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1 Introduction

Optical tomography!™ is known as a safer alternative to X-ray tomography. Usually tomography
consists of a light source generating penetrative light and a detector capturing the light, which
allows to estimate the inside of an object in which the light is passing through. The most important
application is X-ray Computed Tomography (CT) where X-rays are used due to their penetrative
property. The balance between the radiation exposure of the human body and the quality of the
obtained results has been debated since the early days when X-ray CT was invented. Therefore,
there is an urgent demand for a safer medical tomography, such as optical tomography.

Modeling the behavior of light plays an important role in optical tomography, and in the
mesoscale, in which the wavelength of light is close to the scale of tissue, the Radiative Trans-
port Equation (RTE) is used for describing the behavior of light scattering>° At the macroscale,®
the time-independent or dependent RTE is often approximated with a diffusion equation.

Similarly, the computer graphics community has the used time-independent RTE, and in con-
trast to the (surface) rendering equation,'*!!' often call it the volume rendering equation (VRE)%12

(w-V)L(z,w) = —oy(x)L(z,w) + 0s(x) [ folz,w,w")L(z,w")dw’, (1)
S2

where notation will be introduced in the following sections. The use of VRE enables us to render
volumes of participating media such as fog, cloud, and fire through which light is penetrating, and
to obtain realistic volume-rendering images of such scenes'*!* The path integral, which can be
considered as a discrete version of the continuous Feynman path integral /> has been recently
employed to solve the VRE in an efficient way with Monte Carlo integration such as Metropolis

light transport!”?18 or bidirectional path tracing.™”
In this paper, we propose an optical tomography method using path integral as a forward model
and solving a non-linear inverse problem that minimizes the discrepancy between measurements



and model predictions in a least-squares sense. To the best of our knowledge, the discretized
path integral has not been used in optical tomography before. In our work, we simplify the path
integral with some assumptions. The path integral, as the name suggests, gathers (or integrates)
the contributions of all possible paths of light 1#1820523 We approximate the integral of infinite
number of paths with a sum of finite number of paths, and discretize a continuous medium into
voxels of a regular grid, and continuous light paths into discrete ones (i.e., polylines). We deal
with anisotropic scattering having a peak in the forward direction, which is different from other
discretization methods using discrete ordinate or spherical harmonics.t22%23 In this work we focus
on estimating the spatially varying extinction coefficient o;(x) at each discretized voxel location of
the medium while fixing scattering properties (e.g., scattering coefficients o, and phase functions
fp). By separating the scattering properties from our problem, we formulate optical tomography
as an optimization problem with inequality constraints solved by an interior point method.

An interior point method®® is an iterative method to solve an optimization problem with in-
equality constraints describing a feasible region in which the optimal solution must reside. To
this end, a series of non-constrained optimization problems are constructed by combining the con-
straints and the original objective function and solved by an ordinal gradient-based (Quasi-Newton)
method.

To summarize our contribution, we reformulate the problem of optical tomography by com-
bining a path integral with several simplifying assumptions to model the light transport in partic-
ipating media. This paper is an extension of our previous conference version*"2% with additional
theoretical background, and additional experiments and discussions, and is structured as follows.
In section 2, we briefly review previous work related to path integrals and optical tomography.
In section 3, we describe how to model the light transport in participating media and turn optical
tomography into an optimization problem. In section 4, we show how to solve the optimization
problems. Section 5 reports some simulation results and section 6 concludes the paper.

2 Related work

In this section, we briefly review related work on optical tomography and path integrals in computer
graphics.

Optical tomography*? (or inverse transport,®” inverse scattering,*” scattering tomography
is a problem in medical imaging using light sources to reconstruct the optical properties of tissue
from measurements (time-dependent or stationary, angular-dependent or independent) at the sur-
face boundary. Solving the RTE with boundary conditions analytically is however difficult,
and approximations, such as discrete ordinates and Nth order spherical harmonics (Py approx-
imation), are often used and solved numerically by, for example, finite element methods (FEM)
or finite difference methods (FDM). The famous diffuse approximation>® (DA) is a P; (thus 1st
order) approximation with the assumption on a phase function being isotropic. The DA is an ap-
proximation to RTE at macroscopic scale when scattering is large while absorption is low, and
scattering is not highly peaked. Diffuse Optical Tomography (DOT) is based on DA and nowadays
represents the frontier of optical tomography>#23 with many clinical applications.>* The DA how-
ever does not often hold in realistic participating (scattering) media; absorption may not be small
compared to scattering, and the shapes of the phase functions can be highly peaked in the forward
direction which is often modeled by Henyey-Greenstein,®> Schlick®® or Mei and Rayleigh phase
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functions 1123738 Experimental evidence®” also suggests a highly peaked shape of the phase func-
tions in biological media. DOT works but is still limited, therefore, other methods have been also
studied for cases when DA does not hold.

Statistical Monte-Carlo methods are used for media in which the assumptions do not hold,
however they are computationally intensive and inefficient for solving the forward problem,* 73
1.e., solving the RTE with given parameters. Therefore Monte-Carlo based approaches have been
used for estimating the spatially constant (not varying) parameters in homogeneous media such
as paper,“>* clouds,** liquids,** plastics,* or uniform material samples.* Another difficulty of
Monte-Carlo based inverse methods is that an analytical forward model prediction is hard to obtain
when we want to minimize the difference between the prediction and measurements except for
very special structures 2%47 A gradient based least square approach has been proposed but only for
spatially constant parameter estimation,*>*!48 while model-free approaches have relied on genetic
algorithms *##* numerical perturbation,**?Y voting,”" or even simple back-projection.*? One of the
contributions of the current paper is to enable us to use a gradient based optimization approach for
estimating spatially varying parameters, which is extensible by using many optimization methods.

