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We propose a method for analyzing photometric factors, such as diffuse reflection, specular reflection, attached
shadow, and cast shadow. For analyzing real images, we utilize the photometric linearization method, which
was originally proposed for image synthesis. First, we show that each pixel can be photometrically classified by
a simple comparison of the pixel intensity. Our classification algorithm requires neither 3D shape information
nor color information of the scene. Then, we show that the accuracy of the photometric linearization can be
improved by introducing a new classification-based criterion to the linearization process. Experimental results
show that photometric factors can be correctly classified without any special devices. A further experiment
shows that the proposed method is effective for photometric stereo. © 2007 Optical Society of America
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. INTRODUCTION
he appearance of an object changes according to the

ighting direction and surface reflectance. Since real im-
ges include complex factors such as specular reflections
nd shadows, it is difficult to apply some computer vision
lgorithms directly. For example, conventional photomet-
ic stereo [1] assumes a Lambertian surface without
hadows. The shape-from-specularity method requires
pecular reflection regions, the shape-from-shadow
ethod requires cast shadow regions, while bidirectional

eflectance distribution function (BRDF) modeling re-
uires separation of specular and diffuse reflections. It is
herefore important to analyze the photometric factors in-
luded in real images.

Several methods have already been proposed for sepa-
ating photometric factors. The dichromatic reflection
odel [2] is often used for separating diffuse and specular

eflections [3–5]. These methods use color information to
istinguish specular reflections from diffuse reflections. If
he colors between light source and object are quite differ-
nt, the clue is very powerful. However, if both colors are
imilar, the separation becomes difficult. Wolff and Boult
6] proposed a method to separate specular reflections by
nalysis of reflected polarization, while Nayar et al. [7]
ombined color and polarization to separate specular re-
ections. Ikeuchi and Sato [8] proposed a method to clas-
ify photometric factors based on range and brightness
mages. These methods, however, have a common restric-
ion in that shadows cannot be analyzed.

On the other hand, there are some methods that ex-
ress real images in a linear subspace. Shashua [9]
howed that an image illuminated from any direction can
e expressed by a linear combination of three base images
aken using different lighting directions assuming a Lam-
ertian surface and a parallel ray. That is, an image can
1084-7529/07/103326-9/$15.00 © 2
e perfectly expressed in a 3D subspace. Belhumeur and
riegman [10] showed that an image can be expressed by

he illumination cone model even if the image includes at-
ached shadows. In the illumination cone, images are ex-
ressed by a linear combination of extreme rays.
eorghiades et al. [11] developed the illumination cone so

hat cast shadows can also be expressed by shape recon-
truction. Although any photometric factor can ideally be
xpressed by the illumination cone, a large number of im-
ges corresponding to extreme rays are necessary.
We have proposed the photometric linearization
ethod [12], which converts real images into ideal images

hat include only diffuse factors. After photometric linear-
zation, all images are expressed as a linear combination
f three base images. The method was originally proposed
or image synthesis. In this paper, we show that the
ethod can also be used for classifying photometric fac-

ors. It can classify not only diffuse and specular reflec-
ions, but also attached shadows and cast shadows. We
resent a new criterion for classification of photometric
actors based on the photometric linearization. The clas-
ification algorithm requires neither 3D shape informa-
ion nor color information of the scene. The classification
s accomplished by a simple comparison of pixel intensi-
ies.

Moreover, we show that the accuracy of the original
hotometric linearization can be improved by introducing
new classification-based criterion to the linearization

rocess. The original photometric linearization method
oes not work stably when pixels are not illuminated in a
umber of input images. Our physics-based analysis can
olve this problem.

. PHOTOMETRIC LINEARIZATION
e have proposed the photometric linearization method

12], which converts real images including various photo-
007 Optical Society of America
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etric factors into ideal images, containing only diffuse
eflection factors. First, we summarize the photometric
inearization algorithm.

