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Orientation-Compensative Signal Registration for Owner
Authentication Using an Accelerometer

Trung Thanh NGO†a), Yasushi MAKIHARA†, Nonmembers, Hajime NAGAHARA††, Yasuhiro MUKAIGAWA†,
and Yasushi YAGI†, Members

SUMMARY Gait-based owner authentication using accelerometers has
recently been extensively studied owing to the development of wearable
electronic devices. An actual gait signal is always subject to change due
to many factors including variation of sensor attachment. In this research,
we tackle to the practical sensor-orientation inconsistency, for which sig-
nal sequences are captured at different sensor orientations. We present an
iterative signal matching algorithm based on phase-registration technique
to simultaneously estimate relative sensor-orientation and register the 3D
acceleration signals. The iterative framework is initialized by using 1D
orientation-invariant resultant signals which are computed from 3D sig-
nals. As a result, the matching algorithm is robust to any initial sensor-
orientation. This matching algorithm is used to match a probe and a gallery
signals in the proposed owner authentication method. Experiments using
actual gait signals under various conditions such as different days, sensors,
weights being carried, and sensor orientations show that our authentication
method achieves positive results.
key words: biometric authentication, dynamic programming, gait, ac-
celerometer, sensor-orientation inconsistency

1. Introduction

Wearable and portable electronic devices are increasingly
becoming useful to human life. They have rapidly become
more and more sophisticated to interact with their owners
and understand their needs, intentions or actions [1]–[3], and
health conditions [4]–[6]. Accelerometers are increasingly
being embedded in devices such as smartphones, tablets,
and smartwatches, and owner assistance from smartphones
has recently become an active research topic [7]–[12].

A useful source of information for assisting an owner
is his/her gait (walking) signal, because the human gait
conveys a variety of information such as personality [13],
gender [14], physical or clinical condition [15], [16], and
mood [17], and can easily be captured by accelerometers. In
particular, personality in gait signal plays quite an important
role when recognizing the person carrying the device.

There are many existing methods for recognizing a per-
son carrying a sensor based on the gait signals of an inertial
sensor, such as identification [7], [18]–[20] or authentica-
tion [21]–[26], which showed a promising application of in-
ertial sensors for biometric recognition. Because the human
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gait is a periodic motion, there are several approaches for
gait-based owner recognition: gait model-based, frequency
analysis-based, and period detection-based approaches. In
the model-based methods [27], [28], gait signal is modeled
by using a finite state machine then some characteristics
such as the gait period symmetry and homogeneity are ex-
tracted as gait pattern. In the frequency analysis-based
methods, a histogram of signal intensity [7], [29] or a vec-
tor of coefficients of Fourier, wavelet transform [19], [30]
are used as a gait pattern. In the period detection-based
methods [18]–[26], [31], [32], a gait period (two consecutive
steps) is first detected, and the signal segment of the gait pe-
riod is used as a gait pattern.

The most challenging problem of inertial sensor-based
gait recognition methods is temporal distortion of signal.
The problem is because human gait signals always vary
owing to many natural covariates such as mood, physical
condition, walking speed, ground condition, weight being
carried, shoes, and so on. To solve this problem, some ex-
isting period detection-based methods [21], [24], [26] apply
dynamic time warping (DTW) for signal matching to over-
come the temporal distortion. Particularly, there exists a pe-
riod detection-based method [21] that can overcome the dis-
tortion not only in signal matching but also in gait period
detection. This method modifies the Self DTW [33] to ac-
curately detect a period and remove the temporal distortion
in constructing a gallery without any heuristic information,
and thus achieved the best performance in large-scale eval-
uation in [34]. In contrast, the gait model-based and fre-
quency analysis-based approaches do not work well against
such distortion. The reason is that the gait model-based
methods require an expert knowledge about the human gait
to train the finite state machine, and hence they may fail
when the input data is considerably deviated from the ex-
pert knowledge due to the variation. Meanwhile, since the
frequency analysis-based methods require properly long and
stable signal sequence to compute frequency coefficients or
gait statistical characteristics, they may not work well with
signals containing the temporal distortion induced by the co-
variates [19], [21], [25].

However, regardless of the approaches, sensor-
orientation inconsistency poses a serious problem for
matching between a probe and gallery signals. In detail, the
sensor-orientation variation of sensor attachment does not
actually make any temporal distortion but rotates the signals
so that they cannot be matched properly. A solution to avoid
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this problem is to fix the sensor on the owner’s body as most
existing methods [7], [18]–[29], [31], [32] do. However, it is
undesirable and unnatural in real applications (e.g. it is in-
convenient to have to place a smart phone in our pocket with
exactly the same orientation from day to day). Moreover,
even if the sensor is fixed on our body trunk, it is also dif-
ficult to permanently keep the same body’s tilt. Therefore,
it is essential to cope with sensor-orientation inconsistency
problem for wearable sensor-based owner authentication.

In the frequency analysis-based methods, there exist
solutions [29], [30] for the sensor-orientation inconsistency
problem. Gafurov et al. [29] uses a histogram of signal mag-
nitude as a gait pattern. A signal magnitude is a norm of a
3D acceleration signal, which is found invariant to sensor-
orientation and called sensor orientation-invariant 1D resul-
tant signal. Therefore, this method can solve the sensor-
orientation inconsistency problem. However, a significant
amount of information is lost in the temporal domain, which
reduces the recognition performance. In [30], a 3D signal
sequence is transformed into frequency space, and an au-
tocorrelation matrix of the frequency matrix is computed.
This autocorrelation matrix is invariant to initial sensor-
orientation. Then, a gait pattern extracted from this matrix
is also invariant to sensor-orientation. However, compared
with the original signal, this autocorrelation matrix has a
much larger number of dimensions. Which means a large
amount of data from this matrix is redundant. Consequently,
a supervised machine learning method is also used to select
only some good features from this matrix, the quality of se-
lected features depends on the quality of the training dataset.
As a result, some information is lost in the frequency do-
main, which reduces the recognition performance similar to
the above histogram-based method [29]. In addition, since
these methods are frequency analysis-based methods, they
also face the robustness problem of the temporal distortion
as stated above.

