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Abstract

This paper tackles a challenging problem of iner-

tial sensor-based recognition for similar walking ac-

tion classes. We solve two remaining problems of ex-

isting methods in the case of walking actions: action

signal segmentation and recognition of similar action

classes. First, to robustly segment the walking action

under drastic changes such as speed, intensity, or style,

we rely on the likelihood of heel strike that is com-

puted employing a scale-space technique. Second, to

improve the classification performance with similar ac-

tion classes, we incorporate the inter-class relationship.

In experiments, the proposed algorithms were positively

validated with 97 subjects and five similar walking ac-

tion classes, namely walking on flat ground, up/down

stairs, and up/down a slope.

1 Introduction

Wearable and portable electronic devices are increas-

ingly becoming useful to human life. They have rapidly

become more and more sophisticated such that they in-

teract or communicate with their users and understand

the actions, needs, and health conditions of their users.

With advances in micro-sensor and wireless commu-

nication technology, inertial sensors are now low-cost,

lower-power, accurate, small, and effective. They are

increasingly being embedded in such devices as smart

phones. Therefore, many researchers have recently

studied human assistance employing a wearable inertial

sensor. Recognizing user actions through the inertial

sensor is an important task for such assistance.

There have been a number of research papers on ac-

tion recognition using wearable inertial sensors, which

mainly differ in signal segmentation, feature extraction

from a segment, and recognition technique for selected

features. There are excellent reviews and comparisons
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of existing methods [1, 9].

For signal segmentation for feature extraction, a

fixed-size sliding window has frequently been used

[7, 8, 4, 12]. However, fixed-size window sometimes

introduces errors since it may wrongly segment an ac-

tion and cannot deal with temporal variation of an ac-

tion due to speed/user difference. The dynamic window

[6] was proposed to solve the problem of the fixed-size

window. This method relies on signal events detected

according to a fixed threshold of the signal intensity to

control the size and location of the window. Therefore,

it faces a similar problem as for the fixed-size window

because the signal intensity of an action can also vary.

Moreover, in the field of gait-based user recognition,

a number of algorithms that detect the walking step or

cycle [10] are regarded also as dynamic window-based

methods. However, they are not effective for a sequence

of varying walking action. Therefore, existing methods

have the problem of signal segmentation. Although dy-

namic time warping (DTW) can solve the problem of

temporal variation, segmenting the signal for the action

templates (or motifs) remains an unsolved problem [5].

There are various approaches for action recognition

[8, 3, 12, 5]. However, existing methods have usually

been evaluated for relatively different action classes,

and hence, there is no guarantee that they work well for

very similar action classes. For such cases, the inter-

class difference may be overwhelmed by the intra-class

difference so that recognition is difficult.

In this paper, we tackle the above two problems in

the case of recognizing walking action. First, the walk-

ing signal is segmented into steps employing a scale-

space technique. The proposed step detection method

can adaptively work with a large amount of variation

even if the subject changes the walking speed or style.

Second, we propose an algorithm to deal with similar

action classes. When action classes are similar, the rela-

tionship between one class and all others is more likely

to have stable and distinguished patterns as in the case

of walking action. We use these relationship patterns to

recognize walking action.
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Figure 1. A real acceleration signal example of a

walking cycle (a) and its feature vector (b).
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(a)  Raw 3D acceleration signal

Left/Right motion Up/Down motion Forward/Backward motion

Level walk upstairs Level walk Downslope

(b)  Detected feature locations for different smoothed signals
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Figure 2. Example of the proposed step detection

and segmentation algorithm. All graphs have the same

temporal axis, and (a) and (b) use the same legends.

2 Proposed Method

A subject is assumed to walk on varying ground

with a three dimensional (3D) accelerometer attached

to his/her back waist. From a sequence of the captured

signal, the segmentation of steps is performed automat-

ically, and walking action samples are then made for

two continuous steps. To recognize each test sample,

we first compute a feature vector that describes the rela-

tionship to all of the walking action classes in a collec-

tion of action templates. This vector is then classified

using a classifier such as the k-nearest neighbor (kNN)

or support vector machine (SVM). In the following sec-

tion, we briefly describe the ideas for the proposed al-

gorithms.

2.1 Robust Step Detection

It is well known that a walking cycle consists of a

stance phase and a swing phase [11]. For normal hu-

man walk, when a heel hits the ground at the start of

the stance phase, the other foot remains on the ground.