Similar to optical tomography, modeling light transport plays very important role in computer
graphics. Our own work on optical tomography is inspired by Monte-Carlo based statistical meth-
ods. In the last two decades, methods based on path integrals' 22322 have provided models of
light transport for efficient volume rendering. For solving RTE, a path integral has been used for
a forward problem solver,1®°%37 and also applied to optical tomography but under the diffusion
assumption*¥>? Our proposed method is based on a path integral to express the forward model
prediction explicitly, which is very suitable to solve the inverse problem with gradient-based meth-
ods. This is an advantage of our method over existing methods because the paths used in the
forward model can be generated by either a deterministic or statistical (Monte-Carlo) method. To
achieve an efficient forward model, we introduce a simplified layered scattering model that uses a
limited number of deterministic paths instead of Monte-Carlo simulated ones.

3 Method: Forward problem
We deal with the following optical tomography problen

min y _ |I;; = Py(on)], )

.3

where o, is a vector representing the spatial distribution of the extinction coefficients to be es-
timated. We divide our discussion into two parts; forward and inverse problems. The forward
problem focuses on building a mathematical model P;;(o) of the light transport between a light
source ¢ and a detector 7. We will make some assumptions on the light transport and the medium
to simplify the forward model. An inverse problem minimizes the difference between the observa-
tions /;; of the detector and the forward model to estimate the spatial distribution of the extinction
coefficients o;.

*This is a conceptual formulation and the actual problem is shown in Eq. li



3.1 Forward model

In the forward problem, as we mentioned before, we use a path integral to build a mathematical
model for the light transport. Here, we follow the notation developed in the computer graphics
literature! 2230 1o introduce the path integral. The next section will show the simplified model
We propose.

Given a space i3, there are a light source located at 7, € R3and a detector at x;,,; € R°, and
in-between participating media v C R* with boundary dv and interior volume vy := v \ dv. A
light path Z connecting xo and s, of length M + 2 consists of M + 2 vertices z,, € R* for
m=20,1,..., M+ 1, denoted by £ = x¢x; - - - zp;xpr+1. Thus, absorption, scattering or reflection
events happen at x1, ..., x,. The set of all paths of length M is denoted by €25,. The path space
() is the countable set of all paths {2, of finite length,

0= U Q. (3)

A direction is denoted by w € S?, where S? is a unit sphere in %*. A unit vector wy,, 4,,,, is the
direction from vertex z,,, to vertex ,,,11 in a path z.

Veach?” introduced a framework representing the rendering equation in the form of a path
integral for scenes without participating media (i.e., no scattering), and later Pauly et al.*” extended
it to the volume rendering equation with scattering. The amount of light / observed by the detector
is given by the path integral

1= / F(@)dp(), 4)

an integral over the path space. Here (%) is a measure of path Z,

s dA(xm), Xm € OV
dp(z) = dp(xm), dp(r,) = oo ’ 5
) = L doten). o) {dv(xm% e ®

where dji(x,,) denotes the differential measure at vertex z,,. f(Z) is a measurement contribution
function defined as follows;

M
f(Z) = Le(wo, 71)G (20, 71) [H ff(afm1>$m7$m+1)G<$m>$m+1)] We(ar, xat1),  (6)
m=1

where W, (x s, zpr41) is the camera response function, and L. (x¢, z1) is the intensity of the light
emitted from the light source x to vertex 1. ff(Zm—1,Zm, Tm+1) is a scattering kernel at z,,, with
respect to the locations of vertices x,,, 1 and x,,, 11,

fs(xm—laxmaxm—i-l)a Ty € 01/,

Us(.%m)fp(l’m,l, L, merl), Tm € Vp.

ff(mmfla L, merl) = { (7)

Here, the bidirectional scattering distribution function (BSDF) f(z,—1, Tm, Tms1) 18 used for lo-
cations on the surface of objects, and the scattering coefficient o4(x,,) at x,, and phase function
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Jp(Tm—1, Tm, Tm~+1) are used for those inside the medium. G(x,,, z,,,+1) is a generalized geometric
term:

G(xmyxm—&-l) = T(xmaxm—&-l)g(xmaxm—&-l)» ()

where g(z,, T;,11) is @ geometric term

|ng(5’3m)'wwm,wm+1|
2
J— Tm—XT 1
g(xm’xm+1) — H Wi m+ H

[@m—=2m1]?”

, Ty € OV,

€))

Tm € o,

with unit normal n,(z,,) of the surface at x,, € Ov. T(z,,, Zm+1) 18 a transmittance which de-
scribes the attenuation when light passes through the medium;

—T(l’m,xm+1) m m C U 8
T (2, Tst) = 4 B} Cao Uy, (10)
0, otherwise,
1
T( Ty Ty1) = / o (1 — 8)xpm + sTmi1)ds, (11)
0

where o,(z,,) is the extinction coefficient at vertex x,.
Putting all together, we have a path integral of the following infinite sum of all possible path
contributions;

9) M M+1
I=>>")" Le(zo,21)G(x0, 1) [H Fr(@met, T, T 1) Gy Tmsr) | Welwar, tari1) [ dplam).
M=2keQn m=1 m=0
(12)

Note that all vertices {x,,} depend on a path k; different paths have different sets of vertices. In
the equation above however we omit the path index % for simplicity. Later we will use £ as path
index again.