In this paper, we tackle to the sensor-orientation incon-
sistency problem for period detection-based approach. We
propose an iterative matching algorithm to simultaneously
estimate signal correspondence and relative sensor-rotation
between gallery and probe signals. While an initial sig-
nal correspondence is given by using a sensor-orientation-
invariant 1D resultant signal, the proposed method uses full
three dimensions of signals for matching without any infor-
mation loss, unlike the existing orientation-invariant meth-
ods [29], [30]. For period detection, we apply the above
mentioned period detection-based method [21] since it has a
good performance [34] and can work with any initial sensor-
orientation.

2. Preliminaries

2.1 Assumptions

In our research, the user who is carrying the sensor is as-
sumed to walk at his/her normal speed on a flat ground. The
gait signal is captured by a triaxial accelerometer attached to

the same location on the subjects’ body, either on the back,
waist, or leg. For example, the sensor can be placed in a belt
bag, backpack, or trouser pocket.

In an enrollment session, the sensor is assumed to be
fixed on the body-part (e.g. on the back, waist, or leg) at an
arbitrary initial sensor-orientation and then gallery gait pat-
terns of one gait period are constructed for each user based
on the method [21].

In an authentication session, we also assume that the
sensor is relatively fixed on the body-part but only for a short
term (e.g., one second) and its initial sensor-orientation may
differ from that of the enrollment session. Thus, the sensor
may be relatively fixed on the subject’s body at different ini-
tial sensor-orientations among these short terms within the
same authentication session (e.g., picking up a smartphone
from a pocket and putting it into the pocket again or gradual
change of the smartphone’s orientation in the pocket).

In this paper, a fixation of the sensor means it is firmly
attached on the body-part. The initial sensor-orientation is
the orientation of the sensor coordinate system at an initial
pose of the body (e.g. T-pose of the body) in a world coor-
dinate system.

2.2 Problem Settings

In a fixed world coordinate system, the i-th sample of 3D
acceleration of a subject’s gait is described as vector ai =(
ax,i, ay,i, az,i

)T
. If an accelerometer is attached to the body

of the subject, and the initial sensor-orientation of the sensor
coordinate system is described by a rotation matrix R′ as
shown in Fig. 1, the sensor observes a different measurement

a′i =
(
a′x,i, a′y,i, a

′
z,i

)T
such that

a′i = R′ai. (1)

In the same way, rotation of a signal sequence A = {ai}
(i = 0, . . . ,N − 1) by a rotation matrix R′ results in another
signal sequence A′ = {a′i} (i = 0, . . . ,N − 1), where N is
the number of samples in the sequence. This transform is
defined as:

Fig. 1 Initial sensor-orientation inconsistency problem. The same hu-
man motion may be observed and captured with different signals due to
different initial sensor-orientations.
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R′ � A := {R′ai} = A′, (2)

where � is a rotation operator that is applied to a signal se-
quence.

Obviously, if we have another accelerometer, the initial
sensor-orientation of which is described by a rotation matrix

R′′, the measurement a′′i =
(
a′′x,i, a

′′
y,i, a

′′
z,i

)T
= R′′ai may dif-

fer from a′i , even though these accelerometers observe the
same motion. Thus, in the recognition problem, we can-
not directly compare signals captured with different sensor
orientations.

Next, we consider matching a 3D gallery signal se-
quence G = {gi} (gi ∈ R3; i = 0, . . . ,NG − 1) and a 3D
probe signal sequence P = {pj} (pj ∈ R3; j = 0, . . . ,NP−1).
On the one hand, because the gallery and the probe sig-
nal sequences are captured with different initial sensor-
orientations in general (e.g., represented by rotation matri-
ces RG and RP for the gallery and the probe, respectively),
such a relative sensor-orientation difference needs to be
compensated before matching (e.g., preparing a orientation-
compensated probe signal sequence P′ = RP, where R =
(RG)(RP)−1, so as to match the initial sensor-orientation of
the gallery signal sequence). On the other hand, the gallery
and probe signal sequences are captured with different start
phases (gait stances) and hence an appropriate signal cor-
respondence C = {(ik, jk)} (k = 0, . . . ,NK − 1) = {ck}
(k = 0, . . . ,NK − 1) between the probe and gallery signal se-
quences needs to be acquired so as to synchronize the phases
between them before matching, where ck = (ik, jk) is a cor-
respondence pair, the ik-th sample of G corresponds to jk-
th sample of P, and NK is the number of correspondence
pairs. Consequently, the problem is stated as simultaneous
estimation of the relative rotation matrix R and the signal
correspondence C for correct matching, given a pair of the
gallery signal sequence G and probe signal sequence P.

Generally, it is difficult to acquire the signal correspon-
dence C directly without orientation-compensation, while it
is also difficult to estimate the rotation matrix R without sig-
nal correspondence.

In other words, if the relative rotation matrix R
is known, the probe signal sequence can be orientation-
compensated as P′ = R � P, and dynamic programming
techniques can then be applied to find the signal correspon-
dence C between G and P.

In contrast, if the signal correspondence is known, the
relative sensor-orientation described by R can also be com-
puted easily.

As such, this is a typical chicken-egg problem be-
tween finding signal correspondence and estimating relative
sensor-orientation.

