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Abstract

The time-of-flight camera was originally developed for depth sensing but can be used for different purposes
by utilizing the principle. This paper introduces two applications based on light transport measurement
using the time-of-flight camera. One is the recovery of the temporal point spread function, while the other is
material classification. The presented applications show the future possibilities of the time-of-flight camera.

1 Introduction

A Time-of-Flight (ToF) camera can measure a range
image based on the delay of reflected light. The
emitted light is amplitude-modulated and the algo-
rithm for depth estimation assumes that the modu-
lated light returns to the camera. However, the modu-
lated light is distorted by multipath interference, such
as interreflection and scattering, as shown in Fig. 1.
Incorrect depths are computed as a result. We refer
to this error as depth distortion.

Depth distortion is problem in the field of depth
sensing. However, depth distortion contains rich ge-
ometric and optical information of the scene. We re-
gard the distortion as a temporal light transport of
the emitted light. That is, the ToF camera can be di-
rectly or indirectly used for temporal light transport
measurement. This paper introduces two examples of
temporal light transport measurement using the ToF
camera. One is the recovery of the temporal point
spread function (PSF). We show that the temporal
PSF of the scene can be recovered by combining a
commercially available ToF camera with a simple de-
lay circuit. The other is a material classification. We
show that the depth distortion depends on the prop-
erties of subsurface scattering. Material can thus be
classified according to the depth distortion as a clue.
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Figure 1: Distortion of the amplitude-modulated light
due to subsurface scattering.

2 Recovering Temporal PSF
using ToF Camera with De-
layed Light Emission[1]

Recovering the temporal PSF is important for vari-
ous applications, especially the analysis of light trans-
port. Some methods that use amplitude-modulated
continuous-wave ToF cameras have been proposed to
recover the temporal PSF, archiving resolution of sev-
eral nanoseconds. In contrast, we show that sub-
nanosecond resolution can be achieved using a pulsed
ToF camera and an additional delay circuit. The
delay circuit is inserted before the illumination so
that the emission delay can be controlled on a sub-
nanosecond scale as shown in Fig.2. We recover a
temporal PSF of sub-nanosecond resolution from ob-
servations for various delay settings.

Figure 3 shows the experimental results. (a) shows
the target scene, which includes a mirror and translu-
cent objects. Strong interreflection and subsurface
scattering occur in this scene. (b) shows the observed
reflection and recovered temporal PSF. (c) compares
the recovered temporal PSFs of different translucent
materials. (d) shows the recovered PSFs for all pixels,
known as transient images. Light propagation of the
scene is thus visualized.
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Figure 2: Experimental setting. (a) ToF camera. (b)
light source. (c) delay circuit with a controller.
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Figure 3: Estimated temporal PSFs. (a) Scene including a mirror and translucent objects. (b) Compar-
ison with observation and recovered results with and without a non-negative constraint. Non-negativity
contributes to the stability. (c) PSFs of different translucent objects. Different shapes of PSFs are recov-
ered. (d) Recovered PSFs for all pixels, known as transient images. Light propagation of the scene is thus
visualized.

3 Material Classification from
ToF Distortions[2]

The ToF camera can also be used for material clas-
sification. The proposed method is based on an im-
portant observation that a depth measurement made
by a ToF camera is distorted for objects with cer-
tain materials, especially translucent materials. We
show that this distortion is due to the variation of the
time-domain impulse responses across materials and
to the measurement mechanism of the ToF camera.
Specifically, we reveal that the amount of distortion
varies according to the modulation frequency of the
ToF camera, the object material, and the distance be-
tween the camera and object. Our method uses the
depth distortion of ToF measurements as a feature
for classification and allows material classification of
a scene.
Figure 4 shows a real example of depth distortion.

(b) shows the restored shape of the mayonnaise bot-
tle in (a) obtained using a Kinect device. We see the
shape is distorted at the mayonnaise part while the
shape is measured correctly at the label part. This
depth distortion is used as a clue for material esti-
mation as in (c). If materials become known, the
distorted depth can be recovered as in (d).
Figure 5 shows the depth distortions when using a

Kinect device for three different materials. The differ-
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Figure 4: Depth distortion of a ToF camera. (a) A
mayonnaise bottle is measured using a Kinect device.
(b) 3-D view of the measured depth. There is a gap in
depth between the mayonnaise and label regions. We
use this depth distortion for material classification.
(c) Material segmentation result. The material label
is assigned for each pixel. (d) Application of mate-
rial classification to depth correction. Depths are cor-
rected according to the segmentation result and the
distortion database. Depth gaps among materials are
corrected and the 3-D shape is faithfully recovered.



(a) Acrylic board (b) Polystyrene board (c) Diffusion glass

Figure 5: Depth distortions measured using a Kinect device for three objects. The ground truth depth is
obtained via a linear translation stage. The top row shows photographs of the target objects. Measurements of
the second and third rows are different in terms of the surface orientation. Depth distortion at each frequency
varies along with the actual depth and material. Depth distortion is similar for the same material regardless
of the surface orientation but largely different for different materials. This frequency- and depth-dependent
depth distortion is our important observation for material classification.
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Figure 6: Confusion matrix. Higher values of con-
fusion are indicated red and appear on the diagonal.
The overall accuracy is 90.5%.

ence in materials appears as depth distortion. We see
that depth distortion depends on not only the actual
depth but also the frequency of modulation.

We classified 26 different materials, including
metal, wood, plastic, and fabric. Figure 6 shows the
confusion matrix. Higher values of confusion are in-
dicated red and appears on the diagonal. The overall
accuracy is 90.5%.

Figure 7 shows the material segmentation results
for a white scene. It is difficult to classify the material
by eye or using a normal RGB camera because all ma-
terials are white. However, pixels are independently
segmented for each material without using shape in-
formation.

4 Conclusion

This paper introduced an unusual use of the ToF cam-
era. Depth sensing is of course important for under-
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Figure 7: Left: Material segmentation results for a
white scene. All utensils are white and classification
is thus difficult using only with an RGB image. Right:
The result of material classification. Although there
is estimation error due to the pixel-wise processing
and there being only one depth variation, the scene
is much more interpretable than in the RGB image.

standing a scene but the light transport also has rich
optical information of the scene. We are attempting
to develop new functions of the ToF camera so that
it becomes a new tool in the field of computer vision.
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