3.2 Assumptions on the path integral formulation

As our target is optical tomography, we restrict the model to deal with inside participating me-
dia. To do so, we assume that the light source x( and detector z,,;,; are located on the surface,

and the other vertices xy, xs, ..., Zy, a4 are inside the medium; that is, xo, zpr41 € Jv and
Z1,...,Ty € V. Then the transmittance is simplified as
T( &, Tmr) = €T o), (13)

Furthermore, we assume that the observations are ideal and the camera response function is the
identity; We (2, zpr41) = 1.

Apart from the assumptions above, we rewrite the geometric term and the differential mea-
sure. The definitions above use area measures dA(z,,) and volume measures dV (z,,) along with
the squared distance geometric term,*2¥>3 however steradian measures dw(z,,) and the identity
geometric term are equivalent and also widely used 1>V

9(Tomy Tia1)dp(zy,) = dw(zy,). (14)
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Fig 1 Illustration of a discretization example. (a) Voxelization of the medium into a regular grid of size 5 x 5. Voxels
are indexed in raster scan order in this example; from left to right, and top to bottom. Each voxel b has extinction
coefficient o;[b]. (b) A path segment between vertices x1 and xo. Voxels involved in the segment are shaded. (c)
Lengths dy2[b] of the involved voxels b = 2, 3, 8, 9. Here we denote d12[b] instead of d,, ., [b] for simplicity.

Therefore, we employ the steradian measures and rewrite as follows:

(T Tmya) = 1 (15)
dA(zg), m=0,
d m) = 16
i) {dw(a:m) m=1,...,M+1. (16)
Now Eq.(12)) is written as
00 M
I = Z Z Le(xo, 1) T (20, x1)dA(z0) H Fr@m—1, Tmy Tims1) T (T, Tong1)dw (X)) | dw(zpr41)-

M=2keQs m=1

(17)

3.3 Discretization of the forward model

For numerical computation, we first discretize the medium into voxels of a regular grid, where
each voxel has its own extinction coefficient oy[b] (b is the index of the voxel) as shown in Figure
i}

With this voxelization, the paths of light are also divided into segments, as explained below.
First we explain the integral (L)) along a single segment z,,z,,41 of a path Z. It describes the
attenuation of light along the segment due to the extinction coefficients of the voxels involved.
Because of the discretization of the medium, the integral (]'1;1'[) can be written as a sum of voxel-
wise multiplications;

1
T(Tm, Tmy1) = / 0t((1 = 8)Tm + 8Tmy1)ds = E Ut[b]dxm,xm+1[b] = o'fdxm,xmﬂ-
0

beBZm »Tm41

(18)



For the second equality, b is the index of a set B3,,, ..., of all voxels involved by segment x,, 2,41,
and d,, ..., [b] is the length of the part of the segment x,,,x,,,+1 passing through voxel b. This is
illustrated in Fig[I|c). The extinction coefficient o, is now a peace-wise constant function because
of the voxelization, then the integral turns into a su

This simplifies the computation, however the sum over a set B,,, ,.., is not preferable in
terms of implementation and optimization. We propose here to use a vector representation of both
extinction coefficients and segment lengths, which is the third equality of the above equation. The
first vector o stores the values of the extinction coefficients oy[b] of all voxels. This vector can
be generated by serializing the voxels on the grid in a certain order. The second vector d, ...,
contains the values of the lengths d,,, ..., [b] for all voxels. We should note that this vector is
very sparse; most of the voxels have no intersection with the segment x,,x,,.1. Hence, only few
elements in d,,, ..., have non-zero values, and the other elements are zero because those voxels b
have no intersection and d,,, .., ,[b] = 0.

This sparsity of the vector facilitates the construction of a whole path x because path segments
can be “added” as follows;

M
Dy =) dupanir; (19)

m=0

where Dy, is the vector of a complete path % of length M + 2; the b-th element can be interpreted
as the length of the segment when the path passes through voxel 0. This notation simplifies a part
of Eq.(17) as follows;

M M
H T(S(,’m, merl) = H eiT(xmw"#l) =e 2%20 T(@m Tmt1) =e Z%:o Utszm’szrl = €7UiTDk.
m=0 m=0
(20)
Using this notation to rewrite Eq.(I7)), we have
[ = Z Le(l'o,l'l) Z erio-’zﬂDk = Le(l’o,l'l) Z eriagﬂDk, (21)
M=2 keQ keQ
where the factor H}, defined as
M
Hy = dA($o)dw($M+1) H ff(lEm—h Tm, $m+1)dw($m), (22)
m=1

describes the contributions of the scattering coefficients and phase functions, and the exponential
factor represents attenuation due to absorption (and out-scattering) over the path.
3.4 2D layered model of forward scattering

As a first attempt, we design a 2D layered grid, instead of the 3D one. Since we voxelize the
medium into a regular grid, the 2D medium consists of parallel layers. Hereafter, a 3D direction

TThe idea that this integral can be turned into a sum, has been discussed before 2! however not in the context of
tomography.
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Fig 2 Proposed 2D layered model of scattering. This example shows path & consisting of vertices x; - - - & s located
at the centers of voxels in a grid with M parallel layers. g is a light source located on the top surface, and 741 is a
detector at the bottom. At each vertex, the light scatters to voxels in the next layer, and possible scattering directions
are indicated by arrows.

w between vertices is written as a 2D direction 6, and a steradian measure dw as an angle measure
de.

As shown in Fig]2] we assume a particular layer scattering having the following properties.
First, vertices z1 - - - x); of path x are located at the centers of each voxel. Light source z is located
on the boundary of the top surface of the voxels in the top layer. Similarly, detector x5, is located
on the boundary of the bottom surface of the voxels in the bottom layer. Second, directions 8, .,
and 0,,, .,,., at the beginning and end of a path are perpendicular to the boundary. This means
that scattering begins at z; and ends at z,. Third, forward scattering happens layer by layer. More
specifically, light is scattered at the center of a voxel in a layer, then goes to the center of a voxel in
the next (below) layer. Scattering is assumed to happen every time the light traverses voxel centers.
Even if the next voxel is just below the current voxel and the path segment is straight, it is regarded
as scattering. Fourth, the scattering coefficient is uniform; o(z) = 0.

