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Abstract

A concept named Photometric Image-Based Render-
ing (PIBR) is introduced for a seamless augmented re-
ality. The PIBR is defined as Image-Based Rendering
which covers appearance changes caused by the light-
ing condition changes, while Geometric Image-Based
Rendering (GIBR) is defined as Image-Based Render-
ing which covers appearance changes caused by the view
point changes. The PIBR can be applied to image syn-
thesis to keep photometric consistency between virtual
objects and real scenes in an arbitrary lighting con-
dition. We analyze the conventional IBR algorithms,
and formalize the PIBR in the whole IBR framework.
A specific algorithm is also presented for realizing the
PIBR. The photometric linearization makes a control-
lable framework for the PIBR, which consists of four
processes; (1) separation of environmental illumination
effects, (2) estimation of lighting directions, (3) sep-
aration of specular reflections and cast-shadows, and
(4) linearization of self-shadows. After the photometric
linearization of input images, we can synthesize any re-
alistic images which include not only diffuse reflections
but also self-shadows, cast-shadows and specular reflec-
tions. Experimental results show that realistic images
can be successfully synthesized with keeping photomet-
ric consistency.

1. Introduction

Considerable work has been made for augmented re-
ality, which mixes a synthesized virtual object with a
real scene. In order to realize a seamless augmented re-
ality, the synthesized image should be very realistic be-
cause the synthesized objects and real scene are directly
compared in the same image. Model-Based Rendering
(MBR) has been investigated for the image synthesis,

and it works well with a scene model which consists of
a set of 3D shape models, reflection properties as well
as the lighting conditions of the scene. In order to syn-
thesize a realistic image, however, the MBR approach
requires accurate models. In some applications, the ac-
curate models can be prepared by means of CAD tech-
nology. On the other hand, image-based modeling[1]
is necessary to built the model when the model cannot
be prepared by CAD. It is, however, often unstable to
reconstruct models from a collection of images. The
accurate models often cannot easily obtained without
special devices such as a high precision range finder.

To overcome the problem with the MBR approach,
the Image-Based Rendering (IBR) has been widely
used. The IBR does not require accurate object mod-
els. A new image is directly synthesized from a collec-
tion of input images without the unstable reconstruc-
tion of models. Since the IBR makes full use of real
images, a realistic image can be synthesized.

Although a lot of IBR algorithms have been pro-
posed, almost of them deal with only the geometric
appearance changes caused by the view point changes
[2][3][4][5]. They can synthesize a new image, which
should be taken from a particular view position, from
input images which were taken from the discrete view
positions. The appearance change, however, is subject
to not only geometric factors but also photometric fac-
tors. The appearance change caused by the lighting
conditions is one of the most important ones in the
photometric factors. Unfortunately, the conventional
IBR algorithms cannot cover the photometric appear-
ance changes. It is necessary to control the photomet-
ric factors in the IBR framework, in order to realize
the seamless augmented reality which mixes real and
synthesized images.

For solving this problem, we propose a new IBR
called the Photometric Image-Based Rendering
(PIBR). Using the PIBR, a new image, which should
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be taken in a particular lighting condition, is directly
synthesized from a collection of input images taken in
a variety of lighting conditions. In this paper, we show
how to mix the synthesized images with real scenes
keeping the photometric consistency.

This paper is organized as follows: Section 2 ana-
lyzes that the IBR framework, and shows that it is de-
composed into two aspects, named Geometric Image-
Based Rendering (GIBR) and PIBR. Section 3 presents
the formulation of PIBR, that is, the relation be-
tween the appearance changes and the lighting condi-
tion changes. Section 4 describes how to synthesize im-
ages in the PIBR. Some experimental results are shown
in Section 5. Finally, some conclusions are presented
in Section 6.

