平行高周波照明による透視画像の鮮明化

田中 賢一郎[†] 向川 康博[†] 八木 康史[†]

† 大阪大学 産業科学研究所

大阪府茨木市美穂ヶ丘 8-1

あらまし プラスチックなどの光を透過する性質を持つ物体では,透視画像を撮影することで,その内部状態を推定 することができる.しかし,多くの物体では内部で光が散乱してしまうため,透視画像は不鮮明になりやすい.散乱 光を除去するために,偏光板やライトフィールドカメラを用いた解析が行われてきたが,鮮明化には不十分であった. そこで,本論文では,透過光と散乱光を分離し,鮮明な透視画像を得るための平行高周波照明を提案する.まず,高 周波照明は,撮影法を工夫することで様々な成分を分離できるが,いずれも光路が重なる光と重ならない光を分離す る手法として統一的に説明できることを示す.次に,照明と観測を共に平行系にすることで,透過光が重ならなくな り,透過光と散乱光を分離できることを示す.アクリル板を用いた実験では,平行高周波照明が画像の鮮明化に有効 であることを定量的に確認した.さらに,近赤外の波長を用いることで,鮮明化の効果をさらに高められることにつ いても確認した.

キーワード 平行高周波照明, 透過光, 散乱光, 鮮明化

1. はじめに

あるシーンを撮影したときに得られる画像が不鮮明に なる原因のひとつとして,光線が微粒子等に衝突して進 路が変化する散乱という現象があげられる.光線が散乱 すると,光の直進性が乱されるため,画像は不鮮明にな る.散乱体内部の不鮮明なシーンを鮮明化する技術は, 様々な分野において重要な基礎技術である.図1(a)は, 菓子中に存在する釘の透視画像の例であり,産業界では, このように製品内部に異物が紛れていないか検査したい という要求がある.また,霧の中にいる人の姿を検知す るような車載センサの開発も行われている.医療分野で は,生体内部の可視化に関する研究が盛んに行われてい る.近赤外光を用いることで,図1(b)のような透視画像 を得ることができる.このような生体内部の可視化技術 は,例えば指にシャープペンシルの芯が刺さった事故な どにおける治療時に必要とされる[1].

コンピュータビジョン分野では,特殊な光学系や計算 機を併用した画像撮影法であるコンピューテーショナ ルフォトグラフィ技術が活発に研究され,散乱光の除去 にも利用されている.Gilbert と Pernicka [2] や Treibitz と Schechner [3] は円偏光を用いた後方散乱光の除去に よってシーンを鮮明化した.しかし,散乱光は完全な非 偏光となるわけではないため,鮮明化の効果は限られて いる.Narasimhanら [4] は単一散乱をモデル化すること で,濁った液体中の物体の見えを鮮明化した.しかし, 単一散乱のみという強い制約があるため,多重散乱を含 む一般的なシーンには適用が難しい.Kimら [5] は,ラ イトフィールドカメラを用いた時に,散乱光と透過光で

(a) 異物検査(b) 生体の透視画像図 1 透視画像の例

はセンサに到達する際の入射角度が異なることを利用し, 散乱光を除去した.しかし,解像度が大きく低下する問 題があった.

本研究では,透過光と散乱光を分離することで,透 視画像を鮮明化できる平行高周波照明を提案する.ま ず,Nayarら[6]が提案した高周波照明およびその拡張手 法[7][8][9]は,光路が重なる光と重ならない光を分離す る手法として統一的に説明できることを示す.次に,照 明と観測を共に平行系にすることによって,透過光が重 ならなくなり,透過光と散乱光を分離できることを示す. また,テレセントリックレンズを用いた平行系を構築し, 不鮮明な透視画像の鮮明化に取り組む.さらに,この鮮 明化が,様々な物体に対して透過性の高い近赤外光と容 易に組み合わせられることを示し,その効果を検証する.

2. 関連研究

医療診断や工業品検査では鮮明な透視画像を得るため に,X線撮影が広く使われている.X線は透過性が高 く散乱しにくいため,鮮明な透視画像を得ることができ る.しかし,X線には被曝の問題があり,適用範囲は限 られる.

