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We propose a method for analyzing photometric factors, such as diffuse reflection, specular reflection, attached
shadow, and cast shadow. For analyzing real images, we utilize the photometric linearization method, which
was originally proposed for image synthesis. First, we show that each pixel can be photometrically classified by
a simple comparison of the pixel intensity. Our classification algorithm requires neither 3D shape information
nor color information of the scene. Then, we show that the accuracy of the photometric linearization can be
improved by introducing a new classification-based criterion to the linearization process. Experimental results
show that photometric factors can be correctly classified without any special devices. A further experiment
shows that the proposed method is effective for photometric stereo. © 2007 Optical Society of America
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1. INTRODUCTION

The appearance of an object changes according to the
lighting direction and surface reflectance. Since real im-
ages include complex factors such as specular reflections
and shadows, it is difficult to apply some computer vision
algorithms directly. For example, conventional photomet-
ric stereo [1] assumes a Lambertian surface without
shadows. The shape-from-specularity method requires
specular reflection regions, the shape-from-shadow
method requires cast shadow regions, while bidirectional
reflectance distribution function (BRDF) modeling re-
quires separation of specular and diffuse reflections. It is
therefore important to analyze the photometric factors in-
cluded in real images.

Several methods have already been proposed for sepa-
rating photometric factors. The dichromatic reflection
model [2] is often used for separating diffuse and specular
reflections [3-5]. These methods use color information to
distinguish specular reflections from diffuse reflections. If
the colors between light source and object are quite differ-
ent, the clue is very powerful. However, if both colors are
similar, the separation becomes difficult. Wolff and Boult
[6] proposed a method to separate specular reflections by
analysis of reflected polarization, while Nayar et al. [7]
combined color and polarization to separate specular re-
flections. Tkeuchi and Sato [8] proposed a method to clas-
sify photometric factors based on range and brightness
images. These methods, however, have a common restric-
tion in that shadows cannot be analyzed.

On the other hand, there are some methods that ex-
press real images in a linear subspace. Shashua [9]
showed that an image illuminated from any direction can
be expressed by a linear combination of three base images
taken using different lighting directions assuming a Lam-
bertian surface and a parallel ray. That is, an image can
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be perfectly expressed in a 3D subspace. Belhumeur and
Kriegman [10] showed that an image can be expressed by
the illumination cone model even if the image includes at-
tached shadows. In the illumination cone, images are ex-
pressed by a linear combination of extreme rays.
Georghiades et al. [11] developed the illumination cone so
that cast shadows can also be expressed by shape recon-
struction. Although any photometric factor can ideally be
expressed by the illumination cone, a large number of im-
ages corresponding to extreme rays are necessary.

We have proposed the photometric linearization
method [12], which converts real images into ideal images
that include only diffuse factors. After photometric linear-
ization, all images are expressed as a linear combination
of three base images. The method was originally proposed
for image synthesis. In this paper, we show that the
method can also be used for classifying photometric fac-
tors. It can classify not only diffuse and specular reflec-
tions, but also attached shadows and cast shadows. We
present a new criterion for classification of photometric
factors based on the photometric linearization. The clas-
sification algorithm requires neither 3D shape informa-
tion nor color information of the scene. The classification
is accomplished by a simple comparison of pixel intensi-
ties.

Moreover, we show that the accuracy of the original
photometric linearization can be improved by introducing
a new classification-based criterion to the linearization
process. The original photometric linearization method
does not work stably when pixels are not illuminated in a
number of input images. Our physics-based analysis can
solve this problem.

2. PHOTOMETRIC LINEARIZATION

We have proposed the photometric linearization method
[12], which converts real images including various photo-
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metric factors into ideal images, containing only diffuse
reflection factors. First, we summarize the photometric
linearization algorithm.

