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Abstract— Although RANSAC is the most widely used robust
estimator in computer vision, it has certain limitations making
it ineffective in some situations, such as the motion estimation
problem, in which uncertainty on the image features changes
according to the capturing conditions. The greatest problem is
that the threshold used by RANSAC to detect inliers cannot be
changed adaptively; instead it is fixed by the user. An adaptive
scale algorithm must therefore be applied in such cases. In
this paper, we propose a new adaptive scale robust estimator
that adaptively finds the best solution with the best scale to fit
the inliers, without the need for predefined information. Our
new adaptive scale estimator matches the residual probability
density from an estimate and the standard Gaussian probability
density function to find the best inlier scale. Our algorithm
is evaluated in several motion estimation experiments under
varying conditions and the results are compared with several
of the latest adaptive-scale robust estimators.

I. INTRODUCTION

Most motion estimation algorithms in computer vision rely
on the detection of image feature points such as the KLT
feature [1][2], Harris feature [3], or SIFT feature [4], and so
on. There is, however, always a large degree of uncertainty
in vision such as noise in the image, occlusion and moving
objects, and therefore a number of outlying features exist that
do not follow the motion function. The most popular method
to ignore those features that do not meet the constraints is to
apply a robust estimator to eliminate such features and retain
the reliable ones. RANSAC [5] is widely used in this regard.
RANSAC assumes that the scale of inliers is known and
uses this to distinguish the inliers from outliers. RANSAC
and its improvements [6][7] have successfully been applied
in various motion estimation applications such as camera
egomotion [8][9], structure from motion [10] or simultaneous
localization and map building [11], and motion segmentation
[12].

Besides large uncertainty, smaller uncertainty also affects
the inlying features, in that the features still follow the
motion constraint, but with some error. In the event of fixed
conditions, such as the same camera, same image resolution
and similar motion speed, the user-defined threshold supplied
to RANSAC is sufficient. However, in other applications
where this uncertainty varies or where the correct threshold is
not known. For example, the video is sometimes blurred due
to the fast motion of the camera. An adaptive-scale estimator
needs to be applied in such situations.

In this paper, we present a new robust estimator that can
work in high outlier-rate data and estimates the correct inlier
threshold. Our method relies on a new inlier scale estimator
and a kernel density estimation-based objective function. We

assume that the residual distribution is Gaussian as is the
case in most previous works. The algorithm for the new
inlier scale estimator, which is our main contribution in this
paper, matches the Gaussian distribution and the residual
distribution from a putative solution. One of the advantages
of this inlier scale estimator is that inliers and outliers are
well-detected; the other advantage is that it does not depend
heavily on the bandwidth of the residual density estimation.

II. RELATED WORKS

Several robust estimators that can adjust the inlier scale
adaptively and do not need predefined information have
been proposed in computer vision. The requirements for
such robust estimators are: robustness with respect to high
outlier-rate (or high breakdown point [13]) and a sufficient
number of inliers. The LMS (least median of squares) [13]
is the most widely known estimator that can be used in
these situations, but it can only be applied when the outlier-
rate is less than 50%. Some extensions of LMS like MUSE
(minimum unbiased scale estimate) [14] or ALKS (adaptive
least kth order squares) [15] can be applied under high
outlier-rates, however these have a problem with extreme
cases, such as perpendicular planes. Another extension of
LMS is MINPRAN (minimize probability of randomness)
[16], which requires an assumption of the outlier distribution.
This assumption seems to be strict since outlier distribution
is assumed with difficulty. The pbM (projection-based M-
estimator) [17][18][19] is an extension of the M-Estimator
that uses projection pursuit and the kernel density estimation
(KDE), and can provide a breakdown point much greater than
50%. However, it only works for linear residual functions,
such as linear regression, and uses a bandwidth (some pro-
portion of MAD (median absolute deviations) scale estimate)
which is robust to only 50% of the outlier-rate, and thus
the robustness is reduced. Another robust estimator that
uses KDE is the ASSC (adaptive scale sample consensus)
[20]. ASSC assumes that the inliers are located within some
special structure of the density distribution; it practically
detects a first peak from zero and a valley next to the peak to
locate the inliers. ASSC can provide a very high breakdown
point, around 80%, when applying the proper bandwidth.
However, the bandwidth is undersmoothed when there are
only a few or no outliers and becomes oversmoothed with
a large number of outliers. ASSC has subsequently been
improved as the ASKC (adaptive scale kernel consensus)
[21]. ASKC improves the objective function of ASSC using
KDE and improves the robustness in the case of a high
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outlier-rate. The bandwidth of KDE in ASKC is computed
using a scale that contains approximately 10% of the smallest
residuals. However, this undersmoothed bandwidth means
that the ASKC can estimate very few inliers in the case of
data with a low outlier-rate.

