一般照明下での表面下散乱の解析

向川 康博 鈴木 和哉 八木 康史

† 大阪大学 産業科学研究所 〒 567-0047 大阪府茨木市美穂ヶ丘 8-1 E-mail: †{mukaigaw,yagi}@am.sanken.osaka-u.ac.jp

あらまし 半透明物体では,表面下散乱と呼ばれる媒質内部における光の散乱が発生する.本研究では,媒質が均一 な半透明物体を対象とし,一般照明下で撮影された画像から,表面下散乱を解析する手法を提案する.提案手法では, 物体表面間の距離を量子化することで,表面下散乱モデル中の散乱項の値を線形的に求める.さらに,散乱項にダイ ポール近似モデルを当てはめることで,対象物体の表面下散乱を解析する.材質の異なるいくつかの半透明物体に対 して本手法を用いることで,材質に固有の表面下散乱パラメータを推定できることを確認した. **キーワード** 半透明物体,反射特性,表面下散乱,BSSRDF,ダイポールモデル

Analysis of Subsurface Scattering under Generic Illumination

Yasuhiro MUKAIGAWA[†], Kazuya SUZUKI[†], and Yasushi YAGI[†]

† The Institute of Scientific and Industrial Research, Osaka University
 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
 E-mail: †{mukaigaw,yagi}@am.sanken.osaka-u.ac.jp

Abstract A scattering effect of incident lights called subsurface scattering occurs under the surface of translucent objects. In this paper, we present a method to analyze the subsurface scattering from one image taken under generic illumination. In our method, diffuse subsurface reflectance in the subsurface scattering model can be linearly solved by quantizing the distances between each pair of surface points. Then, the dipole approximation model is fit to the diffuse subsurface reflectance. By applying our method to real images of some translucent objects, we confirmed that the parameters of subsurface scattering can be computed for each material. **Key words** translucent object, subsurface scattering, BSSRDF, dipole model

1. はじめに

これまでに、シーンを撮影した画像を入力として、光源環境 や物体の反射特性を推定するための様々なインバースレンダリ ング法が提案されてきた[1].しかし、それらの手法のほとんど は、対象物体の材質が不透明であると仮定しており、半透明物 体を扱うことができない、大理石・皮膚・ミルクが半透明物体 の典型例として挙げられるが、それ以外にも野菜や果実、布な ど、図1に示すように、我々の身の回りに存在する物体の多く も実際には半透明である[2].

近年,コンピュータグラフィックス分野では,半透明物体を 高速にレンダリングする手法に関する研究が盛んに行われてい る. Jensen らは,カメラから空間上の光線を確率的に追跡する フォトンマッピング法 [3] や,半透明物体内部での光の散乱を ダイポール近似によって高速にレンダリングする手法 [4] を提 案している.

図1 我々の身の回りに存在する半透明物体

一方,コンピュータビジョン分野では,これまでに半透明物 体はほとんど取り扱われていない.不透明物体上の局所的な光 学現象である拡散反射,鏡面反射,影の解析が主であり,物体

(D) 十週明初体図 2 透明物体と半透明物体の反射の違い

表面上に入射した光が他の点を照らす間接光としては相互反射 が考慮されている程度である.近年、レーザなどの光源によっ て物体表面上の一点を照射する方法 [4] [5] [6],プロジェクタに よってスリットパターンを投影する方法 [7] [8],接触型の専用 計測センサを用いる方法 [9] など、特殊な光源によって半透明 物体内部での表面下散乱を計測する研究が発表され始めてきた. しかし、いずれも、限定された照明環境において専用の機器を 用いた特殊な計測手法であり、一般シーンの解析には利用でき ない.

そこで、本研究では一般照明下で通常のカメラによって撮影 された1枚の画像を入力として、半透明物体内部での表面下散 乱を解析する手法を提案する.本研究が想定する任意の光源で 照らされたシーンは、従来法で取り扱うことができなかった難 しい問題設定であり、表面下散乱の生成過程を逆にたどること で、表面下散乱のインバースレンダリングを実現しようという 新しい試みである.提案手法は、与えられた照明環境と撮影画 像から、物体内部での光の散乱に対してダイポール近似モデル を当てはめることで、一般シーン中に存在する半透明物体の表 面下散乱を解析できる新しい反射解析手法である.

