実測に基づいた散乱位相関数モデルの検証

櫛田 貴弘^{1,a)} 舩冨 卓哉^{1,b)} 久保 尋之^{1,c)} 向川 康博^{1,d)}

図 2: HG 位相関数のパラメータ g による散乱指向性の違い.

1. はじめに

牛乳や石鹸を溶かした水のような媒質中では, チンダル 現象と呼ばれる光の通り道が観測できる現象が起こる.こ の光の散乱現象を利用して,物体の幾何形状や反射特性を 計測する研究が行われている.例えば, Evrenciら [1] は 光が物体表面に到達し反射する様子を散乱を利用して観測 することで,物体の幾何形状と反射特性を同時に推定して いる.

散乱が起こる媒質と、散乱の起こらない媒質にレーザ光 を入射した際に観測される見え方の例を図1に示す.この ように、散乱の起こる媒質中では物体表面での反射位置が 観測でき、また物体の反射特性に応じて異なった光の広が り方が観測される.この光の広がり方は媒質そのものにも 影響されることが知られている.媒質の散乱特性そのもの を計測する研究として、Narasimhanら[2]は牛乳やコー ヒー、ワイン等の様々な液体について散乱特性の推定を 行った.

以上の研究では、散乱位相関数モデルとして Henyey-Greenstein (HG) 位相関数モデルを用いている.HG 位相 関数モデルは元来、宇宙空間における星間物質が引き起こ す散乱現象を論じたものであり [3]、牛乳など日常で観測さ れる一般的な媒質の散乱位相関数を対象としたものではな い.そこで本研究では、散乱位相関数を実測し、HG 位相 関数モデルへ当てはめることでモデルの検証を行う.

- $^{\rm b)}$ funatomi@is.naist.jp
- ^{c)} hkubo@is.naist.jp
- ^{d)} mukaigawa@is.naist.jp

2. 散乱位相関数モデル

Henyey-Greenstein (HG) 位相関数モデル [3] は次式で 表される.

$$f_p(g,\theta) = \frac{1}{4\pi} \frac{1 - g^2}{[1 + g^2 - 2g\cos\theta]^{\frac{3}{2}}}$$
(1)

 θ は光の進行方向に対する散乱方向の角度である. $g \in [-1,1]$ は散乱の指向性を表すパラメータで,gが0 に近い時は等方散乱となり,gが1に近いほど前方散乱, -1に近いほど後方散乱となる.gの違いによる指向性の 違いを図2に示す.

3. 散乱位相関数の実計測とモデルの検証

3.1 散乱位相関数の実計測

さまざまな θ に対する散乱光強度を実際に観測すること で散乱位相関数を計測する.チンダル現象を生じる媒質に 平行化したレーザ光を入射させ,これを周囲からカメラで 観測することにより,計測を実現する.本研究では媒質と して水で希釈した牛乳を用いるが,カメラが空気中にある 場合には境界面において屈折を生じる.そのため, θ は入 射したレーザとカメラの光軸の成す角度では得られないた め,屈折の影響を考慮して θ を算出する必要がある.また, $\theta \approx 0$ では入射したレーザがカメラに直接入射することに なり,また $\theta \approx 2\pi$ ではカメラ自体が入射レーザを遮蔽す ることになる.そのため,これらを直接観測することは難 しいが,本研究ではレーザがカメラに直接入射しない程度 にできるだけ広範な θ で散乱光強度を観測できるよう観測 装置を構成した.具体的な観測や散乱光強度の取得につい て以下に述べる.

計測環境:散乱位相関数の計測環境を図3に示す.水で 希釈した牛乳にレーザ光を入射し,散乱光を観測する.散

 ¹ 奈良先端科学技術大学院大学情報科学研究科 〒 630-0192 奈良 県生駒市高山町 8916-5

 $^{^{}a)}$ kushida.takahiro.kh3@is.naist.jp

図 3: 計測環境

乱位相関数のθに関する変化を観測するために,回転ス テージにカメラを取り付け,周囲から観測する.容器には, 観測方向による違いが生じないように円筒形のものを用い る.容器の境界による屈折の影響の計算を容易にするため に,テレセントリックレンズを用いて平行な光学系を構成 する.