. Photometric Factors
hotometric factors are classified into reflections and
hadows as shown in Fig. 1. Reflections are further clas-
ified into diffuse reflections and specular reflections. Ac-
ording to the Lambert model, the intensity of the diffuse
eflection is expressed by

i = nTs. �1�

ere, n denotes the surface property vector, which is a
roduct of the unit normal vector and the diffuse reflec-
ance, and s denotes the lighting property vector, which is

product of the unit vector along the lighting direction
nd the lighting power. Specular reflections are observed
s the sum of diffuse factors and specular factors.
Shadows are classified into attached shadows and cast

hadows. Attached shadows depend on the angle between
he surface normal and the lighting direction and are ob-
erved where the angle between n and s is greater than
0°. Cast shadows depend on the overall 3D shape of the
cene and are observed where light is occluded by other
bjects. If there is no ambient light or interreflection, the
ntensity of both shadows is zero.

. Linearity of Diffuse Reflection
hashua [9] showed that if a parallel ray is assumed, an

mage Ik under any lighting direction can be expressed by
linear combination of three base images (I1, I2, and I3)

aken using different lighting directions,

Ik = ck
1I1 + ck

2I2 + ck
3I3. �2�

ere, let ck= �ck
1 ck

2 ck
3�T be a set of coefficients of the im-

ge Ik.

. Process Flow
eal images do not satisfy Eq. (2), because shadows and
pecular reflections are observed. The photometric linear-
zation can convert real images, which include various
hotometric factors, into ideal images, which contain only
iffuse reflection factors. That is, real images are con-
erted into ideal images, which satisfy Eq. (1) perfectly.
ince all pixels in the images fully satisfy Eq. (2) after the
hotometric linearization, any image can be expressed by
linear combination of three base images [9].
For the photometric linearization, multiple images are

aken using different lighting directions. The camera and
arget objects are fixed. It is important that the lighting
irection, the 3D shape of the target object, and the reflec-

Fig. 1. Photometric factors included in an image.
ance of the surface are unknown. The process of photo-
etric linearization is divided into the following three

teps, as shown in Fig. 2:

1. Calculation of coefficients.
2. Photometric linearization of base images.
3. Photometric linearization of all input images.

etailed algorithms are given in the following subsec-
ions.

. Calculation of Coefficients
et I1 ,I2 , . . . ,Ij denote the input images. First, three base

mages (I1, I2, I3), whose lighting directions are linearly
ndependent, are selected from the input images. It is
oted that the three base images should have large com-
on regions of diffuse reflections. Although the selection

ffects the accuracy, the linearized result does not change.
The coefficients of the linear combination have to be de-

ermined to satisfy Eq. (2). If we calculate them by mini-
izing root mean square errors, correct coefficients can-
ot be calculated because of shadows and specular
eflections. The photometric linearization solves this
roblem with the random sample consensus (RANSAC)-
ased approach. Many candidates are iteratively calcu-
ated by random sampling, and the correct value calcu-
ated from only diffuse reflections is selected from among
he candidates. If all pixels are sampled from the diffuse
eflection region, the correct value, which is not affected
y specular reflections and shadows, is calculated. That
s, we can regard the photometric linearization as a prob-
em to find one correct value calculated using only diffuse
eflection factors from among many candidates.

To calculate a candidate of the coefficients, three pixels
re randomly selected from base images I1 ,I2 ,I3, and
ach input image Ik. Note that the same pixels are se-
ected from every image. A set of coefficients ĉk is calcu-
ated from the intensities of these pixels. If all the images
nclude only diffuse components, unique coefficients are
etermined. By iterating this process, many candidate co-
fficients are obtained.

After iteration of this process, a coefficient distribution
s obtained. If all the selected pixels include only diffuse

Fig. 2. Flow of the linearization process.
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omponents, the calculated coefficients center around the
orrect point in the coefficient space in a dense formation
s shown in Fig. 3. On the other hand, if the pixels in-
lude specular reflections or shadows, the coefficients are
solated from the correct point. Hence, the most reliable
oefficients can be found by iterative calculation of a cen-
er of gravity and outlier elimination. The coefficients of
he linear combination can be estimated reliably even if
he input images contain specular reflections and shad-
ws.