3. Orientation-Compensative Signal Matching Algo-
rithm

3.1 Algorithm Overview

To solve the chicken-egg problem between relative

Fig. 2 Flowchart of the proposed orientation-compensative matching al-
gorithm.

sensor-orientation and signal correspondence as stated in
Sect. 2.2, we propose an iterative framework of signal corre-
spondence based on cyclic dynamic programming and rela-
tive sensor-orientation estimation. The algorithm is started
by initializing the signal correspondence (see Fig. 2).

From Sect. 2.2, we know that the sensor rotation
changes the 3D signal ai, however, we observe that this ro-
tation does not change the magnitude of the signal:

||a′i || =
√

aT
i R′T R′ai =

√
aT

i ai = ||ai|| ∀R′. (3)

Therefore, a sequence of magnitude {||ai||} is a 1D resultant
signal sequence that is invariant to initial sensor-orientation
variation. Obviously, this can be used as the orientation-
invariant feature for gait recognition [29], [35]. However,
reducing the signal from 3D to 1D results in a significant
loss of information.

For the 1D resultant signal sequences Gr = {||gi||} and
Pr = {||pj||} of the original 3D gallery signal sequence G and
probe signal sequence P, respectively, the signal correspon-
dence can be acquired by a cyclic dynamic programming
without the sensor-orientation inconsistency problem. This
prompts us to initialize the signal correspondence between
G and P, which is approximated by using Gr and Pr.

We can use the same cyclic dynamic program-
ming to register both the 3D orientation-compensated sig-
nals and the 1D resultant signals to compute the signal
correspondence.

3.2 Signal Correspondence Acquisition by Cyclic Dy-
namic Programing

We consider the signal correspondence between a gallery
signal sequence G = {gi} (i = 0, . . . ,NG−1) and a probe sig-
nal sequence P = {pj} ( j = 0, . . . ,NP−1). In this subsection,
the initial sensor-orientation inconsistency is not considered
for these signal sequences or they are already orientation-
compensated. The goal is to acquire a set of the signal cor-
respondence pair C = {ck} (k = 0, . . . ,NK−1) so as to match
the gallery and probe signal sequences.

In our problem setting, the signal sequence length NG

of an individual gallery pattern is one gait period, while that
of a probe pattern, NP, is unconstrained. The signal corre-
spondence C starts and ends by two pairs associated with the
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initial and final samples, p0 and pNP−1, of the probe signal
sequence, respectively. Moreover, non-linear temporal dis-
tortion may contaminate the signal sequences. We therefore
use a cyclic dynamic programming (CDP) which is modi-
fied from the standard DTW [36] using modular arithmetic
to match these signals.

We first introduce an accumulated cost matrix
DNG×NP = {D(i, j)} (i = 0, ..,NG − 1, j = 0, . . . ,NP − 1).
Then, the dynamic programming is presented by four steps
based on the accumulated cost matrix D: initialization, re-
cursive update, termination, and backtracking to find the op-
timal path, which is used as signal correspondence C.

3.2.1 Initialization

The accumulated cost matrix is initialized:

D(i, 0) = ||gi − p0||, ∀i = 0, ..,NG − 1. (4)

3.2.2 Recursive Update

D(i, j) = ||gi − pj|| +
min

(p,q)∈T {D ((i − p) mod NG, j − q)} , (5)

where mod NG means residue by the gait period NG and
T = {(1, 2), (1, 1), (2, 1)}, which means the double speed,
same speed, and half speed transition steps for searching,
respectively.

3.2.3 Termination

The end of the optimal path, minimizing the accumulated
cost at the final sample pNP−1 of the probe signal sequence,
is found:

cNK−1 =

(
arg

NG−1
min
i=0

D(i,NP − 1),NP − 1

)
. (6)

3.2.4 Backtracking

The optimal path is recursively backtracked until jk reaches
the first sample of the probe signal sequence p0:

(p∗, q∗) = argmin
(p,q)∈T

D((ik+1 − p) mod NG, jk+1 − q),

ck = ((ik+1 − p∗) mod NG, jk+1 − q∗) . (7)

In summary, given the gallery and probe signal se-
quences G and P, the CDP module returns the signal corre-
spondence C as denoted by:

C = CDP(G, P). (8)

To remove unnecessary computation and thus speed
up a DTW, global constraint on the search space is widely
used [36]. For a standard DTW, the initial and end points
are known, the optimal path can be constrained by Sakoe-
Chiba band [37] around the diagonal line of the accumu-
lated matrix D. In our algorithm, the initial and end points

are not fixed, it is impossible to directly apply Sakoe-Chiba
band. However, only after the initialization step, we know
the initial optimal path C0, and hence the Sakoe-Chiba band
around C0 is applied. The band size is 40% of the size of the
matrix D, then we can save 60% of the computation cost.

3.3 Relative Sensor-Orientation Estimation

We first define a rotation matrix R as a function of a yaw-
pitch-roll vector r = [α, β, γ]T , R = R(r), where α, β, and γ
mean yaw, pitch, and roll angles, respectively.

Given a signal correspondence C, we compute the
yaw-pitch-roll vector r that minimizes the dissimilarity be-
tween the gallery signal sequence G and the orientation-
compensated probe signal sequence R(r) � P as:

r∗ = arg min
r

d (G,R(r) � P;C) , (9)

where d(·, ·;C) is a dissimilarity function based on normal-
ized cross-correlation of two signal sequences given the sig-
nal correspondence C:

d (G,R(r) � P;C) =

1 −
∑

(i, j)∈C (gi − ḡ)T R(r)(pj − p̄)√∑
(i, j)∈C ||gi − ḡ||2

∑
(i, j)∈C ||pj − p̄||2

, (10)

and ḡ and p̄ are mean vectors of the gallery and probe signal
samples associated with C, respectively. It should be noted
that the standard deviation of a signal sequence is also in-
variant to initial sensor-orientation.