画像の撮影:回転ステージに取り付けたカメラを回転させ、0°から360°まで1°ごとに画像を撮影する.ノイズを 低減するために、それぞれの角度について5枚撮影して平 均を取る.観測画像における回転ステージの軸を予めキャ リブレーションによって求めておき、軸が画像の中心を 垂直に通るように補正する.得られた画像の例を図4aに 示す.

各観測方向の輝度値の取得:回転ステージに取り付けた カメラから撮影した時,観測対象のある1点は,撮影した 角度ごとに縦に並べた画像(サイノグラム)上で sin カー ブを通る.つまり,サイノグラムに sin カーブを当てはめ ることで,各観測方向から見た同一点の輝度値を取得でき る.先の手順で得られた画像の特定の高さの画素を抜き出 し,サイノグラムを作成する.ここで得られるサイノグラ ムは屈折の影響によって歪んだ画像となっている.そのた め,水の屈折率を既知として屈折による歪みを計算し,サ イノグラムの補正を行う.そして,補正後のサイノグラム に対し sin カーブを当てはめ, sin カーブ上の輝度値を取得 する.

散乱位相関数の角度の算出:散乱位相関数は光の入射方 向に対する散乱方向の角度への散乱強度を表している. つ まり、レーザ光の入射方向とカメラの観測方向のなす角度 θを計算することで、散乱位相関数の角度を計算できる. 観測画像からレーザ光の入射方向のベクトルとカメラの観 測方向のベクトルを求め、これらの内積から、2つのベク トルのなす角度を計算する.

3.2 Henyey-Greenstein 位相関数モデルの検証

前節で得られた散乱位相関数の計測データを用いて, HG 位相関数モデルへの当てはめを行う.当てはめには最小二 乗法を用い,計測データとモデルの二乗誤差が最小となる ようにパラメータ*g*を推定する.

計測データと推定されたパラメータを用いて描画したグ ラフを図5に示す.推定された HG 位相関数のパラメータ

(a) 観測画像
 (b) サイノグラム
 図 4: 計測で得られた画像の例. (a) は右上から左下へ通過するレーザ光の散乱光を観測した様子, (b) は屈折補正後のサイノグラムである.

図 5: HG 位相関数モデルでフィッティングした結果. g = 0.79.

は g = 0.79 であった. 結果から,前方付近についてはモデ ルに合っているが,後方付近はモデルから大幅にずれてい ることが分かる.以上より,水で薄めた牛乳の散乱位相関 数の実測値は HG 位相関数モデルとの誤差が大きいことが 分かった.

4. おわりに

本研究では, 散乱位相関数を実測し, HG 位相関数モデ ルヘ当てはめることでモデルの検証を行った. その結果, 実測で得られた水で薄めた牛乳の散乱位相関数は HG 位相 関数モデルとの誤差が大きいことが分かった. 今後の課題 として, 誤差の原因について, 計測方法による影響も含め 検討していく予定である.

謝辞

本研究は科研費 JSPS (26700013),科研費 JSPS (15K16027)の助成を受けたものである.

参考文献

- D. Evrenci, M. Iiyama, T. Funatomi, M. Minoh, "Shape and Reflectance from Scattering in Participating Media," International Conference on 3D Vision (3DV2013), June 2013
- [2] S. G. Narasimhan , M. Gupta , C. Donner , R. Ramamoorthi , S. K. Nayar , H. W. Jensen, "Acquiring scattering properties of participating media by dilution," ACM Transactions on Graphics (TOG), v.25 n.3, July 2006
- [3] L.G. Henyey, J.L. Greenstein, "Diffuse Radiation in the Galaxy," Astrophys.J., vol. 93, p.70-83 Jan 1941.