
Abstract— Camera ego-motion consists of translation and 

rotation, in which rotation can be described simply by distant 

features. We present a robust rotation estimation using distant 

features given by our compound omni-directional sensor. 

Features are detected by a conventional feature detector, and 

then distant features are identified by checking the infinity on 

the omni-directional image of the compound sensor. The 

rotation matrix is estimated between consecutive video frames 

using RANSAC with only distant features. Experiments with 

various environments show that our approach is robust and 

also gives reasonable accuracy in real-time. 

I. INTRODUCTION  

go-motion is an attractive research topic in computer 

vision. Ego-motion consists of rotation and translation. 

Most research studies on ego-motion estimate both rotation 

and translation at once. However, in some applications, such 

as video stabilization, only the rotation is important. In 

addition, in practical applications such as security systems, 

robustness and real-time processing are required.  

There are a large number of approaches, such as [1]-[8], 

for estimating ego-motion in computer vision, and most of 

them rely on the advantage of features. Due to the motion of 

features which are detected and tracked on the video, the 

motion of the camera can be recovered. All features are 

treated similarly regardless of their distance to the camera. 

However, it is fair to say that when estimating the translation 

of a camera, distant features are ineffective. They do not 

appear to move on the video when the camera translates, 

although they similarly move when the camera makes a 

slight rotation with or without translation.  

Our research distinguishes the distant features and near 

features for separated targets. Distant features are used for 

estimating the rotation of a camera, while near features are 

used for translation. This classification of features helps the 

estimation of ego-motion become more robust and simple. In 

this paper, we present the first part of our research, rotation 

estimation using distant features. 

Obviously, rotation can be estimated by existing general 

methods for ego-motion, but such solutions are indirect and 

time-consuming for rotation estimation issues since they also 

estimate the translation of the camera. In response to the 

rotation estimation only, direct methods [9]-[12] have also 

been proposed. Some approaches use unclassified features. 

Features are usually tracked between consecutive frames. 

The robustness and accuracy of estimations also depend on 

the correspondence and dynamicity of the environment. 

Moreover, some significant computation cost is needed for 

finding the correspondence of all the features found 

available on the images. Among these approaches, Stan et al. 

[9] has presented a method using annealing M-estimator 

(AM-estimator) which can explicitly work with the 

translation of cameras. In another approach, a featureless 

solution, Makadia et al. [10] proposed a method using the 

transformation of images. In their method, the whole image 

is transformed into the frequency domain by spherical 

Fourier Transform. Then a decoupling of the shift theorem 

with respect to the Euler angles is exploited in an iterative 

scheme to refine the initial rotation estimates. Since the 

whole image is considered, this method needs much 

computation cost. Moreover, their approach gives poor 

results with translation of camera and is not very robust with 

a dynamic environment because of significant distortion of 

the near scenery by the translation of the camera. 

Our approach uses features, but only distant features. In 

the algorithm, all features are detected by a feature detector 

and then filtered to eliminate the near features by using our 

compound omni-directional sensor. The tracking of features 

is not necessary in our algorithm. Then, features are 

represented on a unit sphere. RANSAC matching between 

consecutive frames is performed to simultaneously find 

correspondence of inliers and the rotation matrix. We assume 

the environment is much larger than the translation of the 

camera. Experiments showed that it is a robust approach and 

can work in real-time. 

The following section, Section II, provides an overview of 

the compound sensor and distant feature detection. Section 

III describes the motion of distant features. Sections II and 

III therefore support (as fundamentals) Section IV in 

showing the rotation estimation using RANSAC. Finally, the 

evaluation of the experiments is given in Section V.  

II. COMPOUND OMNI-DIRECTIONAL SENSOR AND DISTANT 

FEATURE DETECTION 

Fig. 1 describes the compound sensor, which is a 

multi-baseline stereo omni-directional vision sensor using 

seven conventional parabolic mirrors, six small ones at the 

sides and a big one in the center, and an orthographic camera. 

The corresponding omni-directional image of each mirror 

can be used independently as conventional omni-directional 

images.  

The work of Sagawa [13], using sensor with spherical 

mirrors, which is similar to the sensor we used, shows that 

this type of sensor has the advantage of quickly detecting 

near objects. In this research, we take advantage of the same 
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algorithm to detect the distant features by their infinity. The 

infinity of a feature point is done quickly by checking the 

corresponding points on the image areas of the seven mirrors. 

If the difference of the corresponding points is larger than a 

certain threshold, then those image points are considered to 

come from a near object. Otherwise, the image points belong 

to an object at infinity. The infinity depends on the baselines 

of the sensor and also on the resolution of the CCD sensor. 