This problem is analogous to a simple rotation estima-
tion from correspondence of 3D points in computer vision
where each signal correspondence pair (gi, pj) is analogous
to a correspondence pair of 3D points. One can find a large
number of solutions for this problem such as those given
in [38], [39]. In our experimens, we used the secant version
of Levenberg-Marquardt least squares method implemented
in [40].

3.4 Algorithm Summary and Example

Here, the orientation-compensative matching algorithm is
summarized in pseudo code in Algorithm 1.

Algorithm 1 Gallery and Probe Signal Registration
Algorithm
Input: The gallery and probe signal sequences G, P
Output: Rotation matrix R∗ and signal correspondence C∗
C0 = CDP(Gr, Pr) {Initialization step}
r0 = arg minr d(G,R(r) � P;C0)
k = 0
repeat

k = k + 1
Ck = CDP(G,R(rk−1) � P)
rk = arg minr d(G,R(r) � P;Ck)

until Ck and rk are converged
R∗ = R(rk)
C∗ = Ck
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Fig. 3 Examples of the gallery sequence {(gx, gy, gz)} and probe se-
quence {(px, py, pz)}. The gallery sequence contains 108 samples (1.08
second) of a single gait period, while the probe sequence contains 300 sam-
ples (3 second). {||g||} and {||p||} are their resultant signal sequences, respec-
tively. Although the signal sequences are completely different due to the
sensor-orientation inconsistency, their resultant signal sequences (depicted
in black) are very similar.

Fig. 4 The initial and final optimal paths computed by CDP are used
as the signal correspondences between gallery and probe signals: C0 and
C∗. The boundary band for the search space is applied after C0 has been
estimated.

To find the initial correspondence C0 = CDP(Gr, Pr),
CDP is executed only once for 1D orientation-invariant sig-
nals. However, to find the optimal correspondence C∗, sev-
eral CDP procedures are performed to iteratively register
the 3D signals.

To demonstrate the iterative matching procedure, we
apply it to the 3D acceleration signal sequences and their
resultant signal sequences, which are plotted in Fig. 3. The
initial and final correspondences, C0 and C∗ computed by
the dynamic programming are shown in Fig. 4. In the ini-
tialization step, the initial correspondence C0 is computed,
and the initial registration of 3D signal sequences shown in
Fig. 5 (a). We can see that the signal sequences are com-
pletely different owing to the different sensor orientations,
but the resultant signal sequences can be well-registered.
In the final step, the correspondence C∗ and orientation R∗
are computed from the 3D signal sequences, and the sig-
nal registration is shown in Fig. 5 (b) after correcting the
relative sensor rotation for the probe signal sequence us-
ing R∗. Now, we can see that both the 3D acceleration
signal sequences and resultant signal sequences are well-
registered. The dissimilarity between the signal sequences

Fig. 5 Signal plot of the initial (a) and final (b) registration between the
gallery and probe signals in Fig. 3. The alignments use C0 and C∗, re-
spectively. In (b), probe signal is rotated using estimated rotation matrix
R∗, two signals are now well-registered and the dissimilarity (distance) be-
tween them can be now computed. In these figures, color denotes the indi-
vidual dimension (x, y, z) or resultant signal (in black color), and line-style
denotes the gallery (solid line) and probe (dashed line).

can be computed accurately. One should note that all the
alignments in Fig. 5 are carried out along time axis j of the
probe signal sequence.

4. Authentication

We use a simple authentication method to evaluate the
orientation-compensative matching algorithm. A gallery G
is defined as a collection of sample patterns for a subject
taken under various conditions: G = {G}. For any probe sig-
nal P, the distances between it and all the sample patterns in
G are computed, and the minimum rule [41] is exploited to
integrate results from multiple periods as:

Dist(G, P) = min
G∈G

d (G, R∗ � P;C∗). (11)

In fact, d (G, R∗ � P;C∗) is the dissimilarity function given
by the rotation optimization function, Eq. (9).

5. Experiments

5.1 Setup

To capture 3D acceleration signals, our experimental sys-
tem employed four accelerometers, including one of the lat-
est sensors from MicroStrain Inc., the 3DM-GX3-25 [42]
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Fig. 6 The experimental setup includes (a) 4 sensors with different ori-
entations and locations, and subject walks along an indoor corridor (b).
Subject’s body coordinate system is originated at the body center of mass,
which consists of a vertical axis pointing upwards, lateral axis pointing
from left to right, and longitudinal axis pointing from back to front. Body’s
yaw, pitch, and roll angles are rotation angles around the vertical, lateral,
and longitudinal axes, respectively. The 3DM-GX3-25 is spatially about
the center of sensor systems, its sensor coordinate system is set similar to
the subject’s body coordinate system.

and three IMU-Z sensors [43] from ZMP Inc. The sen-
sors were fixed at different orientations and locations on
the same plate placed under the handle and inside a back-
pack as shown in Fig. 6. The 3DM-GX3-25 was connected
to a small computer, a Sony VAIO type P, through a USB
connection, while the three IMU-Z sensors were connected
through bluetooth connections. As the orientations and lo-
cations of the sensors differed, so too did the captured ac-
celeration signals from these sensors. The orientations of
IMUZ-1 and IMUZ-2 relative to the 3DM-GX3-25, ex-
pressed as (yaw, pitch, roll) angles, were fixed at (90, 180, 0)
and (−180, 0,−180) deg, respectively. These angles were
later used as ground-truth for evaluating the relative sensor
rotation estimation. IMUZ-3 was fixed at an arbitrary orien-
tation. The relative distances from IMUZ-1, IMUZ-2, and
IMUZ-3 to the 3DM-GX3-25 were about 6, 11, and 12 cm,
respectively. The sampling period for these sensors was 10
milliseconds.