A. Photometric Factors

Photometric factors are classified into reflections and
shadows as shown in Fig. 1. Reflections are further clas-
sified into diffuse reflections and specular reflections. Ac-
cording to the Lambert model, the intensity of the diffuse
reflection is expressed by

i=nTs. (1)

Here, n denotes the surface property vector, which is a
product of the unit normal vector and the diffuse reflec-
tance, and s denotes the lighting property vector, which is
a product of the unit vector along the lighting direction
and the lighting power. Specular reflections are observed
as the sum of diffuse factors and specular factors.

Shadows are classified into attached shadows and cast
shadows. Attached shadows depend on the angle between
the surface normal and the lighting direction and are ob-
served where the angle between n and s is greater than
90°. Cast shadows depend on the overall 3D shape of the
scene and are observed where light is occluded by other
objects. If there is no ambient light or interreflection, the
intensity of both shadows is zero.

B. Linearity of Diffuse Reflection

Shashua [9] showed that if a parallel ray is assumed, an
image I, under any lighting direction can be expressed by
a linear combination of three base images (I, I, and Iy)
taken using different lighting directions,

I, =c/ly +cily+ il 2)

Here, let c,=[c; c; c;]” be a set of coefficients of the im-
age I,.

C. Process Flow

Real images do not satisfy Eq. (2), because shadows and
specular reflections are observed. The photometric linear-
ization can convert real images, which include various
photometric factors, into ideal images, which contain only
diffuse reflection factors. That is, real images are con-
verted into ideal images, which satisfy Eq. (1) perfectly.
Since all pixels in the images fully satisfy Eq. (2) after the
photometric linearization, any image can be expressed by
a linear combination of three base images [9].

For the photometric linearization, multiple images are
taken using different lighting directions. The camera and
target objects are fixed. It is important that the lighting
direction, the 3D shape of the target object, and the reflec-

. attached shadow
specular reflection

diffuse reflection cast shadow

Fig. 1. Photometric factors included in an image.
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tance of the surface are unknown. The process of photo-
metric linearization is divided into the following three
steps, as shown in Fig. 2:

1. Calculation of coefficients.
2. Photometric linearization of base images.
3. Photometric linearization of all input images.

Detailed algorithms are given in the following subsec-
tions.

1. Calculation of Coefficients

Let I;,Is, ... ,I; denote the input images. First, three base
images (I, I, I3), whose lighting directions are linearly
independent, are selected from the input images. It is
noted that the three base images should have large com-
mon regions of diffuse reflections. Although the selection
affects the accuracy, the linearized result does not change.

The coefficients of the linear combination have to be de-
termined to satisfy Eq. (2). If we calculate them by mini-
mizing root mean square errors, correct coefficients can-
not be calculated because of shadows and specular
reflections. The photometric linearization solves this
problem with the random sample consensus (RANSAC)-
based approach. Many candidates are iteratively calcu-
lated by random sampling, and the correct value calcu-
lated from only diffuse reflections is selected from among
the candidates. If all pixels are sampled from the diffuse
reflection region, the correct value, which is not affected
by specular reflections and shadows, is calculated. That
is, we can regard the photometric linearization as a prob-
lem to find one correct value calculated using only diffuse
reflection factors from among many candidates.

To calculate a candidate of the coefficients, three pixels
are randomly selected from base images I;,I5,I3, and
each input image I,. Note that the same pixels are se-
lected from every image. A set of coefficients €, is calcu-
lated from the intensities of these pixels. If all the images
include only diffuse components, unique coefficients are
determined. By iterating this process, many candidate co-
efficients are obtained.

After iteration of this process, a coefficient distribution
is obtained. If all the selected pixels include only diffuse

1. calculation of coefficients

Cq cs

11 I 13 14 Is eeoe

base images ;L
14

2. linearization of base images

L L L L L
I 12 I3 14 Is eoe

3. linearization of all input images

Fig. 2. Flow of the linearization process.
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Fig. 3. Estimating the coefficients by random sampling and out-
lier elimination.

components, the calculated coefficients center around the
correct point in the coefficient space in a dense formation
as shown in Fig. 3. On the other hand, if the pixels in-
clude specular reflections or shadows, the coefficients are
isolated from the correct point. Hence, the most reliable
coefficients can be found by iterative calculation of a cen-
ter of gravity and outlier elimination. The coefficients of
the linear combination can be estimated reliably even if
the input images contain specular reflections and shad-
OWS.