また,近赤外光も生体への透過性が比較的高いため, 生体イメージングによく用いられている.例えばセキュ リティ分野では近赤外光による静脈認証が利用されてい る.また,医療分野では,酸化ヘモグロビンと還元ヘモ グロビンでは近赤外光の吸収特性が違うことを利用し, 血中の酸素濃度が測定されている.松田ら[10]は,複数 の波長を用いて血管透視像の動静脈判別を行った.また, 西田ら[11]は,2波長間の透視画像を除算することで, 血管透視画像を改善した.この手法は,透視画像の背景 領域の明るさの不均一さをなくすことで画質改善を施し たものであり,散乱光が除去されたわけではない.

一方,本研究では,可視光や近赤外光などの安全な光 を用いて,散乱光を除去することで透視画像を鮮明化す ることを目的とする.

3. 透視画像の撮影

3.1 透視画像の成分

光源から発せられた光を散乱体を通して反対側からカ メラで撮影することで,図1のような透視画像が得られ る.カメラで観測される光は,2種類の成分が考えられ る.一つは,光路が散乱体に影響されることなく直進し て観測される透過光であり,もう一つは,光が微粒子と 衝突を繰り返すことによって光路が様々に変化した散乱 光である.散乱光には,物体内部の吸収体に対して回り 込むように広がる光も存在する.また,入射光は,吸収 体に到達する過程でも散乱し,周りの観測光に影響を与 える.つまり,透視画像が不鮮明になる主な原因は,散 乱光が光の直進性を乱すためである.

透過型のシーンで観測される光は透過光と散乱光のみ とすれば,観測光(L)は,透過光(L_t)と散乱光(L_s) の和として次式のように表される.

$$L = L_t + L_s \tag{1}$$

鮮明な透視画像を得るためには, L_s を除去し, L_t のみを抽出する必要がある.

3.2 透過光と散乱光の性質の違い

透過光と散乱光を分離するためには,まず両成分の性質の違いを明らかにする必要がある.本節では,偏光, 角度,空間的な広がりに関する性質の違いについて述べる.

3.2.1 偏光に関する性質

図 2(a) に示すように,物体に偏光の性質を持った光を 入射させる場合,透過光と散乱光では,その偏光の性質 が異なる.透過光は散乱体の影響を受けないので,入射 光の偏光性は保たれる.しかし,光は微粒子に衝突して 光路が変化する度に徐々に偏光の性質を失ってゆく.そ のため,衝突回数の少ない散乱光は偏光の性質が乱れた 部分偏光となり,衝突を何度も繰り返した多重散乱光は

偏光の性質を失った非偏光となる.この違いを利用し, 偏光板を2枚用いることで散乱光を抑制することができ る.直線偏光板は,偏光面に平行な偏光を透過し,垂直 な光を遮断するため,入射光はその偏光度によって強度 が減衰する.したがって,偏光板を散乱体前後に平行に 配置することで,散乱光の強度を抑え,透視画像を改善 できる.

3.2.2 角度に関する性質

図2(b)に示すように,ある観測点からは様々な方向に 光が出射しており,透過光と散乱光ではこの角度が異な る.透過光は,散乱物体により光路が変化しないため, 入射光と同一直線上に同じ向きで出射する.一方,散乱 光は,光路が様々に変化するため,出射時の角度も様々 である.この性質を利用し,Kimら[5]は,ライトフィー ルドカメラで光の角度情報を記録し,透過光強度を推定 した.しかし,ピンホールアレイやレンズアレイを用い たライトフィールドカメラは解像度が大きく低下する問 題を抱えている.

3.2.3 空間的な広がりに関する性質

図 2(c) に示すように,透過光と散乱光では出射位置に 関して性質が異なる.透過光は,入射光と同一直線上に 存在するのに対して,散乱光は散乱体内部で広がるため, 様々な位置から出射する.一本の光線を入射したとき, 透過光は鋭いピークを持って観測される.そのため,光 線の入射位置をわずかに変えると,観測値もそれに合わ せて変動する.一方,散乱光は,たとえ入射光が一本の 光線であったとしても観測値は広がりを持って観測され る.そのため,入射位置がわずかにずれただけでは,観 測値に大きな違いは生じない.我々は,この散乱光が空 間的に広がる性質を利用して透過光と散乱光の分離に取 り組む.