The impulse of the collision force is transmitted from

the foot to the body center through the leg, which re-

sults in quick motion of the body center. Therefore, a

3D accelerometer attached at the back waist can capture

a strong signal at the moment of the heel strike (HST).

Within a walking cycle, we can observe strong signal

vibration at two such moments for the two legs, as illus-

trated in Fig. 1(a). We use this phenomenon to extract

the signal segment of a step and a walking cycle relying

on the computation of the likelihood of HST.

To compute the likelihood of HST only from the 3D

signal, we rely on two observations to compute the joint

likelihood that describes an appearance of an HST:

• Obsv1: The density of local feature points (e.g.,

peaks and valleys) in all channels is relatively high,

• Obsv2: Energy of the acceleration signal is rela-

tively high.

Based on Obsv1, we use locations of local peaks and

valleys for each channel of the signal as the signal fea-

tures. To robustly compute the feature density against

temporal variation and noise, we employ a scale-space

technique. First, the 3D signal sequence, illustrated

in Fig. 2(a), is smoothed by several Gaussian filters

with different smoothness scales. We then detect all

the signal features for each channel and each smooth-

ness scale, as illustrated in Fig. 2(b). Finally, from all

the detection results, the probability density function of

features p
f
t at time t is computed by kernel density esti-

mation, Fig. 2(c).

Based on Obsv2, we regard the energy of the accel-

eration signal as another likelihood of HST. Energy et
at time t is computed as the magnitude of the 3D signal

st: et = ||st||. For robustness against temporal vari-

ation and noise, we compute several smoothed signal

energies êwl,t with smoothing parameter wl of smooth-

ness level l, Fig. 2(d). The likelihood of HST based on

signal energy is: pet = ρ
∏

l êwl,t, where ρ is a scale

factor.

Considering both Obsv1 and Obsv2, the likelihood

of HST pt is computed as the product of two likelihoods

p
f
t and pet :

pt = p
f
t p

e
t . (1)

Because the HST should contain meaningful informa-

tion for classifying actions, it would be better to seg-

ment the signal into steps so that the HSTs are located

at the center of the segmented steps rather than at the

segmentation boundaries. The local peaks of pt, illus-

trated by dashed green lines in Fig. 2(e), are considered

as approximations for the HST locations. A minimum

local valley between two adjacent local peaks is used as

3812



the segmentation location. Action steps are then seg-

mented by all these local valleys, as illustrated by black

lines in Fig. 2(e).

Action samples for recognition are constructed for

two consecutive steps.

2.2 Recognition using Inter-class Relationship

A set of action templates G is constructed using ac-

tion samples generated by training sequences for vari-

ous subjects: G = {Gi|i = 1 . . . n}, where Gi is a col-

lection of action class i and n is the number of classes.

In the recognition of a test sample p, the proposed

recognition method uses the inter-class relationship pat-

terns to improve the recognition performance. The

method involves two steps: representation and recog-

nition.

In the first step, a feature vector vp = [v1, . . . , vn]
T ,

describing all the intra-class and inter-class relation-

ships, is computed for a test sample p, where vi is the

similarity that p belongs to class i and
∑n

i=1(vi)
2 = 1.

Obviously, we can obtain the classification result at this

point by simply selecting the class with highest similar-

ity. An example is shown in Fig. 1(b) for vp, where

the test sample is classified as action 1 since v1 is the

largest. However, we continue to use vp for further

classification to improve the result in the case of walk-

ing actions. In our algorithm, action samples are sim-

ply raw 3D signals, different in size, and the distance

d(p, g) between p and each g ∈ Gi is computed:

d(p, g) = DTW (p, g), (2)

where DTW (.) is a DTW function that returns the dis-

tance between two sequences. The distance D(p,Gi)
between p and template action class Gi is computed as

the average distance:

D(p,Gi) =
1

k

∑

g∈kNN(p,Gi)

d(p, g), (3)

where kNN(p,Gi) is a function that returns a set of k

nearest neighbors of p in Gi.

The feature vector vp = [v1, . . . , vn]
T is then con-

verted from [D(p,G1), . . . , D(p,Gn)]
T

. Each tem-

plate sample g ∈ Gi is also used as an input in the first

step to compute the output vg in a leave-one-out man-

ner. In other words, vg is computed when it is excluded

from G.