III. OVERVIEW OF PROPOSED ESTIMATOR

Similar to previous diagnostic robust estimators, the pro-
posed estimator consists of two important components: an
inlier scale estimator and an objective function. We also use a
statistical random sampling method for the search procedure
as in RANSAC. The inlier scale estimator uses matching
by correlation between the standard Gaussian distribution
(SGD) and the residual distribution of a putative estimate;
the scale that gives the highest correlation will become the
inlier scale estimate. The objective function is based on the
kernel density estimation to evaluate the density of estimated
inliers; the solution with the largest value is then the output
of the estimator. The details are described in the next section.

IV. ADAPTIVE-SCALE ROBUST ESTIMATOR

A. Problem Preliminaries

Assume the estimation of a model with the constraint:

g(θ, Xt
i ) = 0, (1)

where θ is the ideal parameter vector that describes the
outcome of inliers, and X

t
i is the ideal data point without

noise. Our estimation problem is then described as:
• Input: There are N observed data points Xi, i = 1..N .

These N observed data points include both inliers and
outliers.

• Output: Parameter θ that describes the data.
In a real problem, each inlier X

t
i is affected by some

unknown noise ni:

Xi = X
t
i + ni. (2)

Therefore, the ideal parameters θ cannot be recovered,
and some approximation of θ will be estimated. A robust
estimator based on random sampling like RANSAC solves
the problem by trying many random solutions θ̂, with the
best solution θ̂

∗ being the approximation of θ. To evaluate
a solution θ̂ good or bad, the estimator can only rely on the
statistics of the error for each data point; this error is called
the residual [13]. For each model estimation problem, there
are numerous ways to define the residual function, including
using the original constraint function (1). Generally, however,
the residual is defined as:

r
i,θ̂

= f(θ̂, Xi). (3)

A good definition of the residual is that proposed by Q.T.
Luong et al. [22]:

r
i,θ̂

=
g(θ̂, Xi)

‖ �g(θ̂, Xi) ‖
, (4)

where �g(θ̂,Xi) is the gradient of g with respect to variable
Xi. In our algorithm we use the absolute residual.
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Fig. 1. Distribution of absolute residuals in several good solutions (in
increasing order of accuracy) for (a) line fitting and (b) the fundamental
matrix estimation problem, assuming that a zero-mean Gaussian noise model
influences the inliers. These distribution curves correlate strongly with the
standard Gaussian distribution curve.

In an ideal case, there is no noise on the inliers, and
thus the residual from an inlier is zero. However, in a real
problem, an inlier is always affected by some noise and the
estimated solution θ̂ is not always correct. The inlier residual
is therefore, not zero and is computed by (3). The standard
deviation of these inlier residuals is called the “inlier scale”,
and is denoted by σ

θ̂
. The problem is that σ

θ̂
is not known,

and therefore, our proposed inlier scale estimator tries to
estimate it. This estimate is denoted by σ∗

θ̂
. Once the inlier

scale has been found, the inlier threshold t
θ̂

can be decided
to distinguish inliers from outliers.

B. Inlier Scale Estimator

Statistically, for an accurate solution θ̂, the distribution
of residuals from inliers is densely distributed around zero
and sparsely distributed for outliers. The more accurate the
solution, the denser the distribution of inlier residuals is. This
is a well-known phenomenon for any estimation problem. We
demonstrate this in Fig.1.

We can see from Fig.1 that the distribution of residuals
from inliers is strongly related to the standard Gaussian
distribution. This is also widely assumed by previous similar
works. Therefore, we propose an algorithm for density
matching to find the best inlier scale.

