
errors for some spectra, such as λ =419–424 and 868–875 nm.
We also see that these spectra of the reference point have a weak
signal. Meanwhile, the proposed method successfully recovered
these spectra and others thanks to the low-rank and sparse decom-
position.

The set of results presented above is only an example of the
compensation and the results strongly depend on the column used
as the reference. We therefore investigated the robustness of the
methods against the selection of the reference column. Figure 6
shows the performance of the methods with respect to the selec-
tion of the reference column. The performance is evaluated as the
mean error over the whole image. The performance of the pro-
posed method is consistently better than that of the naı̈ve method,
which has especially worse performance when the reference col-
umn contains dark parts. This analysis demonstrates the robust-
ness of the proposed method.

We captured sunlight transmitted through stained glass in a
cathedral using the proposed system. Even though RobotEye al-
lows scanning as fast as 25 points/s, its use was time consuming
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Fig. 6 Mean error in the results of the naı̈ve and proposed methods versus
the selection of the reference column. The proposed method with the
low-rank assumption is always more accurate than the naı̈ve method,
which has especially worse performance when the reference column
contains black parts.
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Fig. 7 Captured image and compensated results of the field experiment.

in capturing a hyperspectral image with a certain spatial resolu-
tion. As an example, it takes about 1 hour to capture an image
having a resolution of 300 × 300 . Because this measurement
was executed under natural sunlight, it was impossible to escape
temporal changes in sunlight intensity due to natural processes,
such as the movement of clouds and the rotation of the Earth. We
obtained multiple scans for the stained glass as follows.
( 1 ) 2D capture with a resolution of 400× 200, taking 3217.7 s.
( 2 ) 1D capture of 400× 1 orthogonal to the scanline direction.
The extra 1D capture took 15.6 s and was negligibly affected by
changes in sunlight.

As well as in Sec. 4.1, we applied both methods to the hy-
perspectral image of a stained-glass. Figure 7 shows the RGB
images of the input and the compensated results. Figure 8 also
shows the spectral distributions at a point of interest (POI) and the
corresponding reference point. Although we cannot evaluate the
results quantitatively because there is no ground truth, the spec-
tral distribution of the naı̈ve method has unnaturally large values,
such as an outlier, for some spectra as in the laboratory experi-
ment, and the spectral distribution itself seems slightly erroneous
relative to the distribution obtained using the proposed method.
This infers that the proposed method achieves better compensa-
tion than the naı̈ve method.

5. Conclusion
We proposed a method of compensating for the temporal varia-

tion in environmental illumination in whisk-broom hyperspectral
imaging. The method assumes that illumination changes are neg-
ligible in a one-line scan and compensates for changes among
the rows of a hyperspectral image. In addition to the standard 2D
scan, we executed an extra 1D scan orthogonal to the scanline as a
reference for the compensation. We clarified that the coefficients
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Fig. 8 Spectral distributions at a POI and corresponding reference point.
The results of the naı̈ve method have an unnatural spectral distribu-
tion.

of the compensation directly estimated from the reference can be
unstable depending on the measured target but this can be over-
come using a low-dimensional structure in the spectral property
of illumination. We quantitatively evaluated the compensation
methods in an experiment conducted under controlled illumina-
tion and presented the results of a field experiment.

Recent hyperspectral cameras adopt another mechanism called
the push-broom mechanism, where a scene is scanned in a series
of lines. This mechanism uses a 2D array of photodetectors to
scan both spatially and spectrally, dramatically reducing the scan
time. The assumptions of the proposed method are well suited to
the push-broom system; however, there remains the issue of how
to realize the extra column scan in the mechanism. This applica-
tion is left as promising future work.
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