2. 半透明物体で生じる表面下散乱

2.1 表面下散乱の表現

ほとんどのコンピュータビジョン技法では,対象物体は不透 明であると仮定している.不透明物体では物体表面のある点に 入射した光は,その点でのみ反射する.つまり,図 2(a)のよ うに光の入射点と出射点は一致する.そのため,相互反射や環 境光の影響を除けば,光源からの入射光のない影領域では出射 光は観測されない.このような不透明物体上で生じる反射は双 方向反射率分布関数 (Bidirectional Reflectance Distribution Function:以下,BRDFと略す)で表現される.BRDFは観 測点 $x \mapsto \omega_i$ の方向から入射した光が ω_o の方向に出射する率 $F(x, \omega_i, \omega_o)$ を表す.

一方,半透明物体では,物体表面上のある点に入射した光は 物体の内部で散乱し,物体表面上の別の点からも出射する.こ の物体内部の散乱を表面下散乱と呼ぶ.表面下散乱により,半 透明物体では図 2(b) のように光の入射点と出射点が一致しな い.そのため,光源からの入射光のない影領域であっても,他 の点への入射光が物体内部で散乱し,出射光として観測される. また,入射点の周辺には強い散乱光が到達するため,表面の細 かい凹凸が見えにくくなり,全体的に滑らかな形状に見える. このような半透明物体で生じる表面下散乱は双方向散乱面反 射率分布関数 (Bidirectional Scattering Surface Reflectance Distribution Function:以下,BSSRDFと略す)で表現され る.BSSRDFは入射点 x_i に ω_i の方向から入射した光が観測点 x_o において ω_o の方向に出射する率 $S(x_i, \omega_i, x_o, \omega_o)$ を表す.

半透明物体では、シーン中の物体表面上の点 x_o における方 向 ω_o への放射輝度 $L_o(x_o, \omega_o)$ は、次式によって与えられる.

$$L_o(x_o, \omega_o) = \int_A \int_\Omega S(x_i, \omega_i, x_o, \omega_o)$$
$$L_i(x_i, \omega_i) (N \cdot \omega_i) d\omega_i dx_i$$
(1)

ここで, $L_i(x_i, \omega_i)$ は, 点 x_i に ω_i 方向から入射する光の強度, A は物体表面, Ω は点 x_i における半球状に分布した方向, Nは点 x_i における法線方向を示す.

2.2 ダイポール近似モデル

コンピュータグラフィックス分野では、表面下散乱を表現する ためにフォトンマッピングなどの手法がとられてきた.しかし、 フォトンマッピングでは高い再現性を持った画像をレンダリン グするためには膨大な計算時間を必要とする.近年,Jensen ら[4]によってダイポール近似モデルを用いて表面下散乱をレ ンダリングする手法が提案された.この手法では、高品質な画 像を高速でレンダリングできるという利点がある.そのため、 本研究でもダイポール近似モデルによるレンダリングの逆問題 を解くことを目的とする.

ダイポール近似モデルでは、物体内部の散乱が入射光と観 測光の方向に依存しないという仮定をおくことで、BSSRDF $S(x_i, \omega_i, x_o, \omega_o)$ を次式のように分解する.

$$S(x_i, \omega_i, x_o, \omega_o) = \frac{1}{\pi} F_{t,o}(\eta, \omega_o) R(x_i, x_o) F_{t,i}(\eta, \omega_i)$$
(2)

ここで, $F_t(\eta, \omega)$ は相対屈折率 η の境界面に対し,角度 ω 方向に光が透過する際のフレネル関数である.

