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1. Introduction

The 3D structure of biological tissue is crucial to gain

structural insights for physiology and pathology. Histo-

logical section images have higher resolution compared to

MR and CT image. Therefore, a 3D model reconstructed

from histological section images gives us more detailed

structural information. However, histological section im-

ages have non-rigid deformation (e.g. tissue stretching,

tearing) caused by the sectioning process of the tissue.

This deformation causes a gap between neighbor images.

Therefore, image registration is required to reduce the gap

for reconstructing 3D model from histological sections.

In the registration process, we obtain appropriate trans-

formation that maps the source image onto the target one.

Several popular methods in registration for histological

images [1], [2] are based on the Free-form deformations

(FFD) with B-spline interpolation. FFD estimates dis-

placement at control points and calculates the displace-

ment at every point using interpolation. However, the

descriptive power of the deformation highly depends on

the resolution of the grid of the control points [3].

In this paper, we propose a novel non-rigid registra-

tion method that extends FFD. The proposed method has

three improvements on the displacement field. First, each

control point has a rigid transformation (translation and

rotation) where a control point of FFD has a displace-

ment (translation). Second, the interpolation method is

also modified as a weighted blending of rigid transforma-

tions rather than taking a weighted sum of translational

vectors. Third, the control points are defined not on a

grid, but on several local regions according to the pattern
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Fig. 1: Representation of deformation: (a) Displacement

in each pixels，(b) Displacement field of FFD. Arrow:

displacement, (c) Transformation field of the proposed

method. Dot: control point, Arrow: rigid transformation.

on the image. The proposed method calculates transfor-

mation field that defines a rigid transformation at every

point by blending the rigid transformations at the control

points. Since every point may have an individual rigid

transformation, the transformation field can describe non-

rigid deformation on the whole image.

For example, if an image has rotational transform as

shown in Fig. 1–a, it forms complex displacement field.

FFD represents the deformation by using control points

defined on a grid as shown in Fig. 1–b. The estimated

transformation becomes coarse from a low-resolution grid

of the control points. Thus, dense control points are re-

quired to represent the rotation more accurately. How-

ever, it is not stable to correctly estimate the transla-

tions on a fine grid due to such staining variation, thus it

would lead registration faults. Meanwhile, the proposed

method can describe complex non-rigid deformation from

a smaller number of control points than FFD, thus it is

more robust.

2. Proposed Method

The proposed method consists of five steps as shown in

Fig. 2. First, we extract feature points for the images

to be processed and calculates matching of them. Next,

we define local regions each of which has small non-rigid
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Fig. 2: Overview of non-rigid registration of the proposed method: Using source and target images as input, the method

(1) extracts feature keypoint, (2) matches them, (3) conducts clustering of the matching (the case for k = 2 is shown),

and (4) estimates rigid transformation Mi in each cluster. The transformation field is computed by (5) blending the

transformations Mi with the weight wi to represent a non-rigid deformation.

deformation, then estimate a rigid transformation in each

cluster. Finally, we compute a transformation field. The

following sections explain these steps in details.

2.1 Preprocessing

The proposed method estimates rigid transformations

based on keypoint detection and feature matching as the

previous methods of rigid registration do. Though any

method can be used for keypoint detection and feature

description, we adopt AKAZE (Accelerated-KAZE) [4].

By applying the method for the source and target images,

two sets of keypoints are acquired (Fig.2 (1)). Between

them, feature matching is performed by using Hamming

distance and brute-force matching (Fig.2 (2)).

As a preprocessing of the keypoint detection, histogram

equalization is performed to compensate the staining vari-

ations. The method also extracts the tissue region to re-

duce meaningless keypoints due to the noises in the back-

ground. It also removes obviously incorrect matches of

which the positions in the source and target images are

too far by assuming that the non-rigid deformation is not

so large. Indeed, even if there is no deformation, the im-

ages are also affected by rotation and translation, which

are referred as rigid transformation, as occurred in the

capturing process. The differences due to the rigid trans-

formation need to be preliminary eliminated, so the al-

gorithm first estimates the rigid transformation between

the source and target images using the whole set of the

matched feature points. The rigid transformation matrix

R is estimated using RANSAC (Random Sample Con-

sensus) algorithm [5] as the existing methods do. The

position ps of a pixel on the source image is transformed

onto ps′ by

ps′ = Rps. (1)

Here, ps and ps′ are homogeneous coordinate.

