Gait-based Person Authentication by Wearable Cameras

INSS2012, Antwerp, June 2012

Presenter: Kohei Shiraga Coauthors: Ngo Thanh Trung Ikuhisa Mitsugami Yasuhiro Mukaigawa Yasushi Yagi

The Institute of Scientific and Industrial Research, Osaka Univ.

Background

- Surveillance Cameras
 - Stores, banks and stations, etc.
 - Useful for crime-prevention
- Problem: blind spots

back alley

A new technique for crime-prevention is required

Wearable surveillance (WS)

- A new concept for crime-prevention
 - Use WS system
 - WS system observes & analyzes environment

WS system

- WS systems must:
 - Be compact and lightweight
 - Be Stand-alone
- Required functions
 - User authentication
 - Scene understanding
 - Notification

Stolen

Chased by

Our contributions

• A prototype system

- User Authentication for WS systems
 - The wearer == The owner ??
 - Gait-based method
 - Implement on the prototype

Prototype

Stereo camera pair **FFMV-03MTC x2** (Point Grey Research)

Compact computer **NXV1-1394-PCB** (Fujitsu Kyushu Network Technologies)

Battery **XP8000** (XPAL Power) Has an **image processor Real-time** image processingz

600g weight (except for the school bag)

Gait-based user authentication for WS systems

- Utilize wearable cameras
 - Gait signal estimated from continuous images
 - Authenticate the user based on such signal
- Authentication as well as observation

Proposed authentication method

• Outline

Motion estimation

• Real-time robust motion estimation[Trung et al.]

Motion estimation on prototype

• Apply hardware acceleration

Motion estimation on prototype

• Apply hardware acceleration

ion)

Motion estimation on prototype

• Processing time

	Duration [ms]
Feature point detection	3.8
Far/near classification	3.7
RANSAC-based estimation	22.5
Total	30.0

Achieved **real-time** estimation for 30fps input stream

Experiment

• Settings

- Using our prototype system
- 39 adult subjects
 - Outdoor
 - Natural walking speed
 - 30 seconds × 4 sequences
 - one sequence for gallery
 - three sequences for input

Results

ROC curve

ROC curve: describes the trade-off between FAR and FRR

	Ground Truth			
ate		Genuine	Imposter	
ime	Genuine	TAR	FAR	
Est	Imposter	FRR	TRR	

FAR: False Acceptance Rate FRR: False Rejection Rate

EER: The error rate where FAR = FRR

Results

- EERs
 - comparable to the accuracy of existing methods using motion sensors

	# of subjects	Sensor type	EER [%]
Ailisto et al.	36	accelerometer	6.4
Gafurov et al.	21	accelerometer	5-9
Mantyjarvi et al.	36	accelerometer	7-19
Trung et al.	32	accelerometer	6.0
Our method	39	camera	5.6

Conclusion

- Prototype system
 - Using a hardware specialized for image processing
- A novel user authentication method for WS systems
 - Utilizing motion estimated from camera images
- Evaluated with real data from 39 subjects
 - The accuracy of our method is comparable to those of existing methods

Future work

- Further development
 - Sophisticate our authentication method
 - Other functions for the WS system