1) Matching of Residual Distribution and Ideal Distri-
bution: The inlier scale is estimated by finding the best
correlation between a segment of the residual distribution
and the SGD. The segment of the residual distribution used
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for matching starts from zero. Then, the scale of the first
structure is detected regardless of the outlier structures. The
similarity between the SGD curve P s(α) and a normalized
residual distribution curve P s

θ̂
( ri

σ
), given an assumed noise

standard deviation σ of inliers, is defined from the correlation
coefficient. This similarity is a function of σ:

s
θ̂
(σ) = Corr

0≤xi≤κσ
(P s

θ̂
(xi

σ
), P s(xi

σ
)), (5)

where xi is the scale variable and κ indicates the part of
the SGD used in the matching. For example, κ is defined
so that the standard cumulative distribution function Φ of
the SGD has the value Φ(κ) = 0.997, which means that the
SGD segment containing 99.7% of the samples is used for
fitting; in this case κ = 3. By this definition, similarity is
limited to −1 ≤ s

θ̂
(σ) ≤ +1. Then, the best scale of noise

on inliers σ∗

θ̂
is estimated by searching the scale that gives

the highest similarity, which is summarized as

σ∗

θ̂
= argmax

σ

{s
θ̂
(σ)}. (6)

Inliers are then distinguished using the inlier threshold
t
θ̂

= κσ∗

θ̂
. In our algorithm, to compute the probability

of the residual from an estimate, we apply the well-known
histogram method, although the KDE can also be used. A
histogram is simple and gives us low computational cost.
Then, the variable xi in (5) is the bin variable. Searching for
the best inlier threshold t

θ̂
is graphically depicted in Fig.2

and Fig.3.
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Fig. 2. Line fitting: Several residual distributions and their fitness with
respect to the SGD. The inlier threshold t

θ̂
= κσ

∗

θ̂
is obtained by finding

the highest correlation.

Since the correlation is not very stable at the initial scales
since few bins are used for the correlation, as shown in Fig.2
and Fig.3, we can easily avoid these cases by checking the
actual probability density at the best threshold t

θ̂
. At the
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Fig. 3. Fundamental matrix estimation: Several residual distributions and
their fitness with respect to the SGD. The inlier threshold t

θ̂
= κσ

∗

θ̂
is

obtained by finding the highest correlation.

scale of the best threshold t
θ̂
, the probability density must

be low:
P

θ̂
(t

θ̂
) ≤ 0.2max

r<t
θ̂

P
θ̂
(r). (7)

2) Bin-width Selection: Bin-width is size of bin in the
residual histogram. In this section, we decide the bin-width
that is used in our algorithm. Bin-width is usually a difficult
problem for those methods that rely on the probability
density of residuals. A widely used bin-width [23] for robust
estimators is:

ĥ = (
243

∫
1

−1
K(ζ)2dζ

35N(
∫

1

−1
ζ2K(ζ)dζ)2

)

1

5

σ̂, (8)

where K is some kernel, such as the popular Gaussian kernel,
Epanechnikov kernel, etc. and σ̂ is some scale estimate, such
as the standard deviation of residuals, median scale estimate
[13] or MAD estimate [13], and N is the number of data
points. The standard deviation scale estimate is very sensitive
to outliers and is rarely used. Median and MAD scale
estimates are robust up to 50% outliers and are frequently
used in robust estimators. Where the outlier-rate is greater
than 50%, these scale estimates are badly affected by the
large residuals of outliers.

In the proposed algorithm, we fit the residual histogram
to the ideal distribution, the Gaussian distribution, and the
histogram does not need to be as smooth as in previous
works based on the KDE. The best overall correlation will
result in the scale estimate. Moreover, the objective of a
recent robust estimator is to deal with a high outlier-rate, say
80%. Consequently, in the proposed method, the histogram
bin-width is estimated using a scale estimate σ̂ that is the
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smallest window containing 15% of the smallest residuals.
Where the outlier-rate is less than 80%, some of the leftmost
bins will contain inliers, a situation that can be detected by
our algorithm.

Having obtained the bin-width, a histogram of the estimate
can be built. Since the bin-width is small to avoid over-
smoothing in the case of a high outlier-rate, the number of
bins may be large, and therefore in practice, we have to prune
all unnecessary bins. Pruning can be done by removing the
low density bins from the rightmost bin.