The epipolar constraints can be applied to improve the 

robustness of the detection. Since we use intensity, the 

detection is done only at the image points that give a large 

gradient. However, feature detectors such as Harris or 

Kanade-Lucas-Tomasi also can only detect features at image 

points with a large gradient.  

 

 

III. MOTION AND MOTION COMPUTATION OF DISTANT 

FEATURE POINTS 

A. Motion of distant feature points 

Once having located the coordinate system at the optical 

center O of the big mirror (Fig.2), the surrounding scenery 

moves around the sensor. For point P(xP,yP,zP) with  

rotation R and translation T of the camera in a world 

coordinate system, P is rotated by 1R − and translated by -T: 
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Representing P in a spherical coordinate system originating 

at the optical center point O of the center mirror (see Fig. 2), 

(1) is rewritten as  
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where )ρ,φ,(θ PPP
and )ρ,φ,θ( PPP

′′′  are spherical 

coordinates of P before and after the camera motion .  

From (3) we can see that if the distance Pρ′ is much larger 

than T then we can ignore the term 
Pρ

T

′
, and that then the 

motion of this distant point is only rotation. Since we 

consider only the rotation 1
ρ

ρ

P

P ≈
′

, (3) then becomes 
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We can see that ))θ(cos), φ(sin)θ(sin), φ(cos)θ(sin( PPPPP
′′′′′ are 

the Cartesian coordinates of P on the unit sphere. 

From (4) we can see that the motion of a distant point, 

which is approximated by only the rotation, can be 

understood by the motion of its projection on the unit sphere. 

Equation (4) also prompts us to represent the feature point P 

on the unit sphere. A map from the image coordinate system 

to the unit sphere needs to be made for real-time processing. 

 

B. Rotation computation from known correspondence 

In general ego-motion, we can compute the rotation and 

translation of a camera by tracking three feature points. 

However, in our case the motion of distant features is 

assumed only by rotation, and therefore the problem is easier 

to solve. The center of the compound mirror is assumed to 

remain still. We can thus track the motion of two points, with 

the additional point known as the center of the compound 

mirror. 

Considering a rigid rotation M of two space points P and 

Q around O, the cross-product vector n of OQ,OP makes 

the same rotation. As shown above, their images Pm, Qm, nm 

on the unit sphere also make the same rotation: 

Fig.1. Top view (a), side view (b) of the mirrors and 
omni-directional image from the compound sensor (c). 
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Fig. 2. Camera coordinate system.
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where mmmmmm QOPOn ,OQOP n ′×′=′×= and Pm, Qm, 

nm are column vectors. Then we can get the rotation matrix 

easily from the motion of the feature points on the unit 

sphere: 

 [ ][ ] .nQPnQPM
1

mmmmmm

−′′′=  (6) 

In the estimation algorithm using RANSAC, this 

computation is used to initialize the rotation model, which 

needs only four points on two consecutive frames. Two 

points are on the previous frame and two others are on the 

current frame. 

 

IV. RANSAC TO ESTIMATE THE ROTATION 

RANSAC is well-known as a robust estimator in 

computer vision, which is preferable when the image data is 

highly noisy. For our case, there are a lot of outliers that do 

not hold the rotation (4), including near features, moving 

features, and features contaminated by occlusion. Further, 

with distant features, three issues must be solved: finding the 

correspondence of the inliers on the current frame and on the 

previous frame, removing the outliers for the rotational 

motion, and estimating the rotation. RANSAC is a 

reasonable selection for doing these tasks. RANSAC can 

simultaneously find the correspondence and the rotation of 

correspondences and remove the outliers of the rotation. 

Using our compound vision sensor, a large number of 

outliers (near features) are easily eliminated, resulting in 

lower computation cost and improved accuracy. In this paper 

we use the standard RANSAC, but in practical use the 

RANSAC extensions should be applied for better 

performance. 

A. Algorithm 

In this section, the algorithm to estimate the rotation of 

consecutive frames is briefly described. First, the features 

are detected on both frames, and the near ones are eliminated. 

The remaining features are then mapped on the unit sphere. 

RANSAC is performed to match the two sets of spherical 

points to estimate the motion on the unit sphere. The motion 

then shows us the rotation. A quartet is defined as a group of 

four points, two inliers on the previous frame and two 

supporters on the current frame. If the selected four random 

points make up a quartet then the initialization is successful 

for a rotation matrix. 

Initialization of rotation matrix M is done as shown in 

Section III, by assuming the correspondence between two 

random points on previous frame and two random (within 

the vicinity of two previous points) points on current frame. 

Since our approach is real-time RANSAC, the criteria for 

stopping the search is the processing time. 