2. Photometric Linearization of Base Images

Next, we linearize the base images using the estimated
coefficients for each input image. Three images (I, I,,,, I,),
excluding the three base images, are selected from the in-
put images. Since the coefficients (¢;, ¢,,, ¢,) of the se-
lected images have already been calculated, the base im-
ages (I, I,, I3) can be regenerated by a linear
combination of the selected input images and their coeffi-
cients.

If a pixel contains only a diffuse component in all the
selected images, the pixel in the regenerated image also
contains only a diffuse component. Although real images
include other components, they are observed within a lim-
ited lighting direction for each pixel. Hence, an iterative
method is used once again. The candidates for pixel inten-
sity of the linearized base images are calculated by a lin-
ear combination of three input images which are selected
at random. After iteration of the random selection and
calculation, a pixel intensity distribution is obtained. The
most reliable intensities are estimated in the same man-
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ner as described in Subsection 2.C.1. As a result, the
three base images I;, Iy, and I3 are linearized to If, 1L,
and Ig , respectively.

3. Photometric Linearization of All Input Images

We have already obtained linearized base images (I Ié,
IL) and coefficients ¢, for each input image I,. All input
images can now easily be linearized by linear combina-
tions of the linearized base images with the coefficients.
We denote the linearized I, as IZ.

3. IMPROVEMENT OF PHOTOMETRIC
LINEARIZATION

The photometric linearization was originally proposed for
image synthesis. In this subsection, we show that the
method can also be used for classifying photometric fac-
tors. We present a new criterion for classification of pho-
tometric factors based on the photometric linearization.
Moreover, we show that the accuracy of the original pho-
tometric linearization can be improved by introducing a
new classification-based criterion to the linearization pro-
cess.

A. Criterion for Classification
In this subsection, we show that each pixel can easily be
classified into diffuse reflection, specular reflection, at-
tached shadow, and cast shadow based on the photometric
linearization. The classification is accomplished by a
simple comparison of the pixel intensity. That is, the clas-
sification does not need any additional information such
as 3D shapes, lighting directions, or color information.
Let i, ;) be the intensity of the pixel p in the image &,
and let l(k 2 be the linearized intensity. The relationship
between i, ,) and l (hp) 1S 88 follows: In the diffuse reflec-
tion region, ij;, , is equal to i(; ), because the intensity is
not changed by the linearization. In the specular reflec-
tion region, i{;e,p) is smaller than i ), because the specu-
lar factor has been eliminated. Equation (1) indicates that
the intensity in the attached shadow is negative, while
that in cast shadow is positive. In the attached shadow re-
gion, L(Lk )becomes negatlve which satisfies Eq. (1). In the
cast shadow region, l(k is larger than iy, ,), because i z(k )
has a diffuse reﬂectlon factor, while iy ,) is near zero.
Hence, each pixel can be classified by the following crite-
rion:

Region(k,p) = §

D:if (i) = il =T X o) N Gy = To)

St () = i py > T X i) N () = 0) N (i) = T)
A:if (i, ) < 0) N (g < Ty

C:if (ify ) = 0) N (igsp) < T)

U: otherwise
\

(3)
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Here, D, S, A, C, and U denote diffuse reflection, specu-
lar reflection, attached shadow, cast shadow, and an un-
defined factor, respectively. The threshold T is used to
check the equality of i;, ,) and if;e7p), and is determined em-
pirically. Since T is normalized to be relative to i ), the
check is independent of the brightness. In real images,
the intensities of shadows are not zero. The threshold T
is used to distinguish shadows, and can be determined by
manually sampling some pixels in shadow regions.