また, $R(x_i, x_o)$ は, x_i に入射した光が x_o に到達する際の 減衰を表す散乱項であり, 2 点間の距離 $d = ||x_o - x_i||$ の関数 として, 次式で近似される.

$$R(d) = \frac{\alpha}{4\pi} \left\{ z_r \left(\sigma_{tr} + \frac{1}{d_r} \right) \frac{e^{-\sigma_{tr}d_r}}{d_r^2} + z_v \left(\sigma_{tr} + \frac{1}{d_v} \right) \frac{e^{-\sigma_{tr}d_v}}{d_v^2} \right\}$$
(3)

このとき、各変数は以下の式で与えられる.

$$d_r = \sqrt{d^2 + z_r^2}, \quad d_v = \sqrt{d^2 + z_v^2}$$
 (4)

$$z_r = \frac{1}{\sigma_t'}, \quad z_v = z_r (1 + \frac{4}{3}A)$$
 (5)

$$A = \frac{1 + F_{dr}}{1 - F_{dr}} \tag{6}$$

図 3 散乱項 R(d) の例 (Apple: $\sigma_s = 2.29$, $\sigma_a = 0.003$, $\eta = 1.3$. Skin: $\sigma_s = 0.74$, $\sigma_a = 0.032$, $\eta = 1.3$)

$$F_{dr} = -\frac{1.440}{\eta^2} + \frac{0.710}{\eta} + 0.668 + 0.0636\eta \tag{7}$$

$$\sigma_{tr} = \sqrt{3\sigma_a \sigma_t'} \tag{8}$$

$$\sigma'_t = \sigma'_s + \sigma_a, \quad \sigma'_s = \sigma_s(1-g) \tag{9}$$

$$\alpha = \frac{\sigma'_s}{\sigma'_t} \tag{10}$$

ここで σ_s, σ_a は物体固有のパラメータであり, それぞれ σ_s は散乱係数, σ_a は吸収係数と呼ばれる. g は位相関数による 散乱方向と光の伝播方向の内積であるが, 等方散乱の場合は g = 0 となる.

このように、ダイポール近似モデルでは等方散乱物体の表面 下散乱を σ_s, σ_a, η の3つのパラメータで近似表現できることが わかる.これらのパラメータを変化させた場合に、散乱項R(d)がどのように変化するかを図3に例示する.この例では、リン ゴと皮膚に対応するパラメータ[4]を与えた場合に、入射点と 出射点の距離が離れるに従って、散乱光がそれぞれどのように 減衰するかを示している.

3. 量子化による表面下散乱推定

3.1 問題設定

本手法では,半透明物体を撮影した画像1枚のみを入力とし, 以下の条件下で表面下散乱のパラメータを推定する. **幾何情報:** カメラ位置,対象物体の3次元形状は既知 材質: 対象物体の材質は均一で等方散乱を生じる 光源環境: 対象物体の各表面上における光源の輝度分布 $L_i(x_i,\omega_i)$ は既知 放射輝度:撮影した画像と幾何情報より,カメラから見える点 について,放射輝度 $L_o(x_o,\omega_o)$ は既知

3.2 パッチ分割による定式化

物体表面を十分に小さい *m* 個のパッチごとに分割し,それ ぞれの中心をサンプル点とする.物体の形状が既知であること から,サンプル点の3次元座標 *x_i* とその法線方向 *N* は容易に 求められる.

図 4 パッチ分割による表面化散乱の定式化

問題の簡単化のために各パッチの面積が等しいとすれば^(注1), 各パッチの明るさは次式のように表される

$$L_{o}(P_{j}) = \frac{1}{\pi} F_{t,o}(\eta, \omega_{o}) \sum_{k=1}^{m} \left\{ R(d_{jk}) \int_{\Omega} L_{i}(P_{k}, \omega_{i}) F_{t,i}(\eta, \omega_{i}) \max(0, N \cdot \omega_{i}) d\omega_{i} \right\}$$
(11)

このとき, $L_o(P_j)$ はパッチ P_j のサンプル点の放射輝度, d_{jk} は P_j から P_k までの直線距離, $L_i(P_k, \omega_i)$ は P_k のサンプル 点に ω_i 方向から入射する光の強度である.