2. Two Aspects of IBR

In the IBR approach, a collection of real images is
used instead of 3D object models. The input images
are analyzed, and a different view is directly synthe-
sized from the input images. In other words, the IBR
is based on the conversion from images to images. The
IBR approach has some advantages to the MBR. Re-
alistic images can be synthesized, if the dense input
images are registered in advance. The IBR does not
require unstable processes such as a reconstruction of
the scene model from images, which are inevitable for
the MBR approach.

On the other hand, the IBR has to treat a wide va-
riety of appearance changes for the practical use. The
appearance changes are actually dependent on both
the geometric and the photometric properties of the
scene as well as the lighting condition. However, the
changes are mainly dominated by the relative view po-
sition and the lighting condition. Thus, they can be
decomposed to the orthogonal two aspects; the geomet-
ric and photometric aspects. The Geometric Image-
Based Rendering is defined as the Image-Based Ren-
dering which covers the appearance changes caused by
the view point changes. On the other hand, the Pho-
tometric Image-Based Rendering is defined as the
Image-Based Rendering which covers the appearance
changes caused by the lighting condition changes. We
assume that the two aspects are almost independent
and they work cooperatively in the whole IBR frame-
work. We describe details of the two aspects in the
following two sections.

2.1. Geometric Image-Based Rendering

A lot of algorithms have been developed to synthe-
size a new image, which should be taken at a particular

view point, from a set of input images which were taken
from different view points. These algorithms are classi-
fied in the Geometric Image-Based Rendering (GIBR),
and almost of them are based on the interpolation tech-
nique [2][3][4][5]. That is, an intermediate view is syn-
thesized from two or more input images by a linear
interpolation of the corresponding points. The essen-
tial task is to find the corresponding points between
input images and to predict the location of the corre-
sponding points from a specified view point. Any 3D
information, such as the 3D shape model of the scene
and the view point, is not necessary.

The GIBR framework can cover the geometric ap-
pearance changes caused by the view point changes or
the rotation of the object. However, the photometric
appearance changes cannot be controlled in the GIBR
because the lighting condition is assumed to be fixed.

2.2. Photometric Image-Based Rendering

The photometric appearance changes are the other
dominant factor of the image making process. When
the lighting condition changes, the appearance also
changes even if the view point and the object pose
are fixed. If the concept of IBR can be applied to
the photometric appearance changes, the realistic im-
age with any lighting conditions can also be synthe-
sized in the similar framework as the GIBR. Let us
call the framework the Photometric Image-Based Ren-
dering, or PIBR in short.

In the PIBR framework, a new image in a virtual
lighting condition should be synthesized from a set of
input images which were taken in a variety of lighting
conditions. Since the view point is fixed in the PIBR,
it is not necessary to find the corresponding points be-
tween input images. Thus, the essential task is reduced
to prediction of the intensity of each point on the sur-
face without using any models of both the reflection
properties and the lighting properties.

Some algorithms have already been proposed for
changing lighting conditions in the PIBR framework.
Shashua[6] showed that an image with any light di-
rection can be synthesized by a linear combination of
three base images. This method, however, assumes
the Lambertian reflection model. Unfortunately, real
scenes include more complex factors such as specular
reflections and shadows. Therefore, this method can-
not be applied to the real scenes. In order to deal
with the real scenes, Zhang[7] used the principal com-
ponent analysis and showed that an image in any light
direction can be synthesized by a linear combination
of the principal component images. If dense input im-
ages are prepared, realistic images can be synthesized
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by the method. However, it requires a large number
of base images, if the scene is complex. Furthermore,
the coefficients of the linear combination cannot be an-
alytically calculated because this method is based on
the brute-forced principal component analysis of the
complex photometric effects.

For this problem, we propose a new PIBR scheme
which decomposes complex input images into the lin-
ear and nonlinear factors. Since the linear factors,
which cover diffuse reflections, obey the Lambertian re-
flectance model, an image with any light direction can
be synthesized by a linear combination of three images
and the coefficients are uniquely calculated. The non-
linear factors, which consist of specular reflections and
shadows, are separately processed.