B. Computational cost of RANSAC 

If the probability of inliers on the previous frame is pin 

then the probability of outliers is 1- pin. Then, the probability 

of selecting one correct pair (Pm,Qm) of inliers on previous 

frame is 2

inp . The probability of selecting a supporter on 

current frame of a correct pair is psup. This is the probability 

of selecting the correct correspondences of Pm or Qm on 

previous frame. Then, the probability of selecting a quartet 

(two inliers, two supporters) for the rotation motion is 
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The minimum required number of iterations is as follows 
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where z is the probability of seeing only bad samples: 

 
k
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More detailed information about this number k can be found 

in the book [14]. In practical implementation, in order to 

specify the minimum number of iterations k, we have to 

supply a predefined value of z. In our algorithm, because k is 

not large this algorithm can be applied in real-time. For 

instance, if the probability of selecting an inlier on previous 

frame is 0.4 and if there are on average 10 feature points in 

the vicinity of one point on the previous frame, meaning the 

probability of finding a supporter on current frame for an 

inlier on the previous frame psup is 1/10 = 0.1, predefined 

value of z=0.001, then k =4313. Moreover, this number k is 

reduced when a significant number of outliers are eliminated 

by using the compound sensor.  

C. Theoretic error of the estimation 

In this algorithm, we accept an approximation of the 

infinity. This section will show how large error can come 

from the approximation. If the translation of the camera per 

frame is dt and the distance from the camera to the real 

feature point is df then the maximum error of accepting this 

as a distant point is )
d

d
(

f

tarcsin . In other words, the error 

depends on the environment size, the translation, and the 

direction of translation of the camera. For example, if the 

camera translates 20[cm] per frame in the direction 

perpendicular to the direction to the feature, and the distance 

to the feature point is 500[cm], then the error is about 

mP  

 mQ  

mP′  

mQ′

Fig. 3. Estimate rotation from motion of 2 points. 
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0.04[Rad]. In our algorithm, the searching of the supporters 

in the algorithm depends on the threshold th. This threshold 

helps us to obtain the accuracy of the estimation, the smaller 

the more accurate. However, the value of th must be close to 

the theoretic error )
d

d
(

f

tarcsin , in which df is the distance to 

the nearest acceptable distant feature point. 

V. EXPERIMENTS 

 

 

In our experiments, the compound sensor was mounted on 

a system of two rotary stages and a 50[cm] translation stage 

(Fig. 4). One rotation measured rotation phiω on the z axis, 

the other measured rotation thetaω on the y axis, while the 

translation state measured the one dimensional translation of 

the system. Since there was no motor to control rotation psiω  

on the x axis, this angular velocity was set to 0 during the 

experiments we carried out to evaluate the estimation of 

psiω  with a ground-truth of 0[deg/frame]. The vision sensor 

was a 1600x1200 [pixel] CCD camera (Scorpion: Point Grey 

Research) with a telecentric lens (0.16x TML: Edmond 

Optics). In the experiments, the effective infinity detection 

of our compound sensor was about 4[m]. All these sensors 

were connected to a PC, a Pentium D 3.2GHz. On this PC, 

the algorithm was evaluated. OpenCV helped us with image 

processing and feature detecting.  

Experiments were carried out with various environments 

to evaluate the accuracy with respect to computation cost 

translation and the rotation of the camera. The RANSAC 

was evaluated with a conventional omni-directional vision 

sensor (without near feature point elimination, here called 

STDRANSAC) and compound vision sensor (with near 

feature point elimination, here called PROPOSED) and 

compared to the ground-truth from the rotary states. The 

computational cost for each frame of STDRANSAC consists 

of feature detection and RANSAC computation. Meanwhile, 

PROPOSED requires some additional computation to 

eliminate near features. 

More detailed results of these experiments are described 

in the following sections, showing the averages of the 

frame-by-frame error estimation and the 100 trials for each 

video sequence.  

A. Angular error definition 

 In order to evaluate the error we first compute the residual 

rotation after canceling the estimated motion R̂ with the 

true motion trR from rotary stage control: 

 1

trR.R̂E −= . (10) 

This is the error of estimated rotation which is represented 

by a matrix. If the estimation is perfect, matrix E is identity 

rotation matrix. The difference of E compared to the identity 

rotation matrix I is assumed the error of estimation. 

Frobenius norm of the matrix (E-I) is one choice to evaluate 

the difference: 
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B. Indoor environment 

 

The experiments were carried our along a corridor in our 

building (Fig. 6). The extracted features ranged from 1[m] to 

about 8[m]. STDRANSAC and PROPOSED were run with 

the same conditions in order to compare the results.  