. Photometric Linearization of Base Images
ext, we linearize the base images using the estimated

oefficients for each input image. Three images (Il, Im, In),
xcluding the three base images, are selected from the in-
ut images. Since the coefficients (cl, cm, cn) of the se-
ected images have already been calculated, the base im-
ges (I1, I2, I3) can be regenerated by a linear
ombination of the selected input images and their coeffi-
ients.

If a pixel contains only a diffuse component in all the
elected images, the pixel in the regenerated image also
ontains only a diffuse component. Although real images
nclude other components, they are observed within a lim-
ted lighting direction for each pixel. Hence, an iterative

ethod is used once again. The candidates for pixel inten-
ity of the linearized base images are calculated by a lin-
ar combination of three input images which are selected
t random. After iteration of the random selection and
alculation, a pixel intensity distribution is obtained. The
ost reliable intensities are estimated in the same man-

ig. 3. Estimating the coefficients by random sampling and out-
ier elimination.
er as described in Subsection 2.C.1. As a result, the
hree base images I1, I2, and I3 are linearized to I1

L, I2
L,

nd I3
L, respectively.

. Photometric Linearization of All Input Images
e have already obtained linearized base images (I1

L, I2
L,

3
L) and coefficients ck for each input image Ik. All input
mages can now easily be linearized by linear combina-
ions of the linearized base images with the coefficients.
e denote the linearized Ik as Ik

L.

. IMPROVEMENT OF PHOTOMETRIC
INEARIZATION
he photometric linearization was originally proposed for

mage synthesis. In this subsection, we show that the
ethod can also be used for classifying photometric fac-

ors. We present a new criterion for classification of pho-
ometric factors based on the photometric linearization.
oreover, we show that the accuracy of the original pho-

ometric linearization can be improved by introducing a
ew classification-based criterion to the linearization pro-
ess.

. Criterion for Classification
n this subsection, we show that each pixel can easily be
lassified into diffuse reflection, specular reflection, at-
ached shadow, and cast shadow based on the photometric
inearization. The classification is accomplished by a
imple comparison of the pixel intensity. That is, the clas-
ification does not need any additional information such
s 3D shapes, lighting directions, or color information.
Let i�k,p� be the intensity of the pixel p in the image k,

nd let i�k,p�
L be the linearized intensity. The relationship

etween i�k,p� and i�k,p�
L is as follows: In the diffuse reflec-

ion region, i�k,p�
L is equal to i�k,p�, because the intensity is

ot changed by the linearization. In the specular reflec-
ion region, i�k,p�

L is smaller than i�k,p�, because the specu-
ar factor has been eliminated. Equation (1) indicates that
he intensity in the attached shadow is negative, while
hat in cast shadow is positive. In the attached shadow re-
ion, i�k,p�

L becomes negative, which satisfies Eq. (1). In the
ast shadow region, i�k,p�

L is larger than i�k,p�, because i�k,p�
L

as a diffuse reflection factor, while i�k,p� is near zero.
ence, each pixel can be classified by the following crite-

ion:
Region�k,p� =�
D: if ��i�k,p� − i�k,p�

L � � T � i�k,p�� � �i�k,p� � Ts�

S: if �i�k,p� − i�k,p�
L � T � i�k,p�� � �i�k,p�

L � 0� � �i�k,p� � Ts�

A: if �i�k,p�
L � 0� � �i�k,p� � Ts�

C: if �i�k,p�
L � 0� � �i�k,p� � Ts�

U: otherwise

. �3�
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Here, D, S, A, C, and U denote diffuse reflection, specu-
ar reflection, attached shadow, cast shadow, and an un-
efined factor, respectively. The threshold T is used to
heck the equality of i�k,p� and i�k,p�

L , and is determined em-
irically. Since T is normalized to be relative to i�k,p�, the
heck is independent of the brightness. In real images,
he intensities of shadows are not zero. The threshold Ts
s used to distinguish shadows, and can be determined by

anually sampling some pixels in shadow regions.
In this criterion, the shadow regions are classified by

nly using threshold Ts. Although the classification is
ery simple, attached shadows and cast shadows can be
istinguished by the sign of i�k,p�

L . It is one of the signifi-
ant advantages of the criterion because two types of
hadows can be distinguished without any 3D shape in-
ormation. Figure 4 illustrates Eq. (3) as a 2D plane
panned by i�k,p� and i�k,p�

L . The photometric factors are
asily classified once the photometric linearization has
een accomplished.

. Key Idea for Improvement
n Subsection 3.A, we showed that photometric factors
re correctly classified if the photometric linearization is
erfectly accomplished. That is, pixels are never classified
s undefined factors. This fact suggests that the photo-
etric linearization becomes more accurate by introduc-

ng the criterion for classification to the linearization pro-
ess. We can use the criterion to verify the accuracy of the
hotometric linearization.

. Introducing the Criterion for Classification
o find a correct value from the numerous candidates cal-
ulated by iterating the random sampling process, the
revious method [12] iterates the estimation of the center
f gravity and outlier elimination. However, the algo-
ithm, which is based on the principle of majority, has
eaknesses. Since the center of gravity may be affected
y outliers, an incorrect candidate may be selected be-
ause of shadows. So the process tends to be unstable.

We now propose a new algorithm that can accurately
etermine the correct value from the many candidates.
he distinction is based on the results of photometric clas-
ification. We check the photometric factors of all candi-
ates, and therefore, introduce the criterion for classifica-
ion into the photometric linearization process.

If a candidate is correct, each pixel is classified as one
f the defined factors (D, S, A, and C) by Eq. (3). No pixel

Fig. 4. Criterion for classification of photometric factors.
s ever classified as an undefined factor �U�. Each candi-
ate is evaluated according to the number of pixels, which
re classified as the defined factors. The candidate that
as the maximum number of pixels can be regarded as
he correct value.

Essentially, the evaluation is based on the defined fac-
ors, with the exception of specular reflections. The specu-
ar reflection occupies a large area in Fig. 4. If we regard

as the defined factor, incorrect candidates may be ac-
epted. Since the size of the specular region is relatively
mall in the images, we can ignore specular factors in this
valuation. Hence, we evaluate pixels that are classified
s diffuse reflection, attached shadow, and cast shadow by

Classifiable�k,p� = �1, if �Region�k,p� = D � A � C�

0, if �Region�k,p� = S � U�
.

�4�

. Evaluation of Candidates
n this section, we present the detailed algorithm to
valuate candidates. For each candidate ĉk of a set of co-
fficients, the kth input image Ik is linearized to Ik

L by the
inear combination of the three base images I1, I2, and I3.
f ĉk is correct, Eq. (4) becomes one for almost all pixels.
ence, we define the following function to evaluate candi-
ates of the coefficients ĉk:

SupportC�k� = �
p

Classifiable�k,p�. �5�

On the other hand, the linearized intensities i�k,p�
L are

alculated by the linear combination using coefficients ck

or each candidate îp
L. If îp

L is correct, Eq. (4) becomes one
or almost all input images. Hence, we define the follow-
ng function to evaluate candidates of the linearized in-
ensities:

SupportL�p� = �
k

Classifiable�k,p�. �6�

These functions are used to calculate the number of
ixels, which are classified as valid factors. SupportC�k� is
sed when coefficients of the linear combination are cal-
ulated, and SupportL�p� is used when the three base im-
ges are linearized. We can regard the candidate for
hich the function SupportC�k� or SupportL�p� returns

he maximum, as the correct value. By using the esti-
ated coefficients ck and intensities ip

L in the linearized
ase images, the accuracy of the photometric lineariza-
ion can be improved.