なお, Jensen ら [4] や Goesele ら [5] の研究から,大理石な どの一部を除く物質で相対屈折率は $\eta = 1.3$ であることが経験 的に知られている.本研究でもこれにならい,計測が困難な相 対屈折率を 1.3 とする.これにより, $F_{t,o}(\eta, \omega_o), F_{t,i}(\eta, \omega_i)$ は 対象の位置形状と照明環境,カメラ位置から計算できる.

$$l_j = \frac{\pi L_o(P_j)}{F_{t,o}(\eta, \omega_o)} \tag{12}$$

$$c_k = \int_{\Omega} L_i(P_k, \omega_i) F_{t,i}(\eta, \omega_i) \max(0, N \cdot \omega_i) d\omega_i$$
(13)

とおけば,式(11)から,

$$l_j = \sum_{k=1}^{m} \left(R(d_{jk}) c_k \right)$$
(14)

となる.これは、図4のように、パッチ P_j の放射輝度 l_j は、別のパッチ P_k への照度 c_k と、パッチ間の距離を d_{jk} とした散 乱項 $R(d_{jk})$ の積を、すべてのパッチで総和をとった値から算 出できることを意味している.

これを、物体表面の全てのパッチで計算すると、

$$\mathbf{l} = [l_1, l_2, \dots, l_m]^{\mathrm{T}}$$
(15)

$$\mathbf{c} = \left[c_1, c_2, \dots, c_m\right]^{\mathrm{T}} \tag{16}$$

⁽注1):各パッチの面積が異なる場合には,表面下散乱の影響を面積に応じて正 規化すれば良い.

$$\mathbf{R} = \begin{bmatrix} R(d_{11}) \dots R(d_{1k}) \dots R(d_{1m}) \\ \vdots & \ddots & \vdots & \vdots \\ R(d_{j1}) \dots R(d_{jk}) \dots R(d_{jm}) \\ \vdots & \vdots & \ddots & \vdots \\ R(d_{m1}) \dots R(d_{mk}) \dots R(d_{mm}) \end{bmatrix}$$
(17)

とおくことで、次式のように行列演算で表せる.

$$\mathbf{l} = \mathbf{R}\mathbf{c} \tag{18}$$

ここで \mathbf{l} と \mathbf{c} は既知であり, 求めるべきパラメータ σ_a , σ_s が含まれているのは \mathbf{R} である. しかし, \mathbf{R} には m^2 個の未知 数が含まれるのに対し, 拘束式は m しかないため, そのまま では解くことができない.

3.3 パッチ間距離の量子化による線形解法

本研究では、 $l \ge c$ から $R(d_{jk})$ の値を算出するために、パッ チ間距離を量子化することで未知数を減らし、誤差を最小とす る $R(d_{jk})$ を線形に解く方法を提案する.このパッチ間の量子 化は、散乱項 R(d) を折れ線近似し、各点での値を推定するこ とと、基本的に等価である.

距離 d_{11}, \ldots, d_{mm} を n 個の離散値 d'_1, d'_2, \ldots, d'_n で近似 する.また,各離散化された距離における散乱項をそれぞれ R'_1, R'_2, \ldots, R'_n とする.このとき d'_i は次の条件を満たす.

$$d_1' = 0 \tag{19}$$

$$d'_n > \max(d_{jk}) \tag{20}$$

$$d_1' < d_2' < \dots < d_n' \tag{21}$$

 d_{jk} に対し

$$d'_i \le d_{jk} < d'_{i+1} \tag{22}$$

となる *i* を見つけると,

$$d_{jk} = \beta_{jk} d'_i + (1 - \beta_{jk}) d'_{i+1}$$
(23)

となる.重み係数 β_{jk} は次式で求められる.

$$\beta_{jk} = \frac{d'_{i+1} - d_{jk}}{d'_{i+1} - d'_i} \tag{24}$$

この関係から R(d_{jk}) を次式で線形近似する.

$$R(d_{jk}) \simeq \beta_{jk} R'_i + (1 - \beta_{jk}) R'_{i+1}$$
(25)