By ignoring paths exiting from the sides of the grid, the number of all possible paths is N,
where M is the number of layers and NV is the number of voxels in one layer.

3.5 Approximating the phase function with a Gaussian

We use a Gaussian model f,(#, o%) as an approximation of the phase function;

1 —6? T T
Fo(Tme1, Ty Ting1) = fp(Qm,JQ) = exp ( m) , = <O, <=, (23)
2w o2 2

o2 2

where the variance o controls the scattering property; larger values of o2 mean strong forward

scattering. This Gaussian approximation is convenient in our case because of the following two
reasons.

First, existing phase function models are those for three dimensional scattering, not
for 2D. This means that those functions are normalized for integrals over the unit sphere S2:
f 52 fp(w)dw = 1. Most of the phase functions assume isotropy (rotational symmetry) and hence
the function has a form taking angle 6 as an argument, however [~ f,(6)d6 # 1. These functions

-
therefore are not adequate for our case.

10,12}[35H38
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Fig 3 Comparison of two-dimensional phase functions. The upward vertical direction is § = 0, and horizontal
directions are § = 47. (a) Gaussian approximated phase functions with 0% = 0.1,0.2,...,1.0. The tallest and
narrowest shape corresponds to 02 = 0.1, and the shape becomes shorter and rounder for larger values of 2. (b)
Heino’s two-dimensional analogs®® of Henyey-Greenstein’s phase function with parameter g = 0.1,0.2, ..., 1.0. The
tallest and narrowest shape corresponds to g = 1.0, and the shape becomes shorter and close to a hemisphere for

smaller values of g.

Second, our assumption of layer-wise forward scattering does not allow scattering to happen
backward or sideway, and the Gaussian model is suitable for it. As shown in FigureEI, the Gaussian
model has the form of forward-only scattering (no backward or sideway) in a reasonable range of

o2, and it is almost normalized; ffz fp(ﬁ, 02)d0 ~ 1. Other two-dimensional phase functions exist,
2

which are not forward-only. For example, Heino et al.% introduced a two-dimensional analog of
Henyey-Greenstein’s phase function,* shown in Fig Although the parameters are different, the
two functions in Fig[3|have similar shapes. The most important difference is that Heino’s function
has backward scattering, but our Gaussian model doesn’t. More realistic scattering rather than
the layer-wise forward scattering introduced here needs Heino’s or Henyey-Greenstein’s phase
function.

We should note one further simplification in our layer-wise forward scattering model. The an-
gle 0,,, in the phase function is usually defined between ¢, , .. and 0, . ., thatis, the difference
of directions changed by the scattering event. Instead of dealing with such an exact difference of
directions, we use the angle between 0,,, ..., and the vertical (downward) direction for efficiency
of computation. This assumption enables us to discretize the Gaussian phase function much easier.
Since f,(¢) integrates to (approximately) one, such a normalization can be discretized with a sum
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Fig 4 An illustration of angle measure Af; for voxel b in the next layer. For the center voxel of the upper layer, voxel
b (shaded) in the next layer subtends an angle of A#j,, which is used for the angle measure in Eq. (24).

Fig 5 (a) The phase functions with parameter o2 = 0.2 (dashed line) and 02 = 0.4 (solid line). (b,c) Plot of the value
I»(0p, %) AB,, for each voxel b for (b) 02 = 0.2 and (c) 0? = 0.4. Note that index b is relative to the voxel in the next
layer just below the voxel in consideration. The voxel just below is b = 0, the voxel on its right side is b = 1, and on
the left side is b = —1.

as follows;

50,000 % S (0 0%) A0 ~ 1, (24)

beBn,

NJE]

where B is a set of voxel indices in the next layer n, 8, is an alternative form of the corresponding
O, 2msr» and Afy is the angle measure as shown in Figure

The equation above can be considered as the energy distribution from a voxel in one layer to
the voxels in the next layer. For a voxel b at direction 6, the value of f,(6,,%)A#f, describes
what percentage of the energy will be scattered to this voxel. Figure [5 shows plots of the values
corresponding to two phase functions with different parameters. We can see that due to forward
scattering most of the energy is concentrated in the voxel just below, and a small part goes to the
adjacent voxels.

The contribution Hj, in Eq. now needs to be rewritten so that it deals with the Gaus-
sian phase function and the discretized energy distribution discussed above. First we reorder the

10



measure

M
Hk = dA(ilﬁo)de(QZM+1) H ff(-Tm—la L xm-&-l)de(xm) (25)
m=1
M
= dA(wo)d0(x) | | fr(@m-1, Tm, T s1)dO(@mi), (26)
m=1

then replace the factors with the Gaussian phase function;

Hy = dA(xO a:o 7105 H fp Tm,Tm+41) )A€$m7$m+1' 27

Note that the factor dA(z¢)Ab,, »,0} is common for all paths because we assumed that the grid
is uniform so that dA(z) is constant, and the direction 6, ,, (or wy, ., ) is perpendicular to the top
surface, and o, is constant.