. Comparison with the Previous Method
t is noted that the proposed method takes the physical
hotometric phenomena into account, and considers the
hotometric factors of outliers, while the previous method
12] is based solely on the statistical framework. The ac-
uracy can therefore be improved, especially in shadow
egions.

One may think that if we simply modify [12] so that
ixels below the threshold Ts are excluded as outliers, the
ccuracy can be improved. By ignoring dark regions, simi-
ar results may be acquired. However, the new method
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an analyze the reason for shadows and classify them as
ither cast shadows or attached shadows. Shadows can
hus be regarded as reasonable inliers.

. EXPERIMENTAL RESULTS
e evaluated the proposed method using both synthetic

nd real images. For the experiments using real images,
e used three kinds of materials with different reflection
roperties. A ceramic cup (Fig. 7) is an example of a rough
lossy object, a pot (Fig. 11) is an example of a very shiny
bject, and a marble sphere (Fig. 12) is an example of
omplex reflection.

. Evaluation Using Synthetic Images
o begin, we evaluated the proposed method numerically
sing synthetic images. The synthetic images were gener-
ted by POV-Ray, which is ray-tracing software. The
cene contains a sphere and a cone as shown in Fig. 5.
wenty images were generated, using a different lighting
irection for each.
Figure 6(a) shows the classification result using the

roposed method, while Fig. 6(b) shows the result using
he previous method [12]. Since this scene is artificially
enerated, we can easily generate no-shadow and no-
ighlight images. By comparison with such images, cor-
ect classification can be obtained as shown in Fig. 6(c).
e call this result the “ground truth.” In the result of the

revious method, some pixels of diffuse reflection are in-
orrectly classified as specular reflection. Obviously, the
esult of the proposed method is similar to the ground
ruth.

For the numerical evaluation, we count the number of
ixels for each photometric factor in the ground truth im-
ge as shown in Table 1. We then check how accurately
he pixels are classified based on the photometric linear-
zation. Table 2 shows the classification results using the
revious method and the proposed method, respectively.
n the table, each row shows how accurately the correct
hotometric factor in the ground truth image is classified
ased on the photometric linearization. We can see that
he proposed method can correctly distinguish cast
hadow and attached shadow, as well as diffuse and
pecular reflection.

Fig. 5. Synthetic images.
. Photometric Classification of Real Objects
e captured 24 images in a dark room using different

ighting directions and keeping a halogen light away from
he ceramic cup as shown in Fig. 7. Since this cup has a
oncave surface, some pixels are not illuminated in a
umber of the input images.
Figure 8 shows three base images selected from the in-

ut images; Fig. 8(a) shows the original base images,
hile Fig. 8(b) and 8(c) show the results of the photomet-

ic linearization. Since the linearized images have nega-
ive values, a zero level is expressed as a gray intensity.
he results using the previous method are shown in Fig.
(b). Many pixels are incorrectly linearized to be zero, be-
ause the previous method is strongly affected by cast
hadows. The results of the new method based on the
lassification criterion are shown in Fig. 8(c). We can see
hat the base images are correctly linearized even if some
ixels are not illuminated in a number of the input im-
ges.

Fig. 6. Classification of photometric factors (synthetic scene).

Table 1. Number of Pixels for Each Photometric
Factor

hotometric Factor Number of Pixels

ast shadow 2393
ttached shadow 845
iffuse reflection 15007
pecular reflection 955

Table 2. Accuracy of the Classification (%)a

a) Previous Method (b) Proposed Method

C A D S C A D S

99.04 0.96 0.00 0.00 C 99.96 0.04 0.00 0.00
0.00 100.00 0.00 0.00 A 1.78 98.22 0.00 0.00
0.00 0.00 99.01 0.99 D 0.00 0.00 99.99 0.01
0.00 0.00 43.56 56.44 S 0.00 0.00 17.49 82.51

aC, cast shadow; A, attached shadow; D, diffuse reflection; and S, specular re-
ection.
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Figure 9 shows the relationships between the intensi-
ies of the input images and the linearized images of a
ixel corresponding to the inside of the cup. Figure 9(a) is

Fig. 8. Linearized base images.

ig. 7. Input images taken using different lighting directions
cup: 24 images).