3.2.4 その他の性質

以上で述べた他にも,透過光と散乱光の性質の違いが 利用されている.例えば,散乱の特性は波長依存である ことから,多波長解析が行われている[12].また,散乱 光は透過光に比べて光路長が長くなり,到達時間が遅れ ることを利用した解析も行われている[13].

4. 高周波照明による成分分離

4.1 高周波照明の原理

Nayarら[6]は、照明としてプロジェクタを用いて,白 と黒が交互に繰り返される細かいチェッカーパターン(高 周波パターン)をシーンに投影することで,観測画像を 直接成分と大域成分に分解できる高周波照明を提案した. ここでいう直接成分とは、プロジェクタから出射された 光線が物体表面上で一度だけ反射し,そのままカメラで 観測される成分を指す.具体的には,拡散反射と鏡面反 射であり、パターン光の高周波成分がそのまま残ってい る.一方,大域成分とは、反射を繰り返して様々な光路 を通ることで投影パターンが平均化されて観測される成 分を指す.具体的には,相互反射や表面下散乱,体積散 乱などであり,パターン光の高周波成分は失われてしま い,低域通過フィルタとして働く現象である.

そのため,高周波パターンの位相をわずかに変化させると,直接成分もそれに合わせて変化するが,大域成分はほとんど変化しない.この違いを利用して,両成分を分離することができる.ここで, $L_d[c] \ge L_g[c]$ を,それぞれカメラのピクセル cで観測される直接成分と大域成分とする.高周波パターンの白と黒の画素数が同数であるとし,高周波パターンの位相を様々に変化させた場合の,カメラのあるピクセル cで観測される最大値 $L_{max}[c]$ と最小値 $L_{min}[c]$ は,それぞれ次式のように表される.

$$L_{max}[c] = L_d[c] + \frac{1}{2}L_g[c]$$
(2)

$$L_{min}[c] = \frac{1}{2}L_g[c] \tag{3}$$

この関係から,直接成分と大域成分は以下のようにして 推定できる[6].

$$L_d[c] = L_{max}[c] - L_{min}[c] \tag{4}$$

 $L_g[c] = 2L_{min}[c] \tag{5}$

4.2 高周波照明の拡張手法

前節では,高周波パターンを投影した場合に,高周波 成分が残るか,あるいは低域通過フィルタとして働くか の違いによって成分が分離できる原理を説明した.一方 で,高周波パターンの白画素に対応する光線に着目する と,直接成分とは光線が互いに重ならずに観測できる成 分であると見なすこともできる.高周波照明法は,照明 と撮影を工夫することで,様々な成分を分離できるよう に拡張されている.本節では,これらの拡張手法を光線 の重なりという観点で見直すことで,仕組みを統一的に 説明できることを示す.

4.2.1 拡散・鏡面反射成分と大域成分の分離

Nayar ら [6] の手法では,直接成分は拡散・鏡面反射 であった.プロジェクタから出射し,物体表面上で反射 して,カメラで撮影されるまでの直接成分の光路の一例 を,図3(a)の赤線で示す.この赤線は,青色で示す別の 直接反射の光路と重ならない.光線が互いに重ならない ことで,高周波成分が残ることとなる.

4.2.2 拡散反射と鏡面反射の分離

Lamond ら [7] は,半球状スクリーンに高周波パター ンを投影し,その映り込みを観測することで,拡散反射 と鏡面反射を分離できることを示した.この場合,直接 成分は鏡面反射であり,図3(b)に示すように,鏡面反射 に対応する赤線や青線の光路は互いに重ならない. 4.2.3 平面内での単一散乱と多重散乱の分離

Mukaigawa ら [8] は,厚みのない平面上の半透明物体 に対して側方からストライプ状の高周波パターンを投影 し,物体の法線方向から撮影することで,単一散乱と多 重散乱を分離できることを示した.この場合,直接成分 は単一散乱である.図3(c)に示すように,対象を平面 に限定することで,単一散乱に対応する赤線や青線の光 路が互いに重ならないように工夫していることが特徴で ある.

4.2.4 体積内での単一散乱と多重散乱の分離

Mukaigawa ら [9] は,前節で述べたストライプ状の高 周波パターン投影を拡張し,パターンを走査することで, 体積のある半透明物体中で生じる単一散乱と多重散乱を 分離できることを示した.この場合も同様に,直接成分 は単一散乱である.2次元状の高周波パターンを投影す ると単一散乱が互いに重なってしまうが,図3(d)に示す ように,奥行きごとに別々に投影することで,光線の重 なりを防いでいる.