2.2 Estimating local transformations

We assume that each non-rigid deformation occurred in

each local region which is in a neighborhood and has simi-

lar RGB value. According to the assumption, we perform

k-means clustering of the keypoints (Fig.2 (3)). For the

feature space of the k-means, we use normalized coordi-

nates and RGB value of the keypoint. Then, we define

a control point vi as the center of the i-th cluster of the

source image. Using the keypoints in each cluster, a rigid

transformation Mi is also estimated using RANSAC as

well as the above (Fig.2 (4)).

2.3 Calculating transformation field by blending

local rigid transformations

The proposed method estimates a transformation field

that has a rigid transformation at each pixel by blending

the rigid transformations {Mi} (Fig.2 (5)). Blending rigid
transformations is studied in computer graphics field. One

of the simplest methods represents rigid transformation

Mi in matrix form, takes weighted sum for each element,
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and normalizes the resultant matrix to be a rigid trans-

formation. However, it is well known that some artifacts

would occur such as candy wrapper effect.

As for blending 3D transformations, DLB (Dual quater-

nion Linear Blending) and DIB (Dual quaternion Iterative

Blending) are proposed to overcome the artifact [6]. For

2D, anti-commutative dual complex and its application

to DLB have been proposed [7]. Here, we extend DIB to

a 2D case as DCIB (Dual Complex Iterative Blending).

The proposed method transforms a pixel ps′ in the trans-

formed source image onto ps′′ by the following equation.

ps′′ = F(w(ps′),M)ps′ , (2)

w(ps′
) = [w1(p

s′), ..., wk(p
s′)]⊤, (3)

M = [M1, ...,Mk]
⊤, (4)

where wi∈[1,k] are the blending weights, Mi∈[1,k] are the

rigid transformations, k is the number of clusters, and F

is a blending of transformations by DCIB.

We empirically set the weight wi at a pixel p according

to Euclid distance from p to a control point vi as follows.

ti(p) =
1

∥p− vi∥22
, (5)

wi(p) =
ti(p)∑
i

ti(p)
, (6)

Since the weights need to be convex (wi ≥ 0,
∑

i wi = 1)

we normalize the weights to meet the conditions, to guar-

antee the convergence of DIB. Each pixel has the differ-

ent rigid transformation because each pixel has individual

weights. Thus, transformation field represents non-rigid

deformation in the whole image.

3. Experiment

We experimentally present that the proposed method

is applicable to non-rigid registration. For this purpose,

we use images of a histological section. The samples used

in this experiment are a part of the Kyoto Collection of

Human Embryos maintained in the Congenital Anomaly

Research Center, Kyoto University [8]. This study was ap-

proved by the Ethics Committee of the Graduate School of

Medicine and Faculty of Medicine, Kyoto University (ap-

proval nos. R0316 and R0347). The serial sections have

about 10 micrometers of thickness, and a microscopy is

used to capture the images with about 5 micrometers of

resolution. For the evaluation, we select four specimens

from the collection and randomly select twenty pairs of

two neighboring images from each specimen.

We compare our method with one of the existing non-

rigid registration methods, bUnwarpJ (elastic registration

using B-spline) [1]. Figure 3 presents the target image (a),

the source image (b), and results of registration (c)–(e).

We show the results of samples with low (the first row)

and high (the third row) variations of staining. The sec-

ond and fourth rows present the overlay of the registration

result and the target image.

Even though the number of the control points used in

our method is much fewer than in bUnwarpJ, the pro-

posed method achieved better performance for samples

with high staining variation where bUnwarpJ has large

deformation error as shown in the bottom row of Fig. 3.

This result indicates the robustness of our methods.

Next, we compared the registration methods in various

settings to investigate the effect of a number of control

points. We evaluate registration accuracy by Jaccard In-

dex (JI) [9], which represents the overlap ratio of extracted

tissue regions in two corresponding images. The accuracy

with various settings is presented in Fig 4. bUnwarpJ

required a lot of control points (8 × 8) for better accu-

racy, while the proposed method only required 4 clusters

to achieve almost the same accuracy.

Figure 5 shows the direct comparison of the accuracy

of bUnwarpJ and the one of our method using the same

number of control points. One can see that our method

achieved similar or much better accuracy than bUnwarpJ

in most samples as the most plot points are higher than

the diagonal line.

4. Conclusion

This paper proposed a novel non-rigid registration

method that establishes transformation field. The pro-

posed method estimates rigid transformation in local re-

gions and blending them to interpolate the transforma-

tions at every pixel. Comparing to the distance field,

our transformation field can describe much complex de-

formation with a smaller number of control points. The

experiments show that the proposed method represents

non-rigid deformation by using a small number of control

points and is more robust compared to a popular existing

method. As future work, it is required to decide the num-

ber of local regions and blending weights automatically.
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