このとき, R'_i は d'_i に対応する測定値 R である. ここで i 番目の要素が β_{jk} , i+1 番目の要素が $1 - \beta_{jk}$ それ以外の要素 が全て 0 となる n 次元ベクトル

$$\mathbf{w_{jk}} = \begin{bmatrix} 0 & \dots & 0 & \beta_{jk} & (1 - \beta_{jk}) & 0 & \dots & 0 \end{bmatrix}$$
(26)

をおき,

 $\mathbf{r} = \begin{bmatrix} R_1' & R_2' & \dots & R_n' \end{bmatrix}^{\mathrm{T}}$ (27)

とすれば,式(25)は

$$R(d_{jk}) \simeq \mathbf{w_{jk}r}$$

と表せる. この近似を, 式(14)に代入すると,

$$l_j \simeq \sum_{k=1}^m (c_k \mathbf{w}_{\mathbf{jk}} \mathbf{r}) \tag{29}$$

となるので,

$$\mathbf{W} = \begin{bmatrix} \sum_{\substack{k=1 \\ m} (c_k \mathbf{w_{1k}}) \\ \sum_{\substack{k=1 \\ k=1}} (c_k \mathbf{w_{2k}}) \\ \vdots \\ \sum_{\substack{k=1 \\ k=1}} (c_k \mathbf{w_{mk}}) \end{bmatrix}$$
(30)

とおくと、式 (18) は、

$$l \simeq Wr$$
 (31)

となる. この近似により n の未知数に対し, m の拘束式が得られるので, $n \leq m$ となる n をとれば, 擬似逆行列 \mathbf{W}^+ によって, 次式のように \mathbf{r} を求めることができる.

$$\mathbf{r} = \mathbf{W}^+ \mathbf{l} \tag{32}$$

ただし,実際には1枚の入力画像にはすべてのパッチが撮影 されているわけではないため,1とWから可視パッチに対応 する行のみを抜き出して,式(32)と同様に解く.

散乱項 *R*(*d*) は,比較的滑らかで単調減少する関数であるため,パッチ間距離を量子化しても,すなわち *R*(*d*) を折れ線近似しても,*d*の間隔がある程度小さければ,近似としては十分であると考えられる.

3.4 ダイポール近似モデルへの当てはめ

量子化による線形解法によりパッチ間の距離 d'_1, d'_2, \ldots, d'_n とそれに対応する R'_1, R'_2, \ldots, R'_n が得られる.次に,この値 にダイポール近似モデルを当てはめる.

屈折率 η を既知としているため、ダイポール近似モデルにお ける距離 d に対する散乱項 R(d) は σ_s, σ_a の 2 つのパラメー タによって決定される.実画像から得られた d'_i に対する測定 値 R'_i に対し、

$$\arg\min_{\sigma_s,\sigma_a} \sum_{i=1}^{n} (R'_i - R(d'_i))^2$$
(33)

とすることで、 σ_s, σ_a を求め、その物体固有の表面下散乱モデ ルを得る.

4. 実 験

4.1 距離の量子化に対する誤差評価

まず,距離の量子化がパラメータ推定にどのように影響を与 えるかを調べるために,シミュレーション実験を行った.一般 照明環境として,図5に示す球面反射球を用いて撮影した環 境データを利用し,環境データ各点の光源が対象物体を中心と

図 5 シミュレーション実験で使用した照明環境 (http://www.debevec.org/Probes/)

(a) 入力画像

(b) 再レンダリング結果

図 6 シミュレーション実験のための合成画像. (a) パラメータを $\sigma_s = 2.19, \sigma_a = 0.002, \eta = 1.3$ とした場合の入力画像. (b) 推 定したパラメータ ($\sigma_s = 2.34, \sigma_a = 0.009$) による再レンダリ ング結果.

する半径が無限遠の球面上にあるものとした. ダイポール近似 モデルのパラメータを, $\sigma_s = 2.19$, $\sigma_a = 0.002$, $\eta = 1.3$ とし て, 図 6(a) に示す四角錐をレンダリングし, これを入力画像 とした.