4.3 光線の重なりを防ぐ工夫

前節で紹介した高周波照明に基づく様々な拡張手法は, 光線が互いに重ならない光を直接成分として分離すると いう点で共通している.高周波パターン中の白画素は一 本の光線に対応し,たとえ空間上でそれらが重なること はなかったとしても,カメラ・プロジェクタの配置や注 目している光学現象によっては,それらの光線が重なっ て計測されることがある.そのため,分離したい成分が 互いに重なって観測されないように工夫することができ れば,高周波照明が適用できることがわかる.

5. 平行高周波照明

5.1 透視画像における光線の重なり

本研究の目的は,透視画像に含まれる透過光と散乱光 を分離することである.そこで,光源としてプロジェク タを用いて,高周波照明を利用することを考える.図 4(a)のように,単純にプロジェクタから高周波パターン を投影し,反対側からカメラで撮影しても,透過光は抽 出できない.なぜなら,透過光そのものは空間中で互 いに重ならないが,透過光は直接観測できず,透過光に 沿った単一散乱を観測することになる.そのため,赤線 の光路の奥には青線の光路があり,これらが図4(c)のよ うに重なって観測されてしまうからである.

この透過光の重なりを避けるための解決法は,照明と 観測を平行系にすることである.図4(b)のように,高 周波パターンを平行投影し,その透視画像を同じく平行 投影で撮影すれば,光線はシーン中を平行に進行するた め,図4(d)のように透過光が互いに重なって観測される ことはない.一方,散乱光は反射を繰り返すため,互い に重なって観測される.

我々は,この照明・観測方法を「平行高周波照明」と 呼ぶ.この平行高周波照明では,透視画像中の透過光と 散乱光を分離できる.

5.2 平行系計測システム

平行高周波照明を実現するためには,2種類の方法が 考えられる.1つは,図5(a)のように,テレセントリッ クレンズを用いる方法である.テレセントリックレンズ

は,高価で実視野は狭いが,既製品が多く扱いやすい. 2つ目は,図5(b)のように,放物面鏡を用いる方法である.放物面鏡は,比較的安価で視野も大きくしやすいが, 放物面鏡の焦点をカメラとプロジェクタの投影中心に一 致させる必要があり,位置合わせが難しい.

実際には,対象シーンのサイズ,コスト,セットアッ プの容易さなどを考慮して設計すればよい.もちろん, カメラとプロジェクタで,テレセントリックレンズと放 物面鏡を別々に組み合わせることもできる.

6. 実 験

6.1 波長に関する予備実験

光の透過性や散乱の性質は波長に強く依存する.そこ で,透過画像を鮮明化するにあたり,まず,波長による 透過性の違いを比較した.光源として,470nm(青), 525nm(緑),660nm(赤),850nm(近赤外)の4種類 のLEDを用いた.対象物体は,図6に示すように直径 約4mmの被覆ケーブルを乳白色のアクリル板で挟んだ ものを利用した.各波長における通常の照明での透視画 像を図7に示す.また,各画像中の縦方向の輝度値の変 化を図8に示す.波長が長いほど,ケーブルの像の広が りが少なく,近赤外光が最もコントラストが高く透過性 が高いことがわかる.

また,生体の主な吸収体である水とヘモグロビンの吸 収特性は図9のような分布になっており,近赤外光に対 して高い透過性がある.特に波長700nm~1200nmは, 水とヘモグロビンの両方で透過性が高いことから光学の 窓と呼ばれている.以上をふまえて,我々は,アクリル 板に対して最も透過性が高く,生体に対しても高い透過 性が期待できる850nmの近赤外光を以降の実験で使用 し,透視画像の鮮明化に取り組んだ.

図 8 輝度値の変化

6.2 実験環境

本実験では,近赤外波長帯域での平行高周波照明を実 現するために,専用のプロジェクタ・カメラシステムを使 用した.プロジェクタは,Texas Instruments 製 DMD プ ロジェクタ開発キット(LightCommander)であり,図 10に示すように Edmund Optics 製テレセントリックレ ンズを装着することで平行系を実現した.このプロジェ クタでは,光源として RGB の可視光に加えて 850nm 付 近にピークを持つ近赤外光を設定できるため,近赤外平 行光を実現できる.