C. Objective Function

Inspired by the use of the KDE in the pbM-Estimator
[18][19], ASSC [20] and ASKC [21], we also apply it in
our adaptive objective function:

F (θ̂) =
1

Nκσ̂∗

θ̂

N∑
i=1

K(
r
i,θ̂

κσ̂∗

θ̂

), (9)

where σ̂∗

θ̂
is adaptively estimated by the proposed inlier

scale estimator as shown in Section IV-B.1 and κ has been
defined in Section IV-B.1; K is a kernel such as Gaussian or
Epanechnikov kernel. The KDE objective function evaluates
how densely the residuals are distributed at zero using a
kernel’s window. In our case, the window of kernel K is
κσ̂∗

θ̂
, which covers all the estimated inliers, therefore the

objective function gives the density measured at zero only for
inliers. Similar to the M-estimators, a large residual makes
a small contribution, whereas a small residual makes a large
contribution to the overall score. However, this objective
function is different to that in the conventional M-Estimators
in two aspects. First, the scale estimate σ̂∗

θ̂
is estimated for

only inlier residuals, and is adaptively estimated. Second,
the sum of weights on the residuals is scaled by 1

σ̂∗

θ̂

, which

intensifies the score when the estimated inlier scale is small
and reduces the score when the estimated inlier scale is large.
In summary, the KDE objective function declares a solution
to be better under the following conditions:

(a) Larger number of estimated inliers,
(b) Smaller scale of inliers,
(c) Smaller residuals of inliers.

D. Estimation Algorithm Summary

In this section, we summarize the proposed algorithm.

(a) Create a random sample then estimate the solution
parameters θ̂,

(b) Estimate all the residuals of the data points given the
model parameters θ̂,

(c) Estimate the bin-width as described in Section IV-B.2,
then compute the residual histogram P

θ̂
. The histogram

is then pruned as described in Section IV-B.2,
(d) Estimate the inlier scale as summarized by (6) and (7),
(e) Estimate the score using the objective function (9),
(f) Update the best solution,
(g) Repeat from (a) if not terminated.

A flowchart of the algorithm is given in Fig.4.
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Fig. 4. Flowchart of proposed algorithm.

V. EXPERIMENTS

In this section, we describe several experiments of various
popular motion estimation problems using omnidirectional
vision, namely rotation estimation and fundamental matrix
estimation [22], Epanechnikov kernel was used for the ob-
jective function in all experiments. We compare our results
with those of LMedS (a well-known random sampling-based
implementation of LMS), ASSC, and ASKC. For ASSC,
we set c = 0.5 as the constant for the KDE bandwidth
computation. All algorithms were supplied with the same
random sampling and the stop criterion was a fixed number
of iterations. The results are shown as the average of 200
executions. No optimization of the estimation was applied
for any algorithm. The camera was mounted on a rotation
stage and rotated by a controller, and thus the rotation of
the camera was known. We used KLT feature detection
and tracking [2] implemented in OpenCV [24]. Examples
of image sequences used in the experiments and 200 KLT
features detected on each image are shown in Fig.5.

�

Fig. 5. A pair of matching images from the proposed estimator for rotation
estimation: red and large features are matched features on both images, while
green and small features are unmatched.

A. Rotation Estimation

We applied our robust estimator to estimate the rotation
of the omnidirectional camera. Matching features between
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Fig. 6. Rotation estimation error (Frobenius error)

consecutive images is performed to find the feature corre-
spondence pairs Pi, P

′

i that follow only rotation R:

P
′

i = RPi. (10)

Near features that do not follow the pure rotation are then
eliminated in the matching. Image feature coordinates are
mapped onto the unit sphere, while feature tracking for cor-
respondence between consecutive images is not used. Feature
correspondence and rotation are simultaneously estimated.
The residual is defined as the angle between two vectors of
feature correspondence after applying the estimated rotation:

r
i,R̂

= Angle(Pm,i,P
′

m,i, R̂), (11)

where (Pm,i, P
′

m,i) is a correspondence pair of matched
features mapped onto the unit sphere and R̂ is an estimated
rotation matrix. The estimation error for one pair of images
is defined as the Frobenius norm between the ground-
truth rotation matrix that is given by the controller. In this
experiment, a sequence of about 50 frames was captured
with the ground-truth rotation angle for each frame, and then
200 features were detected on each frame. An example of a
matching pair from the proposed algorithm is shown in Fig.5.
Average results from 200 executions, with 1500 iterations of
random sampling for each execution, are shown in Fig.6.
These results show that our proposed algorithm gives the
best results of all compared estimators.