3.6 Observation model

Suppose the 2D layered medium is an M x N grid; it has M layers each of which is made of NV
voxels. We now construct an observation model of the light transport between a light source and a
detector: emitting light to each of the voxels at the top layer, and capturing light from each voxel
from the bottom layer. More specifically, let « € B, and j € Bj; be voxel indices of the light
source and detector locations, respectively. By restricting the light paths only to those connecting
¢ and j, the observed light I;; is written as follows;

Lj=1oY  Hyye ot Pur, (28)
k=1

where H;j;, and D;j;, are the same as in Eqs.(27) and (21), respectively, but restricted to paths
connecting 7 and j, and Iy = L.(xo, z1) assuming the light source being constant.

In the above equation, k indexes the light paths which share the same 7 and j. Due to the layered
scattering model in the N x M grid, the number of different paths between i and j is N;; = NM 2,
This is however too large even for small N and M, e.g. N = M = 10. Therefore we exclude paths
having small contributions from the computation. This is done by a simple thresholding while
computing H;ji. as shown in Algorithm |1} This results in generating fewer paths; N;; < N2,
For example, there are N;; = 742 paths for N = M = 20 with 6% = 0.4 when th = 0.001, which
enable us to reduce the computation cost.

4 Method: Inverse problem

Next, we propose a method for the inverse problem of the forward model (28)) to estimate the
extinction coefficients of the 2D layered model. As we mentioned before, we fix the light paths and
assume that the scattering coefficients and parameters of the Gaussian phase function are uniform
and known in advance.

11



Algorithm 1: Computing contribution H;;;, and omitting low contribution path by threshold-
ing.
Input: Threshold th, path £ = - - - X pr41.
Output: Contribution H;jj.
1 Hy, = 1;
2 form =1to M do
Hijk: = Hz’jkfp(emm,rm+17 U2>A‘9mm,:ﬂm+1
if Hijk; < th then
stop;
omit this path;

A U A W

7 accept this path;
8 return Hjjy;

4.1 Cost function

In the M x N 2D layered medium described in the last section, we had assumed a configuration
of a light source and detector as the one show in the left-most figure of Figl} the light source is
located above the medium and the detector is below, and the observed light is I;; where ¢, j are
the voxel indices of the light source and detector locations. By sliding the light source and the
detector, we can obtain N? observations, resulting in the following least squares problem

2

N N Nij
min fo,  fo=3 Iy —Io Y Hye 7P| (29)
¢ i=1 j=1 k=1
under 2M N constraints
00, =u (30)

where =< denotes the generalized inequality, i.e. all elements in the vector must satisfy the in-
equality. The lower bound 0 comes from the fact that any media must have positive extinction
coefficients, while the upper bound w is used for numerical stability to exclude unrealistic values
to be estimated.

Furthermore, as shown in Figl6] we have four configurations of light sources and detectors by
changing their positions. This gives us four different sets of observations [;; and paths 7j%. These
four different sets lead to four objective functions (frop, fror, f2r. fror) as shown in Figld
Since the four objective functions share the same variables o, we can use all of them at the same
time by adding them to form a new single function f; at the expense of additional (factor of four)
computation cost;

min fo, fo= fi2P + fLR 4+ f8 4 fI2L gubjectto 0 = oy < u. (31)

12
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Fig 6 Four configurations of light sources and detectors. From left to right, we call configurations T2B (top-to-bottom),
L2R (left-to-right), B2T (bottom-to-top), R2L (right-to-left) which represent locations of light sources and detectors.

4.2 Optimization problem with inequality constraints

Since the inverse problem (31)) is non-linear, we employ an interior point method;*® an iterative
optimization algorithm for problems with constraints. Here we first review several key points in
optimization, then we will develop an algorithm to solve [31] along with required first and second
order derivatives of the cost function (31).

4.2.1 Unconstrained problem: Quasi-Newton

First we review optimization without constraints, which is used inside the interior point method.
The general form of unconstrained optimization is

min f (o) (32)

where o, € RV*M is a real vector and f : RV*M — R is an objective function which is twice
continuously differentiable.

To solve it, an iterative procedure begins with an initial guess o, and generates a sequence
{o%}22,. It stops when the change of solutions is small enough. The information about function
f at o/* or even previous estimates 0,°, o', --- ,0,*"! are used to calculate a direction pj, to
move with a step size ay. Line search is often used to determine the step size by searching along

the direction starting from o, for finding o,**! with the least value of the objective function;

min f(o," + arpr) (33)

ap>0

Once we find the step size, the estimate o,**! is updated as o,**! + o, + a;,p;. The direction

is pr = — B,V f(o.") for the Newton’s method, where B, = V2f(0,*)7! is the inverse of the
Hessian.

The Newton’s method is well known for its second order convergence and accuracy. However,
when the dimension of the problem is large, calculating the Hessian and its inverse is computa-
tionally expensive. Therefore Quasi-Newton methods are often used, where the inverse Hessian
is updated by incremental approximations in order to reduce the computation cost. The Broyden-
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Algorithm 2: The Quasi-Newton method with BFGS update rule.

Input: A feasible initial solution o,°, and By > 0.

Result: An estimate o;*.

1 repeat

2 | Compute the Quasi-Newton direction: p* = — B,V f(o,").
3 Find step length «j, with line search.

4 Update estimate o,**! « o,F + ;. p".
5

6

Update Bj, with BFGS.
until convergence;

Fletcher-Goldfarb-Shanno (BFGS) update rules are well known;®?

s =0 — ol (34)
Yy = Vf(o'tk) - Vf(o'tk_l) (35)
T T T
sy E; ss

When the conditions y?'s > 0 and B, = 0 (where = 0 means positive definite) are satisfied, the
BFGS update guarantees the positive definiteness of Bj. Algorithm [2[ shows the Quasi-Newton
method.