5.2 Dataset

Since human gait varies as a result of many factors, the
recognition performance also varies as pointed out in [35].
We therefore captured data under different conditions for
evaluation. We captured a dataset using multiple sensors un-
der different sensor-orientations, sensor-locations, days, and
carrying weights in the backpack. The two total weights of
the backpack were approximately 3 and 4 kg. 47 healthy
subjects aged 21 to 50 years including 15 females and 32
males took part in the experiments and walked at their nor-
mal speed in a long straight corridor. We captured 16 se-
quences per subject (2 days × 2 carrying weights × 4 sen-
sors) for 38 subjects and 8 sequences per subject (1 day × 2
carrying weights × 4 sensors) for the other 9 subjects. Each
sequence was nearly 2 minutes long and contained about 64
gait periods (128 steps). The walking path was about 90 m

Table 1 Summary of benchmark methods.

Method Robustness Robustness Dimension
denotation to temporal to sensor of signal

distortion orientation
PROPOSED Excellent Yes 3D
TRUNG2011 [21] Excellent No 3D
TRUNG2011 RLT Excellent Yes 1D
DERA2010 [26] Good No 3D
RONG2007 [24] Good No 3D
GAF2010HI [35] Bad Yes 1D
FELIX2012 [32] Bad No 3D

long and signals were not noise-filtered. For subjects who
joined for different days, data was captured within a month
and clothes and shoes might be different across the days.

In authentication experiments, galleries were captured
only by the 3DM-GX3-25. The reason for this choice is
that, in general motion of a rigid object, different points on
the object have different acceleration signals, and the farther
the distance between the points is, the larger the difference
between the signals becomes. Moreover, a sophisticated ex-
periment on the distance between sensors is out of scope
of this paper. We therefore chose the 3DM-GX3-25, which
was located at the position relatively close to the other three
IMUZ sensors, to minimize such signal difference.

5.3 Benchmark Methods

We compared the proposed method, denoted as PRO-
POSED, with other six benchmark methods including
five latest period detection-based methods (TRUNG2011,
TRUNG2011 RLT, DERA2010, RONG2007, FELIX2012)
and one frequency analysis-based method (GAF2010HI) as
summarized in Table 1. Note that TRUNG2011 RLT is our
modification of TRUNG2011, which uses 1D resultant sig-
nals instead of the original 3D signals for the invariance to
the initial sensor-orientation.

We choose these benchmark methods by considering
their performances mostly against two problems: the tem-
poral distortion and sensor-orientation inconsistency.

Firstly, with regard to the temporal distortion,
the period detection-based methods (TRUNG2011,
TRUNG2011 RLT, DERA2010, and RONG2007) use DTW
for this purpose. As far as we know, these are the best pe-
riod detection methods to deal with the temporal distortion.
In particular, TRUNG2011 and TRUNG2011 RLT employ
Self DTW [44] to accurately detect a period without any
heuristic information, that is the reason why TRUNG2011
and TRUNG2011 RLT have excellent properties for the ro-
bustness to the temporal distortion.

Secondly, with regard to the sensor-orientation incon-
sistency, TRUNG2011 RLT and GAF2010HI are invariant
to sensor-orientation without using heuristic or prior knowl-
edge. This is because TRUNG2011 RLT and GAF2010HI
employ the orientation-invariant 1D resultant signals for
matching.

However, besides TRUNG2011 RLT, there is no
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existing method that is proposed to tackle both problems†.
That is why TRUNG2011 RLT was considered, which was
modified from one of the best existing period detection-
based methods [34].

In addition, with regard to the robustness to sig-
nal noise, FELIX2012 is the latest period detection-based
method that takes the advantage of a machine learning
technique and thus is theoretically the most robust among
these benchmark methods. While TRUNG2011 RLT
and GAF2010HI use the 1D signal for the orientation-
invariance, the other methods use 3D signals.

5.4 Evaluation Measure

The receiver operating characteristics (ROC) curve and
equal error rate (EER) were computed for the performance
evaluation of individual methods. The ROC curve shows
the relationship between the false rejection rate (FRR), oth-
erwise known as false non-match rate (FNMR), and false
acceptance rate (FAR), otherwise known as false match rate
(FMR), for the authentication scenarios [45], [46]. EER is
an error at the tradeoff point where FRR (or FNMR) and
FAR (or FMR) are equal on the ROC curve. To make a ROC
curve for an authentication method, we compute a dissimi-
larity matrix for probe patterns versus gallery patterns for
all the subjects. The lower the EER, the better the method
performs.

We executed the authentication process for each indi-
vidual gait pattern independently when computing the dis-
similarity matrix.

5.5 Results

5.5.1 Examples of Period Detection

Examples of gait patterns constructed in the benchmark and
proposed methods are shown in Fig. 7 for a signal sequene of
a subject. Other examples of gait patterns are illustrated in
Fig. 8 showing different conditions and sensors for the same
subject as Fig. 7, which were constructed by [21] in the pro-
posed method. Each graph shows the constructed patterns
of the same condition (sequence), in which the mean and
standard deviation of patterns are denoted as the bold and
dashed lines, respectively. In Fig. 7, the standard deviation
of constructed patterns shows the quality of period detection
for all benchmark methods. In Fig. 8, the difference among
the conditions and within the same condition can be seen by
the mean and standard deviation, respectively.