In this criterion, the shadow regions are classified by
only using threshold T,. Although the classification is
very simple, attached shadows and cast shadows can be
distinguished by the sign of if}e’p). It is one of the signifi-
cant advantages of the criterion because two types of
shadows can be distinguished without any 3D shape in-
formation. Figure 4 illustrates Eq. (3) as a 2D plane
spanned by i, and i{’k’p). The photometric factors are
easily classified once the photometric linearization has
been accomplished.

B. Key Idea for Improvement

In Subsection 3.A, we showed that photometric factors
are correctly classified if the photometric linearization is
perfectly accomplished. That is, pixels are never classified
as undefined factors. This fact suggests that the photo-
metric linearization becomes more accurate by introduc-
ing the criterion for classification to the linearization pro-
cess. We can use the criterion to verify the accuracy of the
photometric linearization.

C. Introducing the Criterion for Classification
To find a correct value from the numerous candidates cal-
culated by iterating the random sampling process, the
previous method [12] iterates the estimation of the center
of gravity and outlier elimination. However, the algo-
rithm, which is based on the principle of majority, has
weaknesses. Since the center of gravity may be affected
by outliers, an incorrect candidate may be selected be-
cause of shadows. So the process tends to be unstable.

We now propose a new algorithm that can accurately
determine the correct value from the many candidates.
The distinction is based on the results of photometric clas-
sification. We check the photometric factors of all candi-
dates, and therefore, introduce the criterion for classifica-
tion into the photometric linearization process.

If a candidate is correct, each pixel is classified as one
of the defined factors (D, S, A, and C) by Eq. (3). No pixel
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Fig. 4. Criterion for classification of photometric factors.
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is ever classified as an undefined factor (U). Each candi-
date is evaluated according to the number of pixels, which
are classified as the defined factors. The candidate that
has the maximum number of pixels can be regarded as
the correct value.

Essentially, the evaluation is based on the defined fac-
tors, with the exception of specular reflections. The specu-
lar reflection occupies a large area in Fig. 4. If we regard
S as the defined factor, incorrect candidates may be ac-
cepted. Since the size of the specular region is relatively
small in the images, we can ignore specular factors in this
evaluation. Hence, we evaluate pixels that are classified
as diffuse reflection, attached shadow, and cast shadow by

1, if (Region(k,p)=D UA U C)

Classifiable(%,p) = {0, if (Region(k,p) =S U U)

(4)

D. Evaluation of Candidates

In this section, we present the detailed algorithm to
evaluate candidates. For each candidate ¢, of a set of co-
efficients, the kth input image I, is linearized to I% by the
linear combination of the three base images I;, I, and I5.
If ¢, is correct, Eq. (4) becomes one for almost all pixels.
Hence, we define the following function to evaluate candi-
dates of the coefficients Cj:

Support®(k) = 2 Classifiable(k,p). (5)
p

On the other hand, the linearized intensities i(Lk’p) are
calculated by the linear combination using coefficients c;

for each candidate ilL, If ;IL, is correct, Eq. (4) becomes one
for almost all input images. Hence, we define the follow-
ing function to evaluate candidates of the linearized in-

tensities:
Supportl(p) = 2 Classifiable(k,p). (6)
k

These functions are used to calculate the number of
pixels, which are classified as valid factors. Support®(%) is
used when coefficients of the linear combination are cal-
culated, and SupportZ(p) is used when the three base im-
ages are linearized. We can regard the candidate for
which the function Support®(k) or Supporti(p) returns
the maximum, as the correct value. By using the esti-
mated coefficients ¢, and intensities ig in the linearized
base images, the accuracy of the photometric lineariza-
tion can be improved.

E. Comparison with the Previous Method

It is noted that the proposed method takes the physical
photometric phenomena into account, and considers the
photometric factors of outliers, while the previous method
[12] is based solely on the statistical framework. The ac-
curacy can therefore be improved, especially in shadow
regions.