B. Fundamental Matrix Estimation

In this experiment, we applied the proposed algorithm to
fundamental matrix estimation in simulation and real video
sequences. The residual is defined as follows [22]:

r
i,F̂

=

∣∣∣x′T
i F̂xi

∣∣∣
√
‖ F̂xi ‖2 +‖ F̂T x

′

i ‖
2

, (12)

where F̂ is an estimated fundamental matrix and (xi, x
′

i)
a pair of feature correspondences between consecutive im-
ages. Fundamental matrix was estimated using seven point
algorithm [25]. In this section, we first estimate fundamental
matrix in simulation and then in real video sequence. For
these experiments, the error of the estimation between one
pair of views is computed as the standard deviation of the

estimated residual of the best solution from each estimator.
The better the solution, the smaller are the estimated resid-
uals. In simulation, we know the ground-truth inliers. For
real experiments, the error is computed for M fixed smallest
residuals. M is minimum number of correct correspondence
from feature tracker for all video sequences.

1) Fundamental Matrix Estimation in Simulation: We
simulated points on a unit sphere, 500 points were distributed
randomly on a unit sphere. Some motion of the view point
was made resulted in the motion of these points on the
sphere, then we had 500 pairs of point correspondence. Some
pairs of these pairs were then replaced by outlying pairs
with the random point coordinates so that total number of
pairs was constantly 500. Coordinates (x, y, z) of each inlier
point on the unit sphere before and after the motion were
contaminated by Gaussian noise with zero mean and noise
standard deviation σG. Experiments of the estimation errors
under various outlier-rates were carried out and the average
results of 100 trials are shown in Fig.7, with σG = 0.005,
10000 random samples for each estimator for one trial. The
results prove that our proposed algorithm gives the overall
best robustness under high outlier-rates. For low outlier-rates
less than 50%, LMedS gave the best performance. However,
for high outlier-rates, our proposed estimator gave the best
results.
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Fig. 7. Fundamental matrix estimation error in simulation.

2) Fundamental Matrix Estimation for Real Video Se-
quence: Features were tracked using the KLT tracker and
then mapped onto the unit sphere; 200 features per frame
were used. Several video sequences of the same scene were
captured with different control speeds as shown in Fig.5.
The conditions for the experiment were low or high speed
of the controller and with or without motion blur. Thus
in total four video sequences were captured. Both motion
blur and high speed contaminated the tracking of features.
For low and high speed without motion blur, the rotation
velocity between consecutive images was 15 deg/frame and
20 deg/frame, respectively, while for low and high speed with
motion blur, the rotation velocity was about 27 deg/frame
and 42 deg/frame, respectively. Translation of the camera was
done simultaneously with the rotation controlled by the same
controller. High rotation velocities resulted in high outlier-
rates of the input data.
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Fig. 8. Fundamental matrix estimation error: (a) two sequences with
different control speeds and without motion blur and (b) two sequences
with different control speeds and with motion blur.

Since each estimator estimates a different number of
inliers, we normalize this error by applying a fixed number of
smallest estimated residuals from the estimated solution. In
this experiment we used M=70 as the fixed number since at
least 70 (out of 200) features were tracked correctly. In this
experiment, the KDE bandwidth used in ASKC was found to
be too undersmoothed, and therefore the ASKC did not work
correctly. We modified the bandwidth of ASKC by scaling
it up 5 times; this is denoted as the Modified ASKC in the
graphs. The experimental results under various conditions are
shown in Fig.8.a and Fig.8.b. These results also confirm that
our proposed method gives the best results of all the robust
estimators. The Modified ASKC worked slightly better than
its ancestor, the ASSC.

With respect to computational cost, LMedS is the fastest
of the estimators since it is very simple. Second fastest is the
ASKC, since it applies two objective functions for scoring,
the first of which filters out the earlier bad solutions. Our
proposed estimator and the ASSC have a similar compu-
tational cost. In practice, one can obviously improve the
computational cost by applying multiple objective functions,
as is done in several previous works.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have proposed a new highly robust
estimator for the estimation problem in computer vision that
deals with data with a high outlier-rate. Our algorithm does
not need any prior information about the inlier scale, which
is adaptively estimated. The correlation between the residual
distribution and the standard Gaussian distribution is key to
enabling us to detect the inlier scale. The experiments with
several motion estimation problems have positively validated
our proposed algorithm. The residual distribution of inliers
for motion estimation is not strictly the Gaussian distribution,
however, the correlation between this distribution and the
Gaussian distribution is much stronger than the correlation
between the residual distribution of outliers and the Gaussian
distribution.

The proposed robust estimator has shown some initial
promising results as illustrated in this paper. In future work,
we aim to analyze our method for other estimation problems
and improve the method.
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