3. Formulation of the PIBR

3.1. Factors of Appearance Changes

The major factors of the appearance changes due
to the lighting condition are the reflection and the
shadow. According to the dichromatic reflection
model[8], the reflection is classified into a diffuse (body)
reflection and a specular (surface) reflection as shown
in Fig.1. The two kinds of reflections have quite differ-
ent properties. The diffuse reflection does not depend
on the viewing direction, and it is equally observed
from every direction. On the other hand, the specular
reflection is intensely observed from the mirror direc-
tion of incident direction.

The shadow is also classified into a self-shadow
(attached-shadow) and a cast-shadow. The two kinds
of shadows also have quite different properties. The
self-shadow depends on the relation between the sur-
face normal and the lighting direction, and it is ob-
served where the surface does not face the lighting di-
rection. On the other hand, the cast-shadow depends
on the whole 3D shape of the scene, and it is observed
where the light is occluded by other objects.

3.2. The Case of Lambertian Reflection
Model

The basic reflection model, including only the diffuse
reflection, is called the Lambertian reflection model.
In the model, the intensity on the surface is simply
formulated in

i = (ls) · (rn), (1)

where l is a lighting power, s is a unit vector of the
lighting direction, r is a diffuse reflectance and n is a
unit vector of the surface normal.

Specular Reflection

Diffuse Reflection

Cast-shadow

Self-shadow

Figure 1. Main photometric factors included in
the real scene; Two kinds of reflections and two
kinds of shadows are treated in our framework.

Here, let S denote the lighting property vector (ls)
and N the surface property vector (rn). Using these
notations, Eq.(1) can be simplified to

i = S ·N. (2)

3.3. The Case of Real Scenes

In the above section, we assumed the Lambertian
reflection model. In order to deal with a real scene,
however, the specular reflections should be considered.
The light also includes the environmental illumination
which evenly illuminates the whole scene. Real scenes
also include shadow regions, where any light does not
arrive. Taking these factors into account, we formulate
an image as follows:

i = α(iD + iS) + iE , (3)

α =
{

0 light is occluded
1 light is not occluded

where iD = S · N is the diffuse reflection factor, iS
the specular reflection factor and iE the environmental
illumination factor. In this paper, the pixel value on
the surface is formulated as a sum of the three factors1.

4. Image Decomposition and Synthesis

4.1. Image synthesis by linear combination

If the Lambertian reflection model is assumed, a
simple algorithm works for image synthesis. The sur-
face property vector N does not change at each point
on the surface, if the target objects and view position
are fixed. Thus, the observed image depends on only

1Real scenes also include inter-reflections. We do not treat
them in this paper, because the effect seems relatively small.
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(a) (b) (c)

Figure 2. An example of simple linear combination. (a) and (b) are input images, and (c) is synthesized
image by the linear combination. The image (c) does not show an image with illuminated from top
direction, but it results in the case of an image with illuminated by the two light sources.

the lighting direction. Shashua[6] showed that if a sin-
gle point light source is assumed at infinity, the image
with any lighting directions (Î) can be synthesized by
a linear combination of three base images (I1, I2 and
I3) taken in different lighting directions,

Î = a1I1 + a2I2 + a3I3. (4)

The following relation holds between the coefficients
a1, a2 and a3 of the linear combination and the lighting
property vectors S1, S2, S3 and Ŝ which correspond to
I1, I2, I3 and Î, respectively.

Ŝ = a1S1 + a2S2 + a3S3 (5)

According to this relation, if the lighting property vec-
tors are known, a1, a2 and a3 are uniquely determined
for a synthesized image with a specified lighting direc-
tion. Now, an essential task to accomplish is to select
the suitable base images and to determine three coef-
ficients of the linear combination.