One may think that if we simply modify [12] so that
pixels below the threshold T are excluded as outliers, the
accuracy can be improved. By ignoring dark regions, simi-
lar results may be acquired. However, the new method
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can analyze the reason for shadows and classify them as
either cast shadows or attached shadows. Shadows can
thus be regarded as reasonable inliers.

4. EXPERIMENTAL RESULTS

We evaluated the proposed method using both synthetic
and real images. For the experiments using real images,
we used three kinds of materials with different reflection
properties. A ceramic cup (Fig. 7) is an example of a rough
glossy object, a pot (Fig. 11) is an example of a very shiny
object, and a marble sphere (Fig. 12) is an example of
complex reflection.

A. Evaluation Using Synthetic Images

To begin, we evaluated the proposed method numerically
using synthetic images. The synthetic images were gener-
ated by POV-Ray, which is ray-tracing software. The
scene contains a sphere and a cone as shown in Fig. 5.
Twenty images were generated, using a different lighting
direction for each.

Figure 6(a) shows the classification result using the
proposed method, while Fig. 6(b) shows the result using
the previous method [12]. Since this scene is artificially
generated, we can easily generate no-shadow and no-
highlight images. By comparison with such images, cor-
rect classification can be obtained as shown in Fig. 6(c).
We call this result the “ground truth.” In the result of the
previous method, some pixels of diffuse reflection are in-
correctly classified as specular reflection. Obviously, the
result of the proposed method is similar to the ground
truth.

For the numerical evaluation, we count the number of
pixels for each photometric factor in the ground truth im-
age as shown in Table 1. We then check how accurately
the pixels are classified based on the photometric linear-
ization. Table 2 shows the classification results using the
previous method and the proposed method, respectively.
In the table, each row shows how accurately the correct
photometric factor in the ground truth image is classified
based on the photometric linearization. We can see that
the proposed method can correctly distinguish cast
shadow and attached shadow, as well as diffuse and
specular reflection.

Fig. 5. Synthetic images.
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|:| Specular reflection

Diffuse reflection

- Attached shadow

- Cast shadow

(a) previous method

(b) proposed method

(c) ground truth

Fig. 6. Classification of photometric factors (synthetic scene).

B. Photometric Classification of Real Objects

We captured 24 images in a dark room using different
lighting directions and keeping a halogen light away from
the ceramic cup as shown in Fig. 7. Since this cup has a
concave surface, some pixels are not illuminated in a
number of the input images.

Figure 8 shows three base images selected from the in-
put images; Fig. 8(a) shows the original base images,
while Fig. 8(b) and 8(c) show the results of the photomet-
ric linearization. Since the linearized images have nega-
tive values, a zero level is expressed as a gray intensity.
The results using the previous method are shown in Fig.
8(b). Many pixels are incorrectly linearized to be zero, be-
cause the previous method is strongly affected by cast
shadows. The results of the new method based on the
classification criterion are shown in Fig. 8(c). We can see
that the base images are correctly linearized even if some
pixels are not illuminated in a number of the input im-
ages.

Table 1. Number of Pixels for Each Photometric

Factor
Photometric Factor Number of Pixels
Cast shadow 2393
Attached shadow 845
Diffuse reflection 15007
Specular reflection 955

Table 2. Accuracy of the Classification (%)“

(a) Previous Method (b) Proposed Method

C A D S C A D S

C 99.04 0.96 0.00 0.00 C 9996 0.04 0.00 0.00
A 0.00 100.00 0.00 0.00 A 1.78 9822 0.00 0.00
D 0.00 0.00 99.01 099 D 0.00 0.00 99.99 0.01
S 0.00 0.00 43.56 56.44 S 0.00 0.00 17.49 82.51

“C, cast shadow; A, attached shadow; D, diffuse reflection; and S, specular re-
flection.
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Fig. 7. Input images taken using different lighting directions
(cup: 24 images).