Once a training data set of n-dimensional vectors vg

is prepared, a classifier such as SVM or kNN is con-

structed, and the action associated with feature vector

vp of input test sample p is then classified.

A flowchart of the proposed two-step recognition al-

gorithm is presented in the Fig. 3.
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Figure 3. The proposed recognition algorithm con-

sists of two steps: representation and recognition.

(a) Raw samples of walking cycles on 

the up/down axis of 5 classes
(b) Distributions of feature 

vectors of 5 classes
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Figure 4. Walking action samples of training data set

(a) and distributions of their feature vectors (b).

3 Experiments

In our experiments, an accelerometer was attached

to the back waist of a subject and captured data at a

sampling period of 10 ms. Each subject was asked to

walk across straight flat ground, up stairs, down stairs,

up a slope, and down a slope freely in the same environ-

ment. Ground truth action labels were assigned man-

ually by synchronizing with simultaneously captured

video. Meanwhile, step detection was executed auto-

matically and walking cycles were segmented for action

samples. We collected data from 97 subjects aged 15 to

70 years. The subjects were separated randomly into 53

training and 44 test subjects.

An example of data segmentation for action samples

is shown in Fig. 4(a) for five action classes of the whole

training set. In Fig. 4(b), the distribution of feature

vectors for each action class is described by a mean

vector and standard deviations that are illustrated by

a bar graph with error bars, respectively. We see that

the walking-cycle segmentation worked well and the

inter-class relationships have clear and relatively distin-

guished patterns for each action class, which strongly

encourages the use of the proposed recognition algo-

rithm.

We compared the proposed method with a bag-of-

features method, which uses fixed-size window for sig-
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nal segmentation [12], denoted BOF2012. Several pa-

rameters of BOF2012 were tuned: primitive size, sam-

ple size, and vocabulary size (the number of primitives).

The maximum sample size was limited to 200 ms to

compare with the proposed method, which is assumed

to be the upper limit for a normal human walking cy-

cle. We carried out an exhaustive search to find the

best parameters for BOF2012: a primitive size of 5

ms, vocabulary size of 14, and sample size of 200 ms.

We also evaluated the result at the early stage of the

proposed recognition algorithm before using the inter-

class relationship by selecting the highest similarity for

each test sample, which is denoted NO CR. In the case

of using the proposed feature vector, we compared the

results of two classifiers, kNN and SVM [2], which

are respectively denoted PROPOSED KNN and PRO-

POSED SVM. For the SVM, the option of multiple bi-

nary classifiers with a linear kernel was selected. The

accuracies for all the action classes and their average

are shown in Tab. 1 for each method.

From the results in Tab. 1, we see that walking

up/down a slope is the most difficult action to be rec-

ognized. The reason is that walking up/down a slope is

easily confused with walking on flat ground or up/down

stairs, meanwhile walking on flat ground and walking

up/down stairs are quite distinguished. Compared with

BOF2012, the proposed method with the proposed step

detection algorithm is overall effective even without us-

ing inter-class relationship information. The reason is

that BOF2012 uses a fixed-size window for signal seg-

mentation, it cannot segment an action accurately cross-

ing different speeds and subjects, while the proposed

step detection can. Moreover, the proposed method

does not absolutely require user-defined parameters to

work. From the results of PROPOSED SVM and PRO-

POSED KNN compared with that of NO CR, we see

that inter-class relationship information is useful and

improves the recognition performance.

4 Conclusion

We proposed a recognition method for similar walk-

ing actions using an accelerometer. We proposed a ro-

bust step detection method to segment a signal into ac-

tion samples. The method works well even if the ac-

Table 1. Accuracy comparison(%)

Method 
Level 
walk 

Up 
stairs 

Down 
stairs 

Up 
slope 

Down 
slope 

Average 

NO_CR 96.9  93.2  85.4  70.8  80.6  85.4 

PROPOSED_KNN 94.0  95.5  95.1  71.7  85.8  88.4 

PROPOSED_SVM 97.0  92.9  95.1  78.3  88.8  90.4 

BOF2012 90.3  95.2  90.2  47.5  69.0  78.5 

tion drastically varies in speed or intensity. We also

proposed a recognition method using a feature vector

composed of similarities to all action classes to improve

the performance compared with the case of using a sin-

gle similarity for a target action class. Experiments for

five walking action classes (walking on flat ground, up

stairs, down stairs, up a slope, and down a slope) posi-

tively validated the proposed method.
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