5.5.2 Convergence of Proposed Method

In this experiment, we compared the proposed algorithm
†Concerning the period detection against sensor-orientation in-

consistency, because we mainly focused on the signal matching
part, period detection as a preprocessing was performed on the
1D resultant signal for DERA2010, RONG2007, and FELIX2012.
This ensured that the period-detection performances of these meth-
ods were orientation-invariant.

Fig. 7 Examples of constructed patterns only for acceleration on the y-
axis captured by the 3DM-GX3-25: using PROPOSED or TRUNG2011
(a), using (b) DERA2010, (c) RONG2007, (e) the resultant intensity his-
togram of GAF2010HI, and (e) FELIX2012. For TRUNG2011 RLT, the
period detection is the same as PROPOSED and TRUNG2011, a pattern is,
however, constructed by computing the 1D resultant sigal. The distribution
of patterns is represented by the mean (bold black line) and the standard
deviation (dashed lines). Each gait pattern for the period detection-based
methods was normalized to 50 samples per channel by re-sampling (PRO-
POSED, TRUNG2011, DERA2010, and FELIX2012) or by dynamically
combining intensity-similar samples (RONG2007). In GAF2010HI, the
number of histogram bins is limited by 50. For RONG2007, the signal
intensity is normalized between [-1,1], and standard deviation of signal in-
tensity for each channel is normalized to 1 in FELIX2012.

Fig. 8 Examples of acceleration gait patterns on the sensor’s y-axis pro-
duced in the proposed method and captured under different conditions: dif-
ferent sensors ((a), (b), (c), and (d)) on the same day and with the same
weight in the backpack; different weights in the backpack ((a) and (e));
and on different days ((a) and (f)). It should be noted that in (d) the sig-
nal intensity scale differs from that in the other graphs. The distribution
of patterns is represented by the mean (bold black line) and the standard
deviation (dashed lines).
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Fig. 9 Experiments with number of iteration for the proposed algorithm
with and without 1D resultant signal-based initialization step. The standard
deviation of EERs of the proposed algorithm with 1D resultant signal-based
initialization was less than 0.0056.

with and without 1D resultant signal-based initialization
step. Without the 1D resultant signal-based initialization,
the proposed algorithm has to carry out at least one iteration
with the initial pitch-yaw-roll vector is set as r0 = (0, 0, 0) in
the Algorithm 1. While with the 1D resultant signal-based
initialization, the proposed algorithm can work without any
iteration.

We used a subset of the dataset, a single sequence for
each of the 47 subjects, captured on their first day by the
3DM-GX3-25. This data collection was divided equally
into two sets to create the gallery and probe data, respec-
tively. We computed EER for each number of iterations with
and without 1D resultant signal-based initialization of sig-
nal correspondence. The average and standard deviation of
EERs for proposed method are shown in Fig. 9 for 10 differ-
ent random initial sensor orientations.

We can see that, without 1D resultant signal-based ini-
tialization, the algorithm was inaccurate and unstable be-
cause it was hardly able to reach the global minimum.
However, with the 1D resultant signal-based initialization,
the proposed algorithm was very robust against sensor-
orientation variation, and the standard deviations of EER
were less than 0.0056 for any number of iteration. Although
the proposed algorithm can get a reasonable performance
even just after the initialization, one or more iterations can
give a more satisfactory accuracy.

In the remaining experiments, we set a convergence cri-
terion on the difference of estimated rotation angles between
two consecutive iterations (the matching process converged
if the magnitude of the difference became less than 0.006
deg), and the number of iterations was limited by 10.

5.5.3 Computational Cost

The computational costs for all methods are shown in Ta-

Table 2 Computational cost for a matching pair.

Reference method Computational cost
[milliseconds]

Computational com-
plexity versus pat-
tern size (n)

PROPOSED with 10
iterations at most

12.4 O(n2)

PROPOSED with 1
iteration at most

3.6 O(n2)

DERA2010 1.3 O(n3)

TRUNG2011,
RONG2007,
TRUNG2011 RLT

1.1 O(n2)

GAF2010HI 0.0018 O(n)
FELIX2012 0.0176 O(n)

ble 2 using the same dataset with Sect. 5.5.2. The table
shows the average matching cost for a pair of gallery and
probe patterns, which was computed on a pocket PC, Sony
VAIO type P VGN-61S, with an Intel Atom Processor Z550,
2.0GHz. GAF2010HI was the fastest method with lin-
ear computational complexity. FELIX2012 was the sec-
ond fastest method also with linear computational complex-
ity. Meanwhile, PROPOSED, TRUNG2011, RONG2007,
TRUNG2011 RLT, and DERA2010 use DTW matching al-
gorithm to improve the robustness to the temporal dis-
tortion, therefore they were slower than GAF2010HI and
FELIX2012. Although using DTW matching, DERA2010
employs an additional procedure, the cyclic rotation met-
ric (CRM) [26] to find the optimal shift between sig-
nals. Therefore, DERA2010 required longer processing
time compared with TRUNG2011, TRUNG2011 RLT, and
RONG2007. Among those methods, PROPOSED was the
slowest since more processing time for solving the sensor-
orientation inconsistency problem, although its computa-
tional complexity is the same as TRUNG2011, RONG2007,
TRUNG2011 RLT.

Nevertheless, we can see that the computational cost
for the proposed method is fast enough for a real-time appli-
cation. In addition, we can speed up the proposed algorithm
by setting a smaller number of iterations (e.g., speeded up
from 12.4 ms at 10 iterations at most to 3.6 ms at 1 iteration
at most in Fig. 9) with an insignificant performance drop.
We also can improve the computational performance by ap-
plying the idea from FastDWT [47], which requires only lin-
ear time complexity in future.