(b) linearization by previous method

(c) linearization by proposed method

Fig. 8. Linearized base images.

Figure 9 shows the relationships between the intensi-
ties of the input images and the linearized images of a
pixel corresponding to the inside of the cup. Figure 9(a) is
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the result of the previous method and shows that many
pixels on the inside of the cup are considered as dark sur-
faces without shadows. Some pixels are classified as an
undefined factor. Figure 9(b) is the result of the proposed
method and shows that almost all pixels are classified as
one of the defined factors.

Figure 10 shows the results of the photometric classifi-
cation. Figure 10(a) is an input image, while Fig. 10(b) is
the linearized image. Comparing Figs. 10(a) and 10(b),
each pixel is classified as Fig. 10(c) diffuse reflections, Fig.
10(d) specular reflections, Fig. 10(e) attached shadows,
and Fig. 10(f) cast shadows. In these images, black pixels
indicate the classified pixels. Although attached shadows
and cast shadows cannot be classified by a simple thresh-
old, the proposed method can distinguish them.

Some pixels on the inner side of the cup in Fig. 10(c)
are incorrectly classified as diffuse reflection. These pixels
should be classified as either attached shadow or cast
shadow. The normal direction of these pixels is perpen-
dicular to the lighting direction. Hence, it is difficult to
distinguish dark diffuse reflection and attached shadow.
The accuracy depends on the thresholds 7" and T.

Next, we applied our method to a glossy object with a
complex shape. Figure 11(a) shows 24 images of the ob-
ject. Figure 11(b) is the result of the photometric linear-
ization. Figures 11(c)-11(f) show the results of the classi-
fication as diffuse reflections, specular reflections,
attached shadows and cast shadows, respectively. Each
pixel can be classified as a suitable photometric factor
even if the target object has a complex shape.

C. Photometric Stereo
The conventional photometric stereo [1] assumes a Lam-
bertian surface without shadows. There are, however,
many improved algorithms for photometric stereo, such
as the 4-source photometric stereo technique [13], which
can recover surface normals in the presence of highlights
and shadows. In this section, we show that the conven-
tional simple photometric stereo method can easily be ap-
plied to a scene that includes highlights and shadows by
combining our photometric linearization as a preprocess.
We captured 24 images of a marble sphere using differ-
ent lighting directions (Fig. 12). Parts of the surface are
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Fig. 9. Comparison of classification.
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@ ) M
Fig. 10. Classification results of the photometric factors (cup).
(a) Input image, (b) linearized image, (c) diffuse reflections, (d)
specular reflections, (e) attached shadows, and (f) cast shadows.
Black pixels indicate the classified pixels.

(@) input image (c) diffuse reflection

(b) linearized image

PRI TG
| \

(f) cast shadow

»

(d) specular reflection (e) attached shadow

Fig. 11. Classification results of a glossy pot. Black pixels indi-
cate the classified pixels.
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ment, we know that the shape of the target object is a
sphere. Hence, we sampled five points on the surface and
calculated an affine transformation matrix by the least
square method so that the surface normals correspond to
those of the sphere. This process corresponds to estima-
tion of the lighting direction using a known-shape object.
Figure 16(a) is the ground truth shape obtained by
manual measurement. Figures 16(b)-16(d) are the recon-
structed shapes using the simple photometric stereo
method, the previous method, and the proposed method,
respectively. We can see that the simple photometric ste-
reo method is affected by specular reflections, and the
previous method fails in reconstruction at boundaries be-
cause of errors in the photometric linearization. On the
other hand, the proposed method can correctly linearize
and reconstruct the entire sphere. Table 3 shows the rms
error and the largest error of the reconstructed 3D shape
for each method. This result indicates that the photomet-
ric linearization is effective as a preprocess to the photo-
metric stereo.

occluding object

target object cast shadow
(sphere)

Fig. 13. (Color online) Target scene.