1) Experiments with translation of camera 

In these experiments, the processing times of 

STDRANSAC and PROPOSED were similar, at 0.095[sec], 

and the angular velocities were 

thetaω =10[deg/frame], phiω =5[deg/frame] and 

psiω =0[deg/frame]. The translation of the camera varied 

from 5[cm/frame] to 25[cm/frame] in the experiments. The 

errors of estimation are shown in Fig. 7, in which the pink 

small boxes depict the errors of STDRANSAC, while the 

dark blue round dots denote the errors of PROPOSED. 

As shown by the results, the translation contaminates the 

estimation. However, the proposed method is less affected 

by the translation because the near points, which are changed 

drastically with the translation, are eliminated. Therefore, the 

accuracy of the proposed method is better. 

 
Fig. 6. Indoor scene. 

Fig. 4. The evaluation system.  
Rotary stages and vision sensor are mounted on the translation stage.

 

Rotary stages 
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Orthographic camera 
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2) Experiments with angular velocities 

 

 

 

 

Experiments were carried out with same processing time 

(0.1[sec]) and same translation (15[cm]) for both methods. 

The evaluated errors are shown in Fig. 8. The legends are the 

same as those in the previous section. 

It seems that both methods do not depend much on the 

angular velocities. However, the proposed method produced 

more accurate and robust results. 

3) Experiments with processing time 

Experiments were carried to evaluate the accuracy using a 

different processing time. The camera translation and 

angular velocities were the same for both methods 

(25[cm/frame] translation and thetaω = 10 [deg/frame], phiω = 

5 [deg/frame] and psiω = 0 [deg/frame]). The errors are 

described in Fig. 9, with the same legends as in the previous 

sections. 

These experiments showed that our method produced 

good results. Due to the number of outliers removed, 

however, the processing time was reduced significantly. 

Nonetheless, with the input images having a resolution of 

1600x1200 [pixel], the processing time of 0.1[sec] is 

reasonable for use in real applications with acceptable 

accuracy. 

  

C. Outdoor environment 

 
Experiments were also carried out in an outdoor 

environment (Fig. 10) to validate our method in large 

environments. The comparison between STDRANSAC and 

our method PROPOSED were made using the same criteria 

as those of the above indoor experiments.  
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Fig. 9. Indoor environment: estimation errors with different processing 

time. Translation is 25[cm] and angular velocities are 
thetaω = 10 

[deg/frame],
phiω = 5 [deg/frame] and 

psiω = 0. 
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Fig.11. Outdoor environment: estimation errors with different camera 
translation. Processing time is 0.1 [sec/frame] and angular velocities 

thetaω = 10 [deg/frame],
phiω = 5 [deg/frame] and 

psiω = 0. 

 
Fig. 10. Outdoor scene. 
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Fig. 7. Indoor environment: estimation errors with different camera 

translation. Processing time is 0.95 [sec/frame] and angular velocities 

are 
thetaω = 10 [deg/frame],

phiω = 5 [deg/frame] and 
psiω = 0. 
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Fig. 8. Indoor environment: estimation errors with different angular 
velocities. Processing time is 0.1[sec/frame] and translation is 15[cm]. 
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The details of the comparison are described in Fig. 11, Fig. 

12 and Fig. 13. Since the environment was large, the inliers 

were very far from the camera, and as a result the overall 

results of the three experimental factors for our proposed 

method were much better than our experiments in indoor 

environments. Meanwhile the STDRANSAC shows results 

similar to those of the indoor experiments, which were worse 

than those of the proposed method. The translation of the 

camera within a range of 30[cm] did not cause any 

significant contamination to the proposed method, while it 

did to the STDRANSAC. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed an approach to rotation 

estimation using RANSAC and an omni-directional 

compound sensor. Using the compound sensor, a number of 

outliers are removed, which significantly reduces the 

computational cost and improves the robustness of the 

estimation. 

Experiments were carried out to validate our approach. 

Our proposed method was found to produce reasonable 

accuracy and robustness in real-time with various 

environments, and especially with large environments such 

as outdoor environments. The accuracy of the proposed 

method does not depend much on the rotation velocity but 

rather on the translation of the camera. However, when the 

translation is much smaller compared to the size of the 

environment, the accuracy is invariant. 

The current research on rotation estimation has shown that 

our division of near and far distant features could effectively 

improve the performance of rotation estimation. Additional 

work with translation using near features is currently being 

conducted, and we hope to report those results in the near 

future. 
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Fig.13. Outdoor environment: estimation errors with different processing 

time. Translation is 30[cm] and angular velocities are
thetaω = 10 

[deg/frame],
phiω = 5 [deg/frame] and 

psiω = 0. 
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Fig.12. Outdoor environment: estimation errors with different angular 
velocities. Processing time is 0.1[sec/frame] and translation is 15[cm]. 
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