5.5.4 Accuracy of Relative Sensor-Orientation Estimation

In this evaluation, we validate the relative sensor-orientation
estimation in our algorithm. We compared the esti-
mated sensor-orientation with the ground-truth orientation
among the sensors. For each subject, gait patterns from
IMUZ-1 and IMUZ-2 were compared with those from the
3DM-GX3-25 to estimate the relative sensor-rotation. For
IMUZ-3, the experiment result was excluded since there was
no ground-truth orientation. We used the same dataset with
Sect. 5.5.2.

An orientation estimation error was computed when
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Table 3 Relative sensor-orientation estimation results.

matching a gait pattern with its genuine gallery. The mean
and standard deviation of the errors are shown in Table 3.
From the table, we can see that the estimation error was ap-
proximately 7 deg at most for each axis. The accuracy is
reasonable since our objective is to minimize the intensity
difference between a pair of 3D signals. We also can see that
the estimation error for yaw was more unstable than those
for pitch and roll, and the estimation error for (3DM-GX3-
25 vs. IMUZ-1) was smaller that that for (3DM-GX3-25 vs.
IMUZ-2).

The reasons are explained as follows. Firstly, in the ex-
perimental setup, the coordinate system of the 3DM-GX3-
25 almost coincided with the body coordinate system of a
subject (see Fig. 6). For a normal gait motion, the verti-
cal acceleration is dominated by the constant earth gravity,
so that the vertical signal is much stronger and more stable
than those of other two channels (Ox,Oy), as illustrated by
the gallery signal captured by the 3DM-GX3-25 in Fig. 3. In
addition, the vertical acceleration is relatively insensitive to
the yaw angle, while it is very sensitive to pitch or roll an-
gle. If we change a little pitch or roll, the vertical signal will
be changed significantly. Therefore, the angle estimation by
Eq. (9) tends to keep the dominant vertical acceleration sig-
nal of IMUZ sensor similar to that of the 3DM-GX3-25. As
a result, this optimization keeps the pitch and roll errors
quite smaller and sacrifices the yaw accuracy.

Secondly, although all the sensors were fixed in the
same rigid board, the locations of the sensors differed.
Therefore, the transformation between signals of different
sensors for the same gait motion cannot be described by
pure rotation; this is only true if the sensors are gyroscopes.
Regardless of the sensor-orientation inconsistency, the far-
ther the sensors are, the more different their signals become.
That is why the orientation estimation errors for matching
between the 3DM-GX3-25 and IMUZ-2 were greater than
those for matching between the 3DM-GX3-25 and IMUZ-1.
Another difficulty for the accuracy of orientation estimation
is induced by difference of gait patterns themselves (e.g. dif-
ferent motions) of the same subject.

Despite of these difficulties, the accuracy for the rela-
tive sensor-orientation estimation is sufficient for our match-
ing algorithm.

5.5.5 Simulated Sensor-Orientation Inconsistency

The experiment on simulated sensor-orientation inconsis-
tency was carried out to focus on how the proposed and
benchmark methods responded to the relative sensor rota-

Fig. 10 Performance of methods against varying simulated relative
sensor-orientation.

tion. In this experiments, the dataset of the same 47 subjects
as Sect. 5.5.2 was used.

The average results of EER of 10 random trials are
shown in Fig. 10. From these results, we can see that
TRUNG2011, FELIX2012, RONG2007, and DERA2010
worked well only without relative sensor rotation; as the
relative orientation difference became larger, these meth-
ods failed, and hence they are unsuitable for real ap-
plications. Meanwhile, PROPOSED, TRUNG2011 RLT,
and GAF2010HI were robust to sensor-orientation in-
consistency, and PROPOSED achieving the best perfor-
mance. Compared with PROPOSED, the results for
TRUNG2011 RLT were inferior because the data dimen-
sion of the resultant signal was reduced from 3D to 1D.
GAF2010HI uses a frequency analysis-based method, it re-
quires a long stable signal sequence to compute a reliable
histogram. Satisfying this requirement is in fact difficult,
since human gait signals are unstable and are easily affected
by many factors such as walking speed, mood, physical con-
dition, and ground condition. Therefore, compared with
TRUNG2011 RLT, GAF2010HI yielded worse results de-
spite both methods using the resultant signal.

5.5.6 Real Sensor-Orientation Inconsistency

This experiment was carried out to validate the proposed
method in real situations. We checked the authentication
performance between the sensors with different orientations.
All the data from the dataset were used in this experiment.
Therefore, signals captured by the 3DM-GX3-25 were used
to create the galleries and data from the other three sen-
sors were used as the probes. This experiment demon-
strated how effectively the proposed algorithm deals with
the real sensor-orientation inconsistency. In this experiment,
not only the effect of the sensor-orientation inconsistency
between gallery and probe data, but also the relative sensor
displacement were evaluated.

The experimental results, shown in Fig. 11 for ROC
curves and Fig. 12 for EERs, are similar to those in Fig. 10
for large orientations. PROPOSED achieved the best EER
and ROC curve, proving that it works well with variations in
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Fig. 11 ROC curves of the methods using different sensor data. Data from the 3DM-GX3-25 were
used for making galleries, while those from the other sensors were used for testing. The same legends
are used for all graphs.