パラメータ σ_s , σ_a を探索するための最小値,最大値,刻み 幅は,それぞれ表1のように設定した.パッチ間距離の量子化 幅を 0.05mm から 0.50mm まで 0.05mm 刻みで変化させた場 合に,誤差がもっとも小さくなったパラメータの組み合わせを 表2に示す.散乱係数 σ_s は概ね真値に近い値が推定できてい るが,吸収係数 σ_a は全体的に真値よりもやや大きめとなり, 推定は不安定であった.

推定したパラメータの正確さを定量的に評価するために,推 定したパラメータによって画像を再レンダリングし,入力画像 との差を PSNR (Peak Signal to Noise Ratio) で評価した.各 量子化幅に対する PSNR を表2と図7に示す.一般に,画質 評価においては PSNR が 40dB 以上であれば,二つの画像の見 分けはつかないと言われている.量子化幅 0.10mm と 0.35mm で PSNR が 40dB を上回っており,その間の区間においても 30dB 程度の精度が得られている.最適な量子化の幅は対象物 体のパッチの区切り方などに依存するために一概にはいえない が,量子化の幅が広いと,量子化の精度が低下するため誤差が

表 1 パラメータの範囲 $\sigma_s \sigma_a$ 最小値 0.01 0.000 最大値 3.00 0.010 刻み幅 0.01 0.001

表 2 量	量子化幅に対	して得られた	:パラメータ	と	PSNR
-------	--------	--------	--------	---	------

Sampling[mm]	σ_s	σ_a	PSNR [dB]
0.05	2.14	0.000	26.47
0.10	2.20	0.007	42.12
0.15	2.19	0.004	30.58
0.20	2.19	0.009	33.47
0.25	2.19	0.005	28.69
0.30	2.32	0.009	29.78
0.35	2.34	0.009	47.93
0.40	2.22	0.009	25.76
0.45	2.18	0.009	20.35
0.50	2.40	0.009	23.43
真値	2.19	0.002	_

大きくなりやすい.逆に,量子化幅 0.05mm で精度が低下して いるのは,量子化幅が細かすぎると散乱項推定の際の未知数が 増え,逆行列推定が不安定になるためと考えられる.最適な量 子化幅の決定は,今後の検討課題である.

次に、パラメータ推定の安定性を調べるために、もっとも誤 差が小さかった量子化幅 0.35mm の場合について、散乱係数 σ_s と吸収係数 σ_a を変化させた時に、式 (33) で定義される誤 差の変化を調べた結果を図 8 に示す.この図では、右のバーに 示すように、誤差が小さい場合は青、大きい場合は赤となるよ うに、誤差の大きさを色で示している.この結果から、散乱係 数 σ_s に関しては滑らかな分布となっており、かつ明確な最小 値を持っていることから、局所解に陥ることなくおよそ正しい 値を推定できることがわかる.一方、吸収係数 σ_a に関しては、 分布は滑らかではあるものの、平坦であるために最小値を見つ けるのが難しい.実際、図中の「+」印の箇所が最小値と判断 されたパラメータであるが、 σ_a 方向には曖昧性が残っている. この結果より、 σ_a の推定は不安定であるが、 σ_a の値を変化さ せても散乱項 R(d)の値はさほど変化しないことがわかる.

本実験では表1に示す範囲で,パラメータを総当たりで変化 させて誤差評価を行ったが,通常のPentium4クラスのPCで も総計算時間は1秒未満であったことから,計算時間について は問題となっていない.各パラメータの刻み幅をより細かくす れば計算時間も増加するが,局所解を持たない滑らかな誤差分 布であることから,最急降下法などによって効率的に最小値を 見つけることも可能であると考えられる.