Fig. 9. Compa
he result of the previous method and shows that many
ixels on the inside of the cup are considered as dark sur-
aces without shadows. Some pixels are classified as an
ndefined factor. Figure 9(b) is the result of the proposed
ethod and shows that almost all pixels are classified as

ne of the defined factors.
Figure 10 shows the results of the photometric classifi-

ation. Figure 10(a) is an input image, while Fig. 10(b) is
he linearized image. Comparing Figs. 10(a) and 10(b),
ach pixel is classified as Fig. 10(c) diffuse reflections, Fig.
0(d) specular reflections, Fig. 10(e) attached shadows,
nd Fig. 10(f) cast shadows. In these images, black pixels
ndicate the classified pixels. Although attached shadows
nd cast shadows cannot be classified by a simple thresh-
ld, the proposed method can distinguish them.

Some pixels on the inner side of the cup in Fig. 10(c)
re incorrectly classified as diffuse reflection. These pixels
hould be classified as either attached shadow or cast
hadow. The normal direction of these pixels is perpen-
icular to the lighting direction. Hence, it is difficult to
istinguish dark diffuse reflection and attached shadow.
he accuracy depends on the thresholds T and Ts.
Next, we applied our method to a glossy object with a

omplex shape. Figure 11(a) shows 24 images of the ob-
ect. Figure 11(b) is the result of the photometric linear-
zation. Figures 11(c)–11(f) show the results of the classi-
cation as diffuse reflections, specular reflections,
ttached shadows and cast shadows, respectively. Each
ixel can be classified as a suitable photometric factor
ven if the target object has a complex shape.

. Photometric Stereo
he conventional photometric stereo [1] assumes a Lam-
ertian surface without shadows. There are, however,
any improved algorithms for photometric stereo, such

s the 4-source photometric stereo technique [13], which
an recover surface normals in the presence of highlights
nd shadows. In this section, we show that the conven-
ional simple photometric stereo method can easily be ap-
lied to a scene that includes highlights and shadows by
ombining our photometric linearization as a preprocess.

We captured 24 images of a marble sphere using differ-
nt lighting directions (Fig. 12). Parts of the surface are

f classification.
rison o
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ot illuminated due to obstacles as shown in Fig. 13.
irst, all input images were linearized. The three selected
ase images and the linearized base images are shown in
igs. 14 and 15, respectively. Figures 15(a) and 15(b)
how the results of the previous method and those of our
ethod, respectively. The previous method failed in the

inearization at the left- and right-hand sides of the
phere, because the pixels are not illuminated in a num-
er of the input images due to shadows. On the other
and, our method is able to linearize the entire sphere
orrectly.

After the photometric linearization, the 3D shape was
econstructed by photometric stereo. Because the lighting
irections are unknown, the surface normals cannot be
niquely determined in essentials [14]. In this experi-

ig. 11. Classification results of a glossy pot. Black pixels indi-
ate the classified pixels.

ig. 12. Input images taken using different lighting directions
sphere).

