多光源撮影による初期胚のリフォーカシングと 3D 表示

加藤弓子^{†1} 澤田好秀^{†1} 佐藤太一^{†1} 國吉房貴^{†2} 久保尋之^{†2} 舩冨卓哉^{†2} 向川康博^{†2}

1. はじめに

我々は、イメージセンサ上で細胞を培養して、透過光に より半透明の細胞塊を撮影するレンズレス顕微鏡¹⁾²⁾を開 発中である.光学系部品がなく、小型化が容易であり、狭 いインキュベータ内で細胞を継続的に撮影しうる.レンズ レス顕微鏡では、イメージセンサと照明の間にあるすべて の細胞の光学像が取得されるため、重なり合った細胞を撮 影すると、個々の細胞の判別は困難である.そのため、細 胞の大きさや形状・配置がわからず、細胞の状態を判断で きない.そこで我々は、照明を多方向から照射する多光源 撮影を行い、リフォーカシング³により撮影後に自由に焦 点面を設定して、細胞塊中の細胞を観察可能とした.さら に、リフォーカシング画像を元に細胞の3D表示を行った. マウス初期胚を用いて実証したので報告する.

2. システム構成と撮影手順

2.1 構成

図1は我々の実験システムの写真と概略図である.細胞 培養用のシャーレと一体となったイメージセンサ(パナソ ニック製 CCD MN34595PL)上にマウス初期胚と培養液 を入れて撮影を行う.センサ表面の集光レンズは取り除い てある.CCDの画素ピッチは1.335μmである.

細胞培養用のシャーレの底面に 3mm φ の穴をあけ, イメ ージセンサは穴をふさぐように貼り付けされている.撮影 時には,専用のソケットにより基盤に固定する.

照明は LED 光源(林時計工業製 LA-HDF5010) による白 色光をグラスファイバーで導光し,10μmφのピンホール (駿河精機製 S71-10) を通して照射している.ピンホール は xy ステージ(駿河精機製 KYG06020-C) によりイメージ

†1 パナソニック株式会社

†2 奈良先端科学技術大学院大学 情報科学研究科

センサと平行な面上で移動可能に構成した.照明の高さは シャーレの形状に応じて調整して 11.5mm とした. 十分に 小さいピンホールを用いることで,イメージセンサの 1 画 素に,照明の面内の 2 点以上から光線が到達することのな い,擬似的な点光源となる.

2.2 撮影手順

被写体として,マウス初期胚(2細胞期,4細胞期)を 用いた.マウス初期胚は半透明物体で,ほぼ球形をしてお り,直径約100μmである.

マウス胚は外側を覆う胚膜(透明体)の中に、細胞があ る.2細胞期、4細胞期の正常胚ではほぼ同じ大きさの細 胞が、それぞれ2個、4個備わっている.2から4細胞期 では、細胞数が増えても胚全体の大きさに変化はなく、細 胞数が増えるに従って細胞は小さくなる.

ピンホールの位置制御の原点(照明位置原点)は、イメ ージセンサ中心の直上とした.図2にピンホールの設置間 隔の決定方法を示す.被写体の高さ方向の中心点を標準焦 点位置とし、照明間隔は、隣り合う2点からの光線が、標 準焦点位置を透過して、イメージセンサ上の1 画素ピッチ 以上離れた点に到達するように決定した.本報告ではマウ スの初期胚(直径約 100 µ m)の高さ方向の中心として、 イメージセンサから 50 µ m の高さを標準焦点位置と定め、 照明の間隔を 320 µ m と決定した.

ピンホールの位置は,理想的には円状に配置されること が望ましく,被写界深度を浅くするためには円の直径を大 きくとることが望ましい.これは,ピンホールの配置が光 学レンズに対応するためである³⁾.本報告では x 軸方向, y 軸方向ともに9点分の正方形の4隅を削った57点の照明を 設定した.なお,撮影中の照明の強度は一定とし,照明位 置による強度変化に対する補正は行わなかった.

撮影は暗室内で行った.シャーレに培養液を入れ,底の イメージセンサ上

イメーシャンサ上 マウス初期用ソ ケットによりイメ ージセンサ付きシ ャーレを基板に接 ージによりピンホ ールの位置を移動

図 2 擬似点光源の設置間隔の決定方 法. し,移動終了後に撮影した.ピンホールを移動するごとに 撮影を繰り返し,リフォーカシングに用いる画像セットを 取得した.露光時間は約540msとした.