さらに,近赤外にも感度を持つモノクロ CCD カメラ (Point Grey 社 Grasshopper2)にもテレセントリックレ ンズを装着し,図11のようにプロジェクタと組み合わせ ることで,近赤外波長帯での平行高周波照明を実現した.

プロジェクタで使用する近赤外 LED 光源の分光分布 は図 12(a) の通りである.また, CCD の感度特性は図

図 10 平行光プロジェクタ

図 11 計測環境

12(b) であり, 近赤外に対しても, 十分な感度がある.プロジェクタが投影するパターンは 9px×9px のチェッカー パターンであり, テクスチャのサイズに対して十分に細かい.

6.3 アクリル板の透視画像

まず,アクリル板の透視画像を鮮明化する実験を行った.撮影対象は,図6に示すような直径約4mmの被覆 ケーブルを乳白色のアクリル板で挟んだものである.ア クリル板は光を散乱させる性質があるため,図13(a)の ように通常観測される透視画像はエッジがぼけて不鮮明 になっている.(b)は近赤外を用いて観測される通常の 透視画像である.可視光を用いた場合と比べて画像は鮮 明化されているものの,散乱光が残っている.(c)は提 案手法により透過光を抽出した画像である.散乱光が除 去され画像が鮮明化されている.(d)は上部のアクリル 板を外して撮影した画像であり,真値として扱った.

図 13(d) の赤線に沿って各画像の輝度値の変化をグラ フにしたものが図 14 である.提案手法によって,エッ ジが明確になり画像が鮮明化されていることがわかる. また,真値との正規化相互相関を,図 15 に示す.提案手

Ϋ́.

図 16 濁った液体中の金属部品

法で真値と相関が高く,鮮明さが向上していることがわかる.

6.4 濁った液体の透視画像

次に,濁った液体中に物体を沈めたシーンの透視画像 を鮮明化する実験を行った.撮影対象は,図16に示すよ うに,牛乳を水で薄めた白濁液に金属部品を沈めたもの である.図17(a)は可視光の通常照明で観測される透視 画像である.白濁液により光が散乱しているため,エッ ジがぼけて不鮮明になっている.(b)は近赤外を用いて 観測される透視画像である.可視光を用いた場合に比べ て画像は鮮明化されているものの,散乱光が残されてい る.(d)は提案手法により透過光を抽出した画像である. 散乱光が除去され画像が鮮明化されている.

6.5 生体に対する実験

次に近赤外光の透過性が比較的高い生体を対象として

(c) 可視光平行高周波照明(d) 提案手法図 17 濁った液体を用いた実験結果

(a) 近赤外通常照明

(b) 提案手法図 18 生体に対する実験結果

実験を行った.対象物体は,人体の小指である.図18 に 人体の小指への適用結果を示す.(a)は通常の透視画像 である.血管層が確認できるが,生体内部で散乱し,不 鮮明である.(b)は提案手法により透過光を抽出し,輝 度値を強調して表示した画像である.各画像中の赤線で 囲った矩形領域における輝度値の変化を図19 に示す.通 常の透視画像では血管領域が不鮮明であり確認し難いが, 提案手法により血管領域が鮮明化された.

しかし, ノイズが多く, 血管領域に僅かなずれが生じ ている.この理由の一つとして, 光が小指に入射・出射 する時に空気との境界で屈折し, 厳密な平行系を実現で きなかったことが考えられる.

6.6 制限と考察

実験により,提案手法よって散乱光が除去され,エッ

図 19 生体透視画像の輝度値の変化

ジが明確になる効果を確認した.一方で,いくつかの問 題点も明らかとなった.

まず,提案手法によって得られる画像には,多くのノ イズが含まれてしまう場合がある.対象物体によっては, 観測光における透過光の割合が著しく低くなることがあ り,結果として透過光の強度とカメラの観測ノイズが同 程度になってしまう.冷却 CCD カメラ等を用いたり,ノ イズ除去の画像処理によって,ある程度の改善は期待で きるが,本質的な解決は難しい.