もっとも誤差の少ない量子化幅 0.35mm における, 推定した 散乱項とダイポール近似モデルの関係を図 9 に示す. いくつか の外れ値の影響で, 真値よりもやや小さめの値となっているが, 概ね正しいフィッティング結果となってることが分かる. また, 推定されたパラメータを用いて四角錐を再レンダリングした結 果を図 6(b) に示す. PSNR が 47.93dB と大きな値であるため,

図 8 量子化幅 0.35mm におけるパラメータフィッティング時の誤差

図 9 量子化幅 0.35mm における推定散乱項(+ 印),当てはめたダ イポール近似モデル(点線),真値(実線)

入力画像 (a) との差異は知覚できない.

4.2 実画像に対するパラメータ推定実験

次に,実際に様々な素材の半透明物体を撮影し,パラメータ 推定を行った.図10に示す環境光の影響の少ない部屋で,反 射率の低い光吸収暗幕シート上に対象物体を置いて撮影した. 本手法では任意の照明環境を利用できるが,できるだけ正確な 照明環境を計測するために単一の発光ダイオードを光源とした. カメラと光源の3次元位置は測量器を用いて正確に計測した. カメラは Nikon D80 であり, raw モード (12bit) で撮影した.

図 10 実物体の撮影環境

(d) 四角錘・光源環境 2

図 11 半透明物体の撮影画像 (左から順にポリプロピレン (PP), ポ リエチレン (PE), ポリオキシメチレン (POM)

対象物体の材質は、ポリプロピレン (PP)、ポリエチレン (PE)、ポリオキシメチレン (POM) の3種とし、それぞれ形状 は立方体と台付の四角錘の2種とした.また、光源位置を変え ることで2種類の照明環境(以後、それぞれを「光源環境1」 「光源環境2」と呼ぶ)を用意し、図11に示す3素材×2形状 ×2光源環境=合計12枚の画像を撮影した. 左から順に素材は PP, PE, POM である.これらの画像を撮影したときの、カ メラと物体の位置関係、光源強度、およびカメラのシャッター スピードと絞りはすべて同一である.

表 3 推定されたパラメータ								
素材	形状	光源	σ_s	σ_a				
	立古休	1	2.62	0.010				
DD	业力评	2	1.69	0.000				
ГГ	田舟徒	1	2.07	0.010				
	四円壘	2	2.12	0.010				
	立方体	1	0.01	0.001				
DE		2	0.08	0.001				
ΓĿ	四角錘	1	0.28	0.000				
		2	0.15	0.010				
	立方体	1	0.03	0.000				
POM		2	0.37	0.010				
FOM	而布廷	1	0.56	0.010				
	四円莲	2	0.37	0.010				
F	PP 平均	2.125	0.0075					
F	'E 平均	0.130	0.0030					
PO	OM 平均	0.333	0.0075					

目視によれば, PP の散乱がもっとも強く, PE と POM は散 乱がさほど強くなく質感は似ている.実際,図 11 からも,左 の PP がもっとも光の散乱が強いため,全体として暗くなって いることがわかる.また, PE と POM は光の広がり方が違う ものの,似た輝度分布となっている.

これらの画像に対し、ダイポール近似モデルを当てはめ、パ ラメータを推定した.パラメータ σ_s, σ_a の変動範囲は前節の実 験と同じであるが、本実験では距離の量子化幅も 0.05mm から 0.50mm まで 0.05mm 刻みで変化させ、もっとも誤差が小さく なるパラメータと量子化距離を求めた.パラメータは素材に対 して一意に決まるので、同一素材であれば形状・光源環境が異 なる場合でも、同じパラメータを推定できるのが理想である.

推定されたパラメータを表3に示す.また,各画像ごとの推 定パラメータを、横軸を σ_s 、縦軸を σ_a としてプロットしたも のを図12に示す.前節の実験と同様に σ_a の推定はやや不安 定となったが、 σ_s については光源環境1の立方体を除けば、3 種の素材ごとに似たパラメータが推定されていることが分か る.光源環境1の立方体の結果が不安定になった原因は明らか ではないが、素材に関わらず特異な結果となっていることから、 この形状と光源位置の組合わせによる表面下散乱は、そもそも ダイポール近似モデルで表現できず、散乱項の推定が不安定に なってしまったことなどが考えられる.