ig. 10. Classification results of the photometric factors (cup).
a) Input image, (b) linearized image, (c) diffuse reflections, (d)
pecular reflections, (e) attached shadows, and (f) cast shadows.
lack pixels indicate the classified pixels.
ent, we know that the shape of the target object is a
phere. Hence, we sampled five points on the surface and
alculated an affine transformation matrix by the least
quare method so that the surface normals correspond to
hose of the sphere. This process corresponds to estima-
ion of the lighting direction using a known-shape object.
igure 16(a) is the ground truth shape obtained by
anual measurement. Figures 16(b)–16(d) are the recon-

tructed shapes using the simple photometric stereo
ethod, the previous method, and the proposed method,

espectively. We can see that the simple photometric ste-
eo method is affected by specular reflections, and the
revious method fails in reconstruction at boundaries be-
ause of errors in the photometric linearization. On the
ther hand, the proposed method can correctly linearize
nd reconstruct the entire sphere. Table 3 shows the rms
rror and the largest error of the reconstructed 3D shape
or each method. This result indicates that the photomet-
ic linearization is effective as a preprocess to the photo-
etric stereo.

Fig. 13. (Color online) Target scene.

Fig. 14. Three selected base images.

Fig. 15. Linearized base images.
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. DISCUSSION
eal scenes include more complex illumination and reflec-

ion. In this section, we discuss the limitations of and ex-
ensions to the proposed method.

. Specular Reflection on Rough Surface
n our algorithm, we assume sharp specular reflections on
glossy surface. This means that specular reflections are

asily distinguished from diffuse reflection by a simple
riterion as shown in Eq. (3) and that the number of
pecular reflection pixels are relatively small. Hence, we
an regard the specular reflection as an undefined factor
n Eq. (4).

If wide specular reflections are observed on a rough
urface, the classification becomes more difficult because
part of the specular reflections may be included in the

inearized images. In this case, other algorithms, for ex-
mple those that use a polarizer [6] or color information
2,3], can be combined with our method.

. Interreflection
nterreflection is an effect whereby reflected light on a
urface illuminates the other surfaces again, and is ob-
erved at a concave part of an object. In our method, we
ssume that there is no interreflection.
Belhumeur and Kriegman have shown that interreflec-

ion on a Lambertian surface can also be expressed as a
inear combination of three images [10]. This means that
he interreflection effect will be included in the linearized
mage. Hence, the result of the photometric linearization
annot be used directly as a preprocess for the photomet-
ic stereo method. The relationship between the linearity
f interreflections and the photometric linearization is un-
er investigation.

. Subsurface Scattering
ubsurface scattering is an effect of light transport in
ranslucent materials, such as marble, skin, and milk.
ince we assume opaque objects, our algorithm cannot be

Table 3. Comparison of Errors

lgorithm
Rms
(mm)

Largest Error
(mm)

imple photometric stereo 5.11 14.41
revious method 4.04 23.49
roposed method 3.84 9.85

Fig. 16. Reconstructed 3D shapes.
pplied to a material that has subsurface scattering. If
trong subsurface scattering is observed, the linearity of
he intensity cannot be satisfied.

In the experiment in Subsection 4.C, a marble sphere is
sed. Although subsurface scattering is observed on the
phere, the adverse effect is slight and thus, the photo-
etric linearization succeeded.

. Illumination
ur algorithm assumes a point light source at infinity. If

here are multiple light sources or ambient light, the
hadow cannot be classified correctly because shadow re-
ions are found based on the threshold. Moreover, our al-
orithm assumes parallel light, and therefore a nearby
oint light source cannot be used. The extension to take
omplex illumination into consideration is one of our fu-
ure works.

. CONCLUSIONS
n this paper, we have proposed a new photometric clas-
ification method based on photometric linearization.
hile the photometric linearization was originally pro-

osed for generating images using an arbitrary lighting
irection, we showed that the method can also be used for
he classification of photometric factors. We have im-
roved the accuracy of the photometric linearization
ethod by introducing the classification criterion into the

inearization process.
The photometric linearization plays an important role

s a fundamental technique of computer vision such as
hotometric stereo and shape-from-shading. We have con-
rmed that our method can be applied to a variety of ma-
erials, and that the photometric stereo becomes robust
ith respect to shadows by applying the photometric clas-

ification as a preprocess. In the future, we intend to ana-
yze more complex factors such as interreflection.
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