また,表面形状が平面でない物体に対しては,物体へ の入射および出射時に光が屈折するため,厳密な平行系 ではなくなる.そのため,鮮明化の効果は限定的となる. そのような物体に対して本手法を適用する際は,屈折率 が等しい液体中に物体を配置するなどの工夫が必要で ある.

なお,透過光がほとんど存在せず,散乱光のみが観測 される場合は,本手法は適用できない.そのため,例え ば近赤外光を用いて人体の内臓を可視化するといった用 途には適用できない.

7. 結 論

本研究では,物体の透視画像を鮮明化するために,観 測光に含まれる透過光を分離する手法を提案した.ま ず,高周波照明法の原理について説明し,抽出したい光 に対して,光路が重ならないように観測することで高周 波照明法が適用できることを示した.また,高周波照明 によって透過光を抽出するために,カメラとプロジェク タの投影を共に平行系とした平行高周波照明を新たに提 案した.

乳白色のアクリル板を用いた実験では,平行高周波照 明により,実際に透視画像が鮮明化されることを確認し た.正規化相関を比較することによって,提案手法が画 像の鮮明化に貢献していること定量的に示した.また, 薄めた牛乳を用いた実験では,本手法が鮮明化に大きく 貢献していることを確認した.

生体に対する実験では,血管領域の鮮明化はできたが, 透過光の量が少ないことに起因するノイズが目立った. 今後,機材や画像処理アルゴリズムの工夫によって更な る鮮明化に取り組んでいきたい.

謝 辞

本研究は,総合科学技術会議により制度設計された最 先端・次世代研究開発支援プログラムにより,日本学術 振興会を通して助成されたものである.

文 献

- 早川 吉彦,山下 拓慶,大粒来 孝,妙瀬田 泰隆,佐川 盛 久,近藤 篤,辻 由美子,本田 明,近赤外線イメージン グによる皮下異物の検出実験,医用画像情報学会雑誌, Vol. 27, No. 3, pp.50–54, 2010
- [2] G.D. Gilbert and J.C. Pernicka, Improvement of underwater visibility by reduction of backscatter with a circular polarization technique, *Applied Optics*, Vol. 6, No. 4, pp. 741–746, 1967.
- [3] T. Treibitz and Y.Y. Schechner, Active Polarization Descattering, *IEEE transactions on pattern analysis* and machine intelligence, pp. 385–399, 2008.
- [4] S. G. Narasimhan, S. K. Nayar, B. Sun, S. J. Koppal, Structured light in scattering media, Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, pp. 420 - 427 Vol. 1, 2005
- [5] J. Kim, D. Lanman, Y. Mukaigawa, R. Raskar, Descattering tansmission via angular filtering, ECCV'10 Proceedings of the 11th European conference on Computer vision: Part I, pp.86 - 99, 2010
- [6] S.K. Nayar, G. Krishnan, M.D. Grossberg, and R. Raskar, Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination, In ACM SIGGRAPH 2006 Papers, pp. 935–944. ACM, 2006.
- [7] B. Lamond, P. Peers, and P. Debevec Fast Imagebased Separation of Diffuse and Specular Reflections, ICT-TR-02.2007, 2007
- [8] Y. Mukaigawa, Y. Yagi, and R. Raskar, Analysis of Light Transport in Scattering Media, In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 153–160. IEEE, 2010.
- [9] Y.Mukaigawa, R.Raskar, and Y.Yagi, "Analysis of Scattering Light Transport in Translucent Media", *IPSJ Transactions on Computer Vision and Appli*cations, Vol. 3, pp.122-133, Dec. 2011.
- [10] 松田康志,飛澤直哉,浪田健,加藤祐次,清水孝一,血 管透視像の分光解析による動静脈判別の試み(II) - 判 別原理の実験的検証 -, Proc. OPJ 2011, 2011
- [11] 西田浩平, 浪田健, 加藤祐次, 清水孝一, 多波長光源 を用いた静脈透視画像の改善(II) 複数被験者におけ る有効性の検証, Proc. OPJ 2011, 2011
- [12] 宗宮功,岸本直之,小野芳朗,西方聡,散乱スペクト ル分析による水質測定,水環境学会誌,18, pp. 191-198 、1995
- [13] 小川誠二,上野照剛他,非侵襲・可視化技術ハンドブック ナノ・バイオ・医療から情報システムまで, ISBN 978-4-86043-133-4, NTS, 2007