Fig. 12. Input images taken using different lighting directions
(sphere).

not illuminated due to obstacles as shown in Fig. 13.
First, all input images were linearized. The three selected
base images and the linearized base images are shown in
Figs. 14 and 15, respectively. Figures 15(a) and 15(b)
show the results of the previous method and those of our
method, respectively. The previous method failed in the
linearization at the left- and right-hand sides of the
sphere, because the pixels are not illuminated in a num-
ber of the input images due to shadows. On the other
hand, our method is able to linearize the entire sphere
correctly.

After the photometric linearization, the 3D shape was
reconstructed by photometric stereo. Because the lighting
directions are unknown, the surface normals cannot be
uniquely determined in essentials [14]. In this experi-

Fig. 14. Three selected base images.

(a) previous method

(b) proposed method

Fig. 15. Linearized base images.
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Fig. 16. Reconstructed 3D shapes.

Table 3. Comparison of Errors

Rms Largest Error
Algorithm (mm) (mm)
Simple photometric stereo 5.11 14.41
Previous method 4.04 23.49
Proposed method 3.84 9.85

5. DISCUSSION

Real scenes include more complex illumination and reflec-
tion. In this section, we discuss the limitations of and ex-
tensions to the proposed method.

A. Specular Reflection on Rough Surface

In our algorithm, we assume sharp specular reflections on
a glossy surface. This means that specular reflections are
easily distinguished from diffuse reflection by a simple
criterion as shown in Eq. (3) and that the number of
specular reflection pixels are relatively small. Hence, we
can regard the specular reflection as an undefined factor
in Eq. (4).

If wide specular reflections are observed on a rough
surface, the classification becomes more difficult because
a part of the specular reflections may be included in the
linearized images. In this case, other algorithms, for ex-
ample those that use a polarizer [6] or color information
[2,3], can be combined with our method.

B. Interreflection

Interreflection is an effect whereby reflected light on a
surface illuminates the other surfaces again, and is ob-
served at a concave part of an object. In our method, we
assume that there is no interreflection.

Belhumeur and Kriegman have shown that interreflec-
tion on a Lambertian surface can also be expressed as a
linear combination of three images [10]. This means that
the interreflection effect will be included in the linearized
image. Hence, the result of the photometric linearization
cannot be used directly as a preprocess for the photomet-
ric stereo method. The relationship between the linearity
of interreflections and the photometric linearization is un-
der investigation.

C. Subsurface Scattering

Subsurface scattering is an effect of light transport in
translucent materials, such as marble, skin, and milk.
Since we assume opaque objects, our algorithm cannot be
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applied to a material that has subsurface scattering. If
strong subsurface scattering is observed, the linearity of
the intensity cannot be satisfied.

In the experiment in Subsection 4.C, a marble sphere is
used. Although subsurface scattering is observed on the
sphere, the adverse effect is slight and thus, the photo-
metric linearization succeeded.

D. Illumination

Our algorithm assumes a point light source at infinity. If
there are multiple light sources or ambient light, the
shadow cannot be classified correctly because shadow re-
gions are found based on the threshold. Moreover, our al-
gorithm assumes parallel light, and therefore a nearby
point light source cannot be used. The extension to take
complex illumination into consideration is one of our fu-
ture works.

6. CONCLUSIONS

In this paper, we have proposed a new photometric clas-
sification method based on photometric linearization.
While the photometric linearization was originally pro-
posed for generating images using an arbitrary lighting
direction, we showed that the method can also be used for
the classification of photometric factors. We have im-
proved the accuracy of the photometric linearization
method by introducing the classification criterion into the
linearization process.

The photometric linearization plays an important role
as a fundamental technique of computer vision such as
photometric stereo and shape-from-shading. We have con-
firmed that our method can be applied to a variety of ma-
terials, and that the photometric stereo becomes robust
with respect to shadows by applying the photometric clas-
sification as a preprocess. In the future, we intend to ana-
lyze more complex factors such as interreflection.
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