各素材ごとに得られたパラメータの平均値を表3に示す.また,これらのパラメータ組によって,ダイポール近似モデルが どのように変化するかを図13に示す.PEとPOMは,比較 的似た減衰を示しており,PPほど変化が大きくない.さらに, これらのパラメータ組を用いて,別の形状の物体をレンダリン グした CGの例を図14に示す.素材ごとに異なる表面下散乱 となっていることがわかる.

5. おわりに

本研究では、一般照明下において半透明物体を通常のカメラ で撮影した1枚の画像から、表面下散乱を解析する手法を提案

 (a) PP
 (b) PE
 (c) POM

 図 14
 推定した表面下散乱パラメータを用いてレンダリングした結果

した.表面下散乱に影響を与えるパッチ間距離の量子化を行う ことで,散乱項を線形的に算出する方法を明らかにした.提案 手法により,レーザや構造化光などの特殊な光源を用いる従来 法では扱うことのできない,一般照明下での表面下散乱のイン バースレンダリングを可能とした.

シミュレーション実験では、量子化の幅を適切に設定すれば、 十分な精度でパラメータを推定できることを示した.ただし、 実画像実験では、同一素材に対して照明環境・形状の変化により、異なるパラメータを推定してしまうなどの安定性・正確性 の問題が残っている.これは、ノイズの影響だけではなく、本 研究で仮定した BSSRDF モデルそのものが、撮影画像にうま く当てはまっていないことも原因と考えられる.実際、ダイ ポール近似モデルは、対象物体の3次元形状を考慮していない.

このように,表面下散乱の解析としては誤差が小さいとはい えないが,半透明物体のインバースレンダリングの第一歩とし ての意義は大きいと考えられる.今後は、より適切なパラメー タを求めるために、複数の画像を用いることでノイズの影響を 低減したり、対象物体の形状を考慮した BSSRDF モデルを利 用して精度を高めることなどが課題である.

謝 辞

本研究の一部は, 文部科学省科学技術振興調整費「新映像技 術ダイブイントゥザムービーの研究」により進められている.

文 献

- [1] 佐藤洋一,向川康博, "インバースレンダリング",情処研報 CVIM 2004-145-9, pp.65-76, 2004.
- [2] S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, "Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination", Proc. SIG-GRAPH2006 pp.935-944, 2006.
- [3] H. W. Jensen, "Realistic Image Synthesis using Photon Mapping", ISBN: 1-56881-140-7, AK Peters, 2001.
- [4] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan, "A Practical Model for Subsurface Light Transport", Proc. SIGGRAPH2001, pp.511-518, 2001.
- [5] M. Goesele, H. P. A. Lensch, J. Lang, C. Fuchs, and H. P. Seidel, "Disco - Acquisition of Translucent Objects", Proc. SIGGRAPH2004, pp.835-844, 2004.
- [6] C. Fuchs, M. Goesele, T. Chen, H. P. Seidel, "An Empirical Model for Heterogeneous Translucent Objects", Research Report MPI-I-2005-4-006, 2005.
- [7] S. Tariq, A. Gardner, I. Llamas, A. Jones, P. Debevec, and G. Turk, "Efficient Estimation of Spatially Varying Subsurface Scattering Parameters", Vision, Modeling, and Visualzation (VMV2006), 2006.
- [8] P.Peers, K.v.Berge, W.Matusik, R.Ramamoorthi, J.Lawrence, S.Rusinkiewicz, P.Dutré, "A Compact Factored Representation of Heterogeneous Subsurface Scattering", Proc. SIG-GRAPH2006, pp.746-753, 2006.
- [9] T. Weyrich, W. Matusik, H. Pfister, B. Bickel, C. Donner, C. Tu, J. McAndless, J. Lee, A. Ngan, H. W. Jensen, and M. Gross, "Analysis of Human Faces using a Measurement-Based Skin Reflectance Model", Proc. SIGGRAPH2006, pp.1013-1024, 2006.