4.2.2 Constrained problem: Interior point

Here we introduce a constrained optimization with inequality constraints of the form;

min fo(o;) subjectto fi(x) <0, i=1,---,m, (37)

where o; € RYV*M is a real vector and fy, - - , f,, : RV*M — R are twice continuously differen-
tiable.

The idea is to approximate it as an unconstrained problem. Using Lagrange multipliers, we can
first rewrite problem (37) as

min fo(er) + Y 1(fi(e)), (38)
i=1
where I : R — ¥ is an indicator function which keeps the solution inside the feasible region;
0, [<0
I(f) = 39
(f) {Oo’ £>0. (39)

The problem (38)) now has no inequality constraints, while it is not differentiable due to /.
The barrier method*®is an interior point method which introduces a logarithmic barrier function
to approximate the indicator function [ as follows;

I(f) = —(1/t) log(—f), (40)
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where ¢ > ( is a parameter to adjust the accuracy of approximation. The log barrier function goes
to infinity rapidly as f goes close to 0 while it is close to O when f are far away from 0. Since /(f)
is differentiable, we have

min () +Z—(1/t) log(—fi(av)), (41)
or equivalently,
n},itntfo(at) - Zlog(—fi(at)). (42)

The barrier method solves iteratively by increasing the parameter ¢. At the limit of ¢ — oo,
the above problem coincides with the original problem (38]).

4.3 Algorithm for solving the inverse problem

Algorithm 3| shows the our algorithm which uses a barrier method with Quasi-Newton for solving
the inverse problem. We should mention the following parts where we have modified the original
algorithm 2

Warm start For each inner loop, the Quasi-Newton method needs initial guess of the inverse
Hessian Bj. Instead of fixing B, for every inner loop, we reuse B} of the last inner loop to
accelerate the convergence (shown in Lines 4] and [I9]in Algorithm 3).

Checking feasibility Since the Quasi-Newton method and line search estimate without con-
straints, the next estimate 0,1 may go beyond the constraints; in our case, each element o;**1[b]
in o1 must be inside [0, u] after step size has been determined. Therefore in Line [8| we check
the feasibility of the estimate o,**! for the current step size y. If it exceeds the boundary of the
feasible region, we pull the estimate back into the feasible region by halving the step size. If it is
still outside of the feasible region, then the step size is halved again. Why don’t we just set the
step size so that ! is exactly on the boundary? The reason is the log-barrier: if ,**! is on
the boundary, in other words, o,**1[b] is either O or u, then log(o;[b]) or log(u — o:[b]) becomes
infinite, which results in numerical instability. Therefore, the procedure described above is needed.

Checking for positive definiteness The BFGS update rules guarantee B, to be positive definite
if y's > 0 and B = 0 are satisfied. While the latter is satisfied by giving an appropriate initial
guess, the former however depends on the updates at each iteration. If it is not satisfied, then the
BFGS updates is no longer valid and we reset the inverse Hessian B}, to a scaled identity®® at line
16}
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Algorithm 3: Barrier method of interior point with Quasi-Newton solver.
Data: Parameters ;> 1, € > 0, and ¢ = #j,;0 > 0.
Input: A feasible initial estimate o,°, and B > 0.
Result: An estimate o,*.

1 while % >edo// outer loop: barrier method

2 t < ut.
3 Set a log-barriered cost function;
F(t) =tfo =Y _(log(eu[b]) +log(u — o, [0])) 43)
b
4 k<« 0, B, < B, o, « o,.
5 repeat// inner loop: Quasi-Newton
6 Compute the Quasi-Newton direction: p* = —B,V f(o.").
7 Find step length oy with line search.
8 while o, + a;,p” is not feasible do
9 | Halve the step size: oy ¢ /2.
10 Update estimate o' < &% + ay.p”.
1 s = ot — gk,
12 y= Vf(o'tkH) - Vf(atk).
13 if y's > 0 then
14 L Update Bj; with BFGS .
15 else
TS
16 t Reset By < Z’jT—y].
17 k<« k+1.

18 | until IVf(o, )T B V(o) <e
v | B+ Bk+1’ Oy < O'tk.

4.3.1 Jacobian

Here we represent the Jacobian of the objective function f in Eq. (29). Note that the objective
function f; in Eq. (31) can be derived in the same manner.
We first rewrite the objective function f; as follows;

2

N N Nij

=22 b Hijpe™o! D (44)
=1 j5=1
N N Nij Nij

=> > | I~ 2Ll Z Hijpe 7 Pv 4 I3 N " Hyjpe @ Pk Hype ¢ Pt | (45)
i=1 j=1 k=1 k=1 I=1
N N Nij Nij

_ Z Z L1 Z Hyre™ ol Dijk 4 I Z Z Hiijijle—atT(Dijk—i-Dijz) , (46)
i=1 j=1 k=1 k=1 i=1
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an the gradient of f is given by

D, —oT(Dy;ir 4D
a_o => > |26k Y Hijwe ™ P Dy = 15 > HipHige™* PP (D + Dij)
ot 4 k=1 k=1 I=1
(47)
To simplify the equation, we use the following notation;
- e,a-tTDiﬂ Hijl
e_U?DijQ sz
E = , H= . (48)
_e—O';TDijNij HZ]N”
[ Dijy Diji + Diji Diji+ Dijp -+ Djji + Dy,
D;; — D5 + D;; D;js+ D;js -+ Djjo+ Djn,.
Dij _ .32 ’ o= j2 : J1 52 : 52 J2 : JNij (49)
| Dijn; Dijn,; + Diji Dijn,; + Dije -+ Dijn,; + Dijn,
Now f; and the gradient can be represented as
N N
fo= 330 (13 = 2150 BT H + R(E"H?) (50)
i=1 j=1
af al —
0_02 — Z Z(z]ijfo sum[(F x H) ® D;;] — IZsum[((E x H)(E x H)") ® Dij]>, (51)

where sum| | stands for the sum over the elements of the container of vectors, X is the element-
wise product, and ® denotes the tensor product defined as

-a11 G2 - Aim by bz -+ by,
e e PR )
_a;n a‘;LZ qu;,m by bua - bum
_a11b11 aigbis -+ aymbin,
A9 B— a21.b21 Cl22'b22 a2m.b2m ' (53)
_anl'bnl CLnQ.an o Apmbam

5 Numerical simulations

In this section, we report the results obtained by numerical simulations using the proposed model.