4.2. Decomposition of Real Images

If the input images are taken in a real scene, a new
image in a different lighting condition cannot be com-
pletely synthesized, since the intensity on the surface
is expressed as a sum of the several factors as shown in
Eq.(3). For example, Fig.2 (a) and (b) are two input
images illuminated from the left and right direction re-
spectively, and Fig.2 (c) is a synthesized image by the
linear combination of (a) and (b). The synthesized im-
age does not show an image with illuminated from the
top direction, but it results in the case of an image with
illuminated by the two light sources. This example in-
dicates that shadows and specular reflections cannot
be treated by the simple linear combination.

To cope with the complex scenes, the principal com-
ponent analysis has been used[7]. An image in an ar-
bitrary lighting condition can be approximated as a

linear combination of base images. However, the lin-
ear combination can not completely express nonlinear
factors, because they essentially require geometric de-
formations in the image plane. As the result, a large
number of base images should be registered in order to
reduce errors of the synthesized image. Moreover, it
is a weak point of this method that all the coefficients
can not be analytically calculated, because there is no
controllable relation between the coefficients and the
synthesized image. Therefore, the coefficients could be
determined through trial and error. Alternatively, they
could be made by the interpolation of registered coef-
ficients in a large data base. These efforts are quite
exhaustive, especially for the complex scene.

For solving this problem, we decompose an image
into two factors. The linear factor corresponds to dif-
fuse reflections, which fully obeys the Lambertian re-
flection model. The nonlinear factor consists of specu-
lar reflections and cast-shadows, which can not be ex-
pressed as a linear combination. First, the nonlinear
factors are separated from the input images as shown
in Fig.3. Next, the self-shadow regions are linearized
to satisfy Eq.(2). Finally, the nonlinear factors are in-
terpolated and mixed to the synthesized image.

Since our approach separately treats linear and non-
linear factors, a new image can be synthesized in an
arbitrary lighting direction by the linear combination
of only three base images, even if it includes the non-
linear factors. It should be noted that the coefficients
can be analytically calculated in our method.

4.3. Photometric Linearization

The photometric linearization converts a real image,
which satisfies Eq.(3), to an imaginary image which
satisfies Eq.(2). In this section, we show how the lin-
earization is realized in the following processes; (1) sep-
aration of the environmental illumination effect, (2)
estimation of the lighting directions, (3) separation
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Linear combination
of the three images

Input Images

Nonlinear factors

Synthesized
image

New image with
nonlinear factors

InterpolationDecomposition

Synthesis of
self-shadow

Composition

  Linearized images  

Self-shadow
linearization

Linear factors
New image with

linear factors

Figure 3. The flow of the process. The input images are decomposed into linear factors and nonlinear
factors. The two factors are separately processed.

of specular reflections and cast-shadows, and (4) lin-
earization of self-shadows.

4.3.1 Separation of Environmental Illumina-
tion Effect

In our method, the effect of the environmental illumi-
nation is first eliminated. Since the environmental illu-
mination does not depend on the lighting source, the ef-
fect is considered as constant. An image, which is taken
without any lighting source in advance, is regarded as a
background image. The environmental illumination is
eliminated by the subtraction of the background image
from each input image.

4.3.2 Estimation of Lighting Direction in Non-
Orthonormal Space

The lighting property vector is necessary for lineariz-
ing input images. The simplest method to obtain the
vector is to directly measure the lighting direction and
the lighting power when images are taken. It is, how-
ever, very difficult to precisely measure them, and the
direct measurement often contains some errors. It is
noted that our purpose is not the precise estimation of
the lighting direction and the lighting power, but the
calculation of the lighting property vectors, which are
necessary in Eq.(2). In other words, the vectors do not
have to represent the actual lighting source, but they
should be correct in the context of Eq.(2).