3. 処理

3.1 リフォーカシング

我々は、異なる照明位置からの透過光によって被写体が イメージセンサ上の異なる位置に撮影されることを利用し てリフォーカシングを行う.異なる位置に撮影された被写 体のなかで、焦点を合わせたい部分(イメージセンサから の距離)が重なるように画像ごとの変位量を求める.変位 量は照明位置の違いによるイメージセンサ上の位置の差で ある.変位量を合焦画像全体で一定とするのではなく、画 素ごとに変化させることで、合焦面を斜めや曲面にするな ど、通常の光学顕微鏡では実現が困難な合焦画像を生成す ることが出来る.リフォーカシングにより合焦面上の物体 に対応する像は明確化されるがそれ以外に位置する物体の 像はぼける.このように、リフォーカシングを用いて対象 物体の立体構造が把握できる.

3.2 3D表示

イメージセンサから $1 \mu m$ から $100 \mu m$ まで $1 \mu m$ ごとに 生成したリフォーカシング画像を元に、3 D表示を行った.

各リフォーカシング画像において,ハフ変換で円を1つ 抽出し,胚膜の画像平面上の中心位置と半径を決定する. 次に各リフォーカシング画像で上記円の内側に含まれるエ ッジ点を細胞表面の候補点とし,イメージセンサ表面と表 面に直行する軸で構成される3次元座標上で,K-means法 で細胞数にクラスタリングする.各クラスタの重心を各細 胞の中心位置として球のモデルを当てはめる.

4. 実験結果

図3に4細胞期のマウス胚を被写体として撮影した画像 を示す. a)は全焦点画像であり, b) c)はイメージセ ンサに平行な平面でリフォーカシングを行った画像, d) は合焦面を斜めにしてリフォーカシングを行った画像である.全焦点画像 a) では,個々の細胞の区別が困難であるが,リフォーカシングにより,b)の位置,c)の位置に それぞれ2つの細胞が確認できる.さらにd)では,c) で確認できる細胞のうち大きい方(左側)と,b)の2つ の細胞とを通る合焦面により,異なる位置に存在する細胞 を同時に確認できた.任意の合焦面の画像生成を確認した.

図4は2細胞期胚を3D表示した一例である.2細胞胚 については上記方法で3DCGを合成できたが、4細胞胚に ついてはクラスタリングによる重心の決定が出来なかった.

5. 考察と今後の課題

イメージセンサ上に半透明の被写体を直接置いて,擬似 点光源により得られた画像をリフォーカシングすることで, マウス4細胞期胚中の細胞の明確な画像を得ることができ た.さらに,任意の合焦面の画像を生成し,視点変換に相 当する画像が生成できることを確認した.

本報告では2細胞期では3DCGの作成ができたが,4細 胞期胚ではリフォーカシング画像から4つの細胞が判別で きたにもかかわらず3DCGが作成できなかった.4細胞期 では細胞同士の接触部分が多く,重心決定に失敗したと考 えられる.

リフォーカシングにあわせて,屈折光の分離,解像度を 補う手法の導入により,細胞の境界面を鮮明に捉える方式 を検討する.8細胞期胚の細胞の判別と3DCG化が可能な, 実用的な撮影システムの開発を目指す.

参考文献

1) Bishara, W. Su, T. Coksun, A. F. and Ozcan, A.:Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution, Optics express, vol. 18, No.11, pp. 11181 – 11191 (2010).

 Zheng, G. Kolner, C. and Yang, C.:Microscopy refocusing and dark-field imaging by using a simple LED array," Optics letters, vol. 36, 20, pp. 3987-3989, October, 2011.

3) Ng, R. et.al.:Light Field Photography with a Hand-held Plenoptic Camera, Stanford Tech Report CTSR 2005-02 (2005).

図3 マウス4細胞期胚を被写体とした撮影結果.上図は胚内の細胞の 配置と設定した合焦面の位置を示す模式図.a)リフォーカシン グを行っていない画像.照明位置はイメージセンサ中央直上.b) イメージセンサ上38µm水平面の合焦画像.c)イメージセンサ 上70µm水平面の合焦画像.d) 傾斜平面の合焦画像.水平面に 対して,画像右方向へ10度下がり,下方向へ10度下がる角度.

図4 マウス2細胞期胚の撮影結果から作成した3DCG. 左図は胚膜(透明体)と細胞の3DCGと断面位置を示した図であり,右図は左図中の断面位置の合焦画像.