The following parameters have been used in Algorithm [3} ¢;,; = 1.0, p = 1.5, ¢ = 1072
For the line search, the range for the step size was oy, € [0,100]. For the initial guess we used
B =1, ;' = 0. For the 2D layered medium, the grid size was set to N = M = 20 with square
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voxels of size 1 [mm], i.e. the medium is 20 [mm] x 20 [mm], and dA = 1 [mm]. The values
of the extinction coefficients are set between 1.05 and 1.55 [mm~'], and the upper bound
is set to u = 2.0 [mm~!]. The parameter of the Gaussian phase function is 0.2 or 0.4, and the
scattering coefficient is set to o, = 1 [mm~!]. The threshold for excluding low contribution paths
is th = 0.001.

The ground truth and the estimated extinction coefficients are shown in Figure [/, The matrix
plots in the top row of the figure represents five different media (from (a) to (e)) used for the
simulation. Each voxel b is shaded in gray according to the values of the extinction coefficient
o,[b], and darker gray represents larger values of o,[b]. Also the values of o,[b] are displayed at
each voxel. In the same manner, the middle and bottom rows show the estimated results when
the following values of the parameter of the Gaussian phase function were used: ¢ = 0.2 and
0.4. Figure 8| shows the observations /;; in a matrix form, from which the extinction coefficients
are estimated. Each element in these plots is now an observation /;;. We can see observations
with higher values (shown in darker shades of gray in the plots) on the diagonal. The observations
obtained for 02 = 0.4 seem to be fainter than those obtained for o2 = 0.2 due to the larger amount
of scattering.

The left-most column of Fig. [7(a) shows the simplest case: the medium has almost homoge-
neous extinction coefficients of value 1.05 (voxels shaded in light gray) except few voxels with
much higher coefficients of 1.2 (voxels shaded in dark gray), which means that those voxels ab-
sorb much more light than other voxels. The coefficients are estimated reasonably well as shown
in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table|[T]is small
enough with the relative error of 0.0075/1.05 = 0.7% to the background coefficient value. The
other media, shown in columns (b)—(e), have more complex distributions of the extinction coeffi-
cients. We summarize the quality of the estimated results in terms of RMSE in Table 1. Numbers
in the brackets are relative errors of RMSE to the background extinction coefficient values (i.e.,
1.05). Computation time is also shown in Table 1. Note that our proposed method has been cur-
rently implemented in Matlab, which can be accelerated further by using C++.

The values of the cost function f, over iterations of the outer loop in Algorithm [3|are shown in
Figure [0|for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) for five different types of media shown here and probably for other
media. Figure [10|demonstrates how the log-barriered cost function f in Eq. evolves over all
iterations of the inner loop; the number of iterations in the horizontal axis accumulates all inner
iterations of the Quasi-Newton method. We can see that each inner loop successively minimizes
the log-barriered function and the warm start (reusing the Hessian from the previous outer loop)
may help the gap of values between inner loops.
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Fig 7 Numerical simulation results for a grid of size 20 x 20. Darker shades of gray represent larger values (more
light is absorbed at the voxel). The bars on the side show extinction coefficient values in greyscale. The first row
shows ground truth for five different types of media (a)—(e) used for the simulation. The second and third rows show
estimated results for oo = 0.2 and o5 = 0.4, respectively, of the Gaussian phase function.

Table 1 RMSEs and computation time for the numerical simulations for five different types of media (a)—(e) with grid
size of 20 x 20, for two different Gaussian phase function parameter values. Numbers in the brackets are relative errors
of RMSE to the background extinction coefficient values (i.e., 1.05).

(a) (b) (©) (d) (e)
02 =02 0.0067506 0.014253 0.017771 0.016220 0.057692
RMSE (0.643%) (1.36%) (1.69%) (1.54%) (5.49%)
02 =04 0.0075305 0.014369 0.017704 0.015692 0.058464
(0.717%) (1.37%) (1.69%) (1.49%) (5.57%)
. o2 =02 142 113 297 190 269
Computation
tme sl | 2y 127 110 186 156 267
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Fig 8 Visualization of the observations I;; in a matrix form. Each matrix shows I;; in its i-th row and j-th column.
The horizontal index ¢ indicates the location of the light source, and the vertical index j the location of the detector.
Hence, I;; is the light intensity with the detector at j and the light source at 7. Darker shades of grey represent
larger observation values (brighter light is observed). (left to right columns) Five different media (a)—(e) used for the
simulation in the same order as in Fig. m (top to bottom rows) I;; for T2B and L2R configurations for 0? = 0.2 and
0% =04.
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Fig 9 Original cost function values f over iterations of the outer loop of Algorithm with 02 = 0.2 (left) and 0.4
(right). The horizontal axis shows the number of outer iterations, and the vertical axis represents the log of the original

cost function values. Different plots indicate five different types of media (a)—(e) used for the simulation.
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Fig 10 Log-barriered cost function values f over iterations of all inner loops of Algorithm [3] for medium (e) with
o2 = 0.2 (top) and 0.4 (bottom). The horizontal axis shows the number of total inner iterations accumulated across
different outer loops. The vertical axis represents the original cost function values (left) in log scale and (right) in

linear scale.
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Table 2 RMSEs and computation time for the numerical simulations for five different types of media (a)—(e) with grid
size of 24 x 24, for the proposed method and DOT with two solvers. Numbers in the brackets are relative errors of

RMSE to the background extinction coefficient values (i.e., 1.05).