Assuming the Lambertian surface, we show how to
directly calculate the lighting property vectors from in-
put images. First, three base images (I1, I2 and I3) are
selected from the input images, and the correspond-
ing lighting property vectors are S1, S2 and S3, re-
spectively. The actual values of these vectors might

not be known. Here, we assume the 3D coordinate
system whose base vectors correspond to S1, S2 and
S3. Although this coordinate system might not be or-
thonormal, Eq.(2) should hold in this space. Therefore,
Eqs.(4) and (5) hold in the space.

For each input image (Î), which is not selected as the
base image, the coefficients, a1, a2 and a3, are uniquely
determined from Eq.(4). The coefficients indicate the
lighting property vector Ŝ in the space defined by S1,
S2 and S3. Since the lighting property vectors are not
defined in the Euclidean coordinate system, it can not
used for the reconstruction of the surface normal. How-
ever, it is available enough for the purpose of the image
decomposition.

In the real images, the lighting property vector can
not be stably calculated, since Eq.(4) does not always
hold because of specular reflections or shadows. How-
ever, the equation holds in most part of the real images.
The random sampling method is effective for the stable
calculating the lighting property vector in these situ-
ations. Three points are randomly selected from an
input image, and the lighting property vector is calcu-
lated from these points. After the iteration of the ran-
dom sampling, the appropriate lighting property vector
is selected.

4.3.3 Separation of Nonlinear Factors

After the elimination of the environmental illumination
effect, reflections and shadows are still included in the
input images. In our method, a lot of input images
can be taken in the various lighting conditions. There-
fore, the nonlinear factors can be separated based on
Shashua’s method[6] without any limitations about the
object color.

The diffuse reflections are observed except in shadow
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Figure 4. The comparison of the diffuse reflec-
tion factor and the pixel value in the real im-
age. The nonlinear factors are distinguished
from the diffuse reflection factor.

regions, and the intensity is expressed as shown in
Eq.(2). The specular reflections and the shadows, on
the other hand, are observed dependent on the light-
ing direction. Comparing of the actual pixel value with
supposed one estimated by Eq.(2), the specular reflec-
tions or the shadows are detected as shown in Fig.4.
In the figure, the lighting power is assumed to be con-
stant for the simplification. If the lighting power is
constant, Eq.(2) describes a cosine curve characterized
by the angle between the lighting direction and the sur-
face normal. In Fig.4, the curve indicates the power of
the diffuse reflection calculated from Eq.(2), and each
point indicates the actual pixel value. All the points in
the diffuse reflection regions should exist on the curve.
If the actual pixel value is more than the curve, it is re-
garded as a specular reflection. If the actual pixel value
is less than the curve and its value is close to zero, it is
regarded as a cast-shadow. If the value in Eq.(2) has
a negative value, it is regarded as a self-shadow. The
specular reflections and cast-shadows are separated to
satisfy Eq.(2) as shown in Fig.5.

For this linearization, the surface property vector is
necessary. The diffuse reflectance and the surface nor-
mal are estimated by the photometric stereo. Since the
lighting direction is estimated in the non-orthonormal
coordinate system as mentioned in 4.3.2, the estimated
surface normal also does not express the actual Eu-
clidean shape. However, it satisfies Eq.(2), and the
images are correctly linearized in the non-orthonormal
coordinate system.

Since the input images include specular reflections
and shadows which do not satisfy Eq.(2), it is difficult

0

0 0.5 1 1.5 2
The angle between the lighting direction and the surface normal

(rad)

Actual intensity

Linearized intensity

Decomposition of the
specular reflection

Decomposition
of the cast-shadow

Forced linearization
of self-shadow

In
te

ns
ity

Lambertian model

Figure 5. The linearization of input images.
The nonlinear factors are separated, and the
input images satisfy the Lambertian reflection
model.

to stably estimate the surface property vectors. For
the robust estimation, the random sampling method
is effective again. Three images are randomly selected
from a set of input images, and the surface property
vector is calculated from these images. After the iter-
ation of the random sampling, the appropriate surface
property vector is selected.