Fig. 12 EERs of the methods using different sensor data. Data from the
3DM-GX3-25 were used for making galleries, while those from the other
sensors were used for testing.

the real sensor orientation. The EER values are 1.7, 3.4, and
4.6% for data from IMUZ-1, IMUZ-2, and IMUZ-3, respec-
tively. Since the distance between IMUZ-1 and the 3DM-
GX3-25 was small, the acceleration signals captured by two
sensors were very close after orientation-compensation, re-
sulting in a small EER for the test data from IMUZ-1. The
differences in acceleration signals increased for more distant
sensors, and hence the EERs for the test data from IMUZ-2
and IMUZ-3 were worse than that for IMUZ-1. This ex-
periment also proved that the proposed method works well
with a certain degree of sensor displacement, up to about 12
cm. As such, the proposed method could be a promising
candidate for real application.

5.5.7 Overall Experiment

An experiment was carried out to evaluate the proposed
method in a real application using the data captured on dif-
ferent days in the dataset. All the signals for the 38 sub-
jects captured on their first day by the 3DM-GX3-25 were
used as galleries, and all data captured by the 3DM-GX3-25,

IMUZ-1, IMUZ-2, and IMUZ-3 on their second day were
used as probes.

The experimental results are shown in Fig. 13 for ROCs
curves and Fig. 14 for EERs. The testing data captured by
the 3DM-GX3-25 on the second day were the easiest to
recognize for all the methods since no relative rotation and
displacement occurred. The performance of RONG2007 is
slightly better than that of TRUNG2011, and DERA2010.
This is because RONG2007 applies an signal intensity nor-
malization so that signal intensity fall within [−1, 1], to over-
come the problem of different intensity scales for gait sig-
nals for different walking speeds and physical conditions on
different days. Meanwhile, FELIX2012 normalizes signal
intensity so that standard deviation of signal intensity is 1
for each channel. The normalization in FELIX2012 is more
robust than that in RONG2007. As a result, FELIX2012
gave a slightly better performance compared with that of
RONG2007. Although using the same sensor and attach-
ment configuration on the subjects for different days, sig-
nal intensity was varied not only by different clothes, shoes,
mood or physical condition, but also by different subject’s
body tilt that caused the sensor-orientation inconsistency
problem. Therefore, PROPOSED produced a better result
compared with all other methods.

For testing data captured by all the IMUZ sensors, the
results are similar to those in Figs. 11 and 12.

Overall, we can see that PROPOSED achieved the best
results. We also can see that the recognition performance on
different days is much worse than that in Sect. 5.5.6. This
prompts us to ensure that gallery data are captured on differ-
ent days and under varying conditions to cover as much vari-
ation as possible to improve the recognition performance in
real applications.

6. Limitation and Discussion

Our system assumes that the sensor is fixed on the subject
body during a short term (approximately 1 second) and com-
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Fig. 13 ROC curves of the methods using different days. Data captured by the 3DM-GX3-25 on the
first day were used to create the gallery, while data from all the sensors captured on the other day were
used for testing. The same legends are used for all graphs.

Fig. 14 EERs of the methods for different days. Data captured by the
3DM-GX3-25 on the first day were used to create the gallery, while data
from all the sensors captured on the other day were used for testing.

pensates the sensor-orientation inconsistency for each short
term independently. If the sensor moves (rotates and/or
translates) freely and its motion within the short term is sig-
nificantly large compared with the subject’s motion (e.g., a
mobile phone in a loose pocket or bag), proposed method
does not work, as well as the existing methods.

However, the relative sensor rotation within a signal
sequence can be effectively estimated by employing a gy-
roscope [48]. Recently, a gyroscope is often integrated to-
gether with an accelerometer in a smartphone. This solution
is similar to a video stabilization technique in a commer-
cial handycam integrated with a gyroscope. Employing a
gyroscope is a simple and effective solution with low com-
putational cost. However, this solution requires integration
of angular velocities from the gyroscope. Hence, it would
accumulate some amount of rotation error. Fortunately, the
accumulation error within a short term is also negligible.
In addition, the proposed method executes the orientation-
compensation for every short subsequence of signal, thus it
is not affected by the accumulation errors between differ-
ent subsequences. As a result, the proposed method has a
potential to cope with freely rotated signals in conjunction
with the gyroscope in future.

How is about the idea of using a gyroscope instead

of using the proposed orientation-compensative matching
algorithm to solve the orientation-inconsistency problem?
The answer is negative. It is because gallery and probe
signal sequences are basically independent in a recognition
system and gyroscope can never correct initial orientation
difference between two independently captured signal se-
quences.

Although we applied the proposed method only to veri-
fication scenarios (owner authentication, one-to-one match-
ing), we can also apply it to identification scenarios (one-to-
many matching, e.g., user identification for a shared device),
which is also a future work.

7. Conclusions and Future Work

In this paper, we proposed a method for gait-based owner
authentication using 3D signal registration. Iterative sig-
nal matching incorporating the phase-registration technique
and the relative sensor-orientation estimation is employed
to overcome the sensor-orientation inconsistency. The ini-
tialization of the iterative framework using the 1D resultant
signal significantly reduces computational cost and ensures
fast convergence of the iterative procedure.

Various experiments conducted on different days, un-
der different sensors, and wearing weights in the back-
pack have proved that the proposed method improves sig-
nal matching and that the orientation-compensative signal
matching method is effective.

In practical application in daily life, we need to pre-
pare the gallery patterns for more condition variations such
as health, ground, clothes, shoes, and mood variation. Al-
though different conditions can influence the signal patterns,
the physical body does not change and hence, the proposed
algorithm is still able to work, as experienced from most
biometric systems. If the test signal is captured under simi-
lar conditions to those of enrolled ones, it is possible to find
a good match with high accuracy. Therefore, feasibility test
in daily life considering such variations is one of important
future work.

In case the initial sensor-orientation changes fre-
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quently, we need to add a stabilization function to the pro-
posed method in conjunction with a gyroscope. This is an-
other future work to deploy a practical test system.
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