(a) (b) (©) (d) (e)
Ours 0.007662 0.01244  0.026602 0.021442 0.051152
0% = 0.4 0.730%) (1.18%) (2.53%) (2.04%) (4.87%)
RMSE DOT (GN) | 0.053037 0.060597 0.7605  0.059534 0.0855
(5.05%) (5.77%) (1.53%) (5.67%) (8.14%)
DOT (PD) | 0.052466 0.0626  0.081081 0.066042 0.080798
(525%) (5.97%) 8.11%) (6.60%) (8.08%)
Ours
o 257 217 382 306 504
Computation oy GNy | 0397 0390 0407 0404 0453
time [s]
DOT (PD) 111 1.09 1.14 1.08 115

5.1 Comparison results

We compare our method to a standard DOT with Finite Element Methods (FEM)®*® ysing dif-
ferent optimization methods implemented in the Electrical Impedance Tomography and Diffuse
Optical Tomography Reconstruction Software (EIDORS).®*® The ground truth used in this com-
parison is shown in the top row of Figure 11 (a) — (e); N = M = 24 medium of the size 24 [mm)]
x 24 [mm] with extinction coefficient distributions almost the same as those shown in Fig[7] (a) —
(e).

For solving DOT by EIDORS, we used 24 x 24 x 24 = 1152 triangle meshes (i.e., each voxel
is divided into two triangle meshes), and for the boundary condition we placed 16 light sources
and 16 detectors at the same interval around the medium. We chose two solvers: Gauss-Newton
(GN) method and Primal-Dual (PD) interior point method. We used o, = 0 as the initial guess
for both our method and EIDORS.

The results obtained by our method (02 = 0.4) and DOT with GN and PD are shown in Fig
The results obtained by the proposed method are shown in the second row, which are similar to
those in the third row of Fig[7] The third row in Fig[TT|shows results for DOT with GN. This kind
of blurred results are typical for DOT estimation due to its diffusion approximation. The last row
shows results for DOT with PD, which look better than those obtained for DOT with GN, but still
have a tendency of overestimating the high coefficient value areas.

We summarize RMSE values and computation time for each method in Table 2] in the same
format with Table [, RMSE values of our method are 2 to 5 times smaller than those of DOT, and
this demonstrates that the proposed method can achieve much more accurate results.

The current disadvantage is its large computation cost, as our method takes up to 1000 times
longer than DOT. We plan to reduce the computation cost by optimizing the code using C++ and
adopting other solvers.
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Fig 11 Numerical simulation results for a grid of size 24 x 24, comparing our method to DOT with two solvers. Darker
shades of gray represent larger values (more light is absorbed at the voxel). The bars on the side show extinction
coefficient values in greyscale. First row shows the ground truth for five different types of media (a)—(e) used for the
simulation. Second row shows the estimated results of the proposed method. Third and fourth rows show estimated

results for DOT by using Guass-Newton (GN) and Primal-Dual (PD) interior point solvers.

6 Conclusion with discussion

In this paper, we have proposed a path integral based approach to optical tomography for multiple
scattering in discretized participating media. Assuming the scattering coefficients and phase func-
tion are known and uniform, the extinction coefficients at each voxel in a 2D layered medium are
estimated by using an interior point method. Numerical simulation examples are shown to demon-
strate that the proposed framework works better than DOT in the simplified experimental setup,
while its computation cost needs to be reduced.

There are many directions for further research including: relaxing the assumption of 2D layered
scattering model to more realistic scattering with other phase functions, using paths generated by
Monte-Carlo based statistical methods, extending the formulation to a full 3D scattering model,
and solving the issues mentioned below.

Limitations: stability and uniqueness The current formulation presented in this paper esti-
mates only the extinction coefficients; the scattering coefficients and phase function parameters are
assume to be known and uniform. This is one of the limitations of the proposed method, however
a common limitation of optical tomography. It is known that the scattering and absorption coeffi-
cients can not be separated from stationary measurements of light intensity,** and the solutions are
not unique. Also, given stationary measurements without angle information the problem becomes
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ill-posed®” hence not stable. To overcome this limitation, we need to extend the current formula-
tion to handle other measurements that enable stability and uniqueness, such as time-dependent,
frequency-dependent, or angle-dependent measurements.

Computational cost A large part of the computational cost of the proposed method comes from
the forward model prediction (28)), which appears in the gradient computation (7). It depends on the
number of paths N;;; we use currently about 700 paths out of all 20'® possible paths, and for each
path we need to compute path vectors Dy, D;;1, + D;j;;, and factors H;j;,. A possible acceleration
is the precomputation of these variables but this would lead to a trade-off with storage cost. Each
D;j;. has dimension of 20 x 20 = 400, each pair of 75 has about 700 vectors of D);;;, and the
number of pairs 75 (hence observations) is 20 x 20 = 400. In total, about 450MB memory would
be required even if single precision floating numbers were used for storing all D;;;,. Fortunately,
these vectors are necessarily sparse, and we have used sparse matrices to store them. However, the
increase will be linear in the number of paths N;; and quadratic with the grid size max (N, M).
Therefore we plan to consider more efficient implementations.
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