4.3.4 Self-Shadow Linearization

After the separation of specular reflections and cast-
shadows, each image includes only diffuse reflections
and self-shadows. If the angle between the lighting
direction and the surface normal is not more than π/2,
the pixel value is exactly subject to Eq.(2). However,
if the angle is more than π/2, Eq.(2) is not satisfied.
In case Eq.(2) has a negative value, the actual pixel
value is supposed to be zero because it should be in
the self-shadows. Thus, the pixel value of the surface
should satisfy Eq.(6).

i = α(S ·N). (6)

α =
{

0 self-shadow
1 diffuse reflection

Eq.(6) shows that the pixel values can be expressed
by Eq.(2) in the diffuse reflection regions. On the other
hand, Eq.(2) should have negative values in the self-
shadow regions. These facts suggest that we can use
Eq.(2) instead of Eq.(6). Diffuse reflection regions and
self-shadow regions can be distinguished by the value
of Eq.(2). Consequently, these two kinds of regions can
correctly treated by the exact linear combination.
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Figure 6. The self-shadow linearization. The
pixel value in the self-shadow region is replaced
with the negative value.

4.4. Image Synthesis

4.4.1 Linear Combination of Base Images

Once all input images are linearized, an image with
any lighting directions can be synthesized by the lin-
ear combination of three base images. In out method,
the coefficients of the linear combination can be easily
determined because three coefficients (a1 a2 a3) cor-
respond to the lighting property vector Ŝ which we
generate newly.

For the image synthesis, any independent three im-
ages can be used as the base. The optimal base images,
however, should be selected through the principal com-
ponent analysis for the stable image synthesis. That
is, the first three principal components are used as the
base images of the linear combination. Since these base
images are lineally independent, the stable image syn-
thesis can be accomplished.

While an image is synthesized in the arbitrary light-
ing condition by the linear combination, some pixels of-
ten have negative values. These pixel values should be
set to zero because they should belong to self-shadows.
As mentioned above, we can synthesize a new image
including both diffuse reflections and self-shadows by
the linear combination with the simple revision.

4.4.2 Interpolation of Nonlinear Factors

The nonlinear factors, such as the specular reflection
and the cast-shadow, are regarded as the geometric de-
formations in the image plane. It is difficult to predict
the patterns of them, if the whole 3D shape of the scene
and the precise surface normal are unknown. However,
the rough locations and shapes can be estimated by the
interpolation.

For each input image, the lighting direction is es-
timated and the patterns of the nonlinear factors are
separated. If we want to synthesize a new image with a
specified lighting direction, the suitable patterns of the
nonlinear factors are generated by the interpolations of
the separated nonlinear patterns.

If the lighting directions of a set of input images
are dense, a nearest-neighbor method can replace the
interpolation. That is, the nonlinear factors are se-
lected from a registered image which has the closest
lighting direction. Since it is a kind of approximation,
the smooth animation cannot be synthesized which re-
quires subtle lighting position changes. However, it can
be applicable to the stillness image with the appropri-
ate property of the surface.

5. Experimental Results

First, we show image syntheses of a glossy ceramic
pot. Keeping a halogen light in the long distance from
the pot, we took 27 images with changing the light-
ing source position. The input images include specular
reflections and shadows as shown in Fig.7. Figure 8
shows the results of the linearization. In these images,
some discontinuities are found. They are caused by er-
rors included in the recovered lighting property vectors
and the surface property vectors.

Next, the principal component analysis was accom-
plished to make three optimal base images. Figure 9
shows the first three principal component images. The
discontinuity is not included in the base images. For
the comparison, the eigenvalue of the original images
and the linearized images are shown in the Tables 1
and 2, respectively. If the input images are directly
used, the sum of the first ten eigenvalues is still 98% of
the total sum of eigenvalues. So many base images are
required for suppressing the errors. If we use the lin-
earized images as the base image, the sum of the first
three eigenvalues is more than 99.6% of the total sum.
We can see that our method can reduce errors of the
synthesized image by using only three base images.

Several lighting directions corresponding to the coef-
ficients were specified, and virtual images were synthe-
sized, as shown in Fig.10. Both diffuse reflections and
self-shadows are correctly synthesized. Figure 11 shows
synthesized images with nonlinear factors, which were
selected by the nearest neighbor method. We can see
that the realistic images with the appropriate surface
properties can be synthesized by the proposed PIBR
method.

Finally, we show some results of mixing virtual ob-
jects and real scenes with keeping the photometric con-
sistency. Figure 12 shows three base images of the vir-
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Figure 7. Examples of input images. These images include both specular reflections and shadows.

Figure 8. Examples of linearized images. The nonlinear factors are almost separated, and self-shadows
are correctly linearized. These images are completely subject to the Lambertian reflection model.

(a) The 1st principal component (b) The 2nd principal component (c) The 3rd principal component

Figure 9. The principal component images. These three images are used as the base images.

tual object which were made from 29 images. Figure 13
shows some real scenes in which the virtual object is to
be mixed. The lighting direction of each real scene was
estimated in the same way described in 4.3.2. Since
we used the common base vectors (S1, S2 and S3) in
order to estimate the lighting direction of both the real
scenes and the virtual objects, the estimated lighting
direction vector of the real scenes becomes the coeffi-
cients of the linear combination for the image synthesis
of the virtual objects. Figure 14 shows the synthesized
virtual object images. Each image in Fig.14 has the
same lighting direction as the real scene in Fig.13. Fig-
ure 15 shows the result of mixing Fig.13 and Fig.14. In
the mixed images, a mouse is a virtual object while a
cup and a book are real ones. Since the photometric
property is consistent between the real scene and the
virtual object, the mixed image looks realistic.

6. Conclusions

In this paper, we introduce a concept of Photomet-
ric Image-Based Rendering and provided a scheme to
realize a seamless augmented reality. In order to deal
with specular reflections and shadows, we showed how
to separate nonlinear factors from input images and
how to extract three optimal base images for the sta-
ble image synthesis. Since our method can synthesize
realistic images, it can be applicable not only to aug-
mented reality but also to a lot of applications.

In future work, we are trying to interpolate the non-
linear factors, and trying to generate smooth animation
with lighting position changes. We are also trying to
treat not only lighting position changes but also view
point changes by the combination of GIBR and PIBR.
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Figure 10. Synthesized images without nonlinear factors

Figure 11. Synthesized images with nonlinear factors
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Table 1. The eigenvalue without linearization

eigenvalue (×108) relative cumulative

rate (%) rate (%)

1 1.2336 45.075 45.075
2 0.9956 36.380 81.456
3 0.2500 9.136 90.592
4 0.0722 2.636 93.229
5 0.0494 1.805 95.034
6 0.0274 0.999 96.034
7 0.0216 0.787 96.821
8 0.0131 0.478 97.299
9 0.0094 0.377 97.677

10 0.0084 0.343 98.019

Table 2. The eigenvalue with linearization

eigenvalue (×108) relative cumulative

rate (%) rate (%)

1 5.4611 67.587 67.587
2 2.1176 26.207 93.795
3 0.4700 5.816 99.612
4 0.0127 0.156 99.769
5 0.0031 0.038 99.807
6 0.0019 0.024 99.831
7 0.0015 0.019 99.851
8 0.0013 0.016 99.867
9 0.0012 0.015 99.883

10 0.0009 0.011 99.895
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Figure 12. Base images of the virtual object.

Figure 13. Real scenes. Each image is illuminated from different direction.

Figure 14. Synthesized virtual object. Each image have the same lighting direction as the real scene.

Figure 15. Result of mixing a real scene and a virtual object. The photometric property is consistent.
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