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Abstract

This paper describes adaptation to gradual changes of
walking directions for gait identification. First, we propose
a method of body tilt correction due to changes of walking
directions when constructing a spatio-temporal gait silhou-
ette volume. Next, we propose a view transformation model
in the frequency domain to match gait features of different
walking directions. Finally, experiments of gait identifica-
tion for a circular path demonstrate the effectiveness of the
proposed method.

1 Introduction
There is a growing necessity in modern society for iden-

tification of individuals in many situations, such as from
surveillance systems and for access control. For personal
identification, many biometrics-based authentication meth-
ods are proposed using a wide variety of cues; fingerprint,
hand vein, iris, face, and gait. Among these, gait identi-
fication has recently gained considerable attention because
gait is a promising cue for surveillance systems to ascertain
identity at a distance from a camera.

Many approaches of gait identification were proposed
[1][2][7][5][4]. Generally, a gait motion is observed the
best in a fronto-parallel view, hence most of the approaches
assume the gait is observed in near fronto-parallel views.
In addition, many approaches treated sequences with con-
stant walking directions. However, these assumptions are
unreasonable in actual surveillance scenarios such as case
of walking on a curved road.

Therefore, we tackle with adaptation to gradual changes
of walking directions for gait identification. First, we intro-
duce a view transformation model (VTM) in the frequency-
domain to match gait features of different walking direc-
tions. In the proposed method, once we obtain a VTM us-
ing a training set, made up of features of multiple subjects
from multiple views, we can make features of a new subject
taken from the multiple view directions by using features of
the subject from a few views.

In addition, gradual changes of walking directions in
a sequence induce other difficulties such as a body tilt
by a centrifugal force. To overcome this, we introduce a
mechanics-based body tilt correction using an estimated tra-

jectory of a walking person.

2 Construction of a gait silhouette volume
As the first step in gait identification, we describe con-

struction of a gait silhouette volume (GSV) in this section.
Moreover, we present a method of correcting body tilts in-
duced by gradual changes of walking directions.
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First, gait silhouettes are simply extracted by back-
ground subtraction. Here, for simplicity we assume only
one person exists in the image, thus we keep only the largest
connected silhouette region as the person.

Next, the top, the bottom, and the horizontal center of the
regions for each frame are obtained. The horizontal center is
chosen as the median of horizontal positions in the region.
Then, a moving average filter of 30 frames is applied to
those positions. We simply obtain the position ����� of
the person in a camera coordinate (see Fig. 1) based on the
object-to-image height ratio in the same way as [3],

� � ������� � � ������� (1)

where � and � are the heights of the person in the cam-
era coordinate and in the image plane respectively, and � is
the focal length. We assume that � is known for each per-
son and that � is obtained by camera calibration in advance.
An example of an estimated trajectory for a circular path is
shown in Fig. 2.
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When the person gradually changes his/her walking di-
rections, he/she receives not only the gravitational force
���� ��� but also the centrifugal force �� , where � is
the mass of the person and � is the gravitational accelera-
tion. Thus, these forces sum up to the pseudo gravitational

Figure 1. Definition of camera coordinate and
walking direction 	 at top view



Figure 2. Example of estimated trajectory

Figure 3. Estimated speed and curvature

force ��

� and make his/her body tilt into the same direc-
tion as ��� (see Fig. 4(a)) to keep his/her balance. When
matching gait sequences with and without walking direc-
tion changes in the same condition, we should correct these
body tilts.

First, we try to obtain body tilt angle 
. When the gait
trajectory is assumed to consists of sets of arc trajectories,
the centrifugal force �� is

��� � � �������� (2)

where � is the walking velocity, and � is the signed curva-
ture radius (positive for counterclockwise direction), which
are simply obtained by the walking trajectories. Estimated
walking speed and curvature radius for the circular path in
Fig. 2 are shown in Fig. 3. Thus, the body tilt angle 
 is


 � ��������� ������� � ����������������� (3)

Figure 5 shows estimated walking direction 	 and body tilt

 for the circular path in Fig. 2. Note that the walking
direction 	 is defined as Fig. 1 and easily obtained by the
walking velocity �.

Next, we modify the silhouette images based on the ob-
tained body tilt angle 
 and walking direction 	. In the im-
age plane, the horizontal shift of the top position after body
tilt is obtained as � ���
 �	� 	 by assuming weak perspec-
tive projection (see Fig. 4(b)). Then an apparent height, that
is, the distance between the bottom and the top after tilt is
obtained as �

�
�	�� 

 ���� 
 �	�� 	 in the same way. In

(a) body tilt in
coronal plane

(b) shift of the top position in image
plane

Figure 4. Body tilt by centrifugal force

Figure 5. Estimated walking direction and
body tilt for circular path

(a) time slice images w/o correction (�-� plane, every 20 frames)

(b) time slice images w/ correction (�-� plane, every 20 frames)

(c) horizontal slice image (�-� plane at � = 27)

(d) vertical slice image (�-� plane at � = 6)
Figure 6. An example of GSV

order to transform so that the top after tilt can return to that
before tilt, the region is rotated by 
 � and is scaled by 
� for
the vertical direction, where
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 �	� 	� (4)
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The last step is scaling and registration of the extracted

silhouette images. The silhouette images are scaled so that
the height � can be just 30 pixels, and so that the aspect ra-
tio of each region can be kept. Finally, we produce a 20 �
30 pixel-sized image in which the horizontal median corre-
sponds to the horizontal center of the image.

We show an example of a constructed GSV in Fig. 6 as
time slice (�-� plane) without and with body tilt correction,
horizontal slice (�-� plane), and vertical slice (�-� plane)
images. We can see that counterclockwise body tilts in Fig.
6(a) are corrected in Fig. 6(b). Moreover we can see gait
periodicity from Fig. 6(c), (d).

3 Matching of a GSV
In this section, we present extraction of frequency-

domain features normalized with gait period and matching
measure between the features.
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First, gait period����� is detected by the normalized au-

tocorrelation of a GSV for the temporal axis as
����� � ��
 ���
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���� (6)
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where ���� is the autocorrelation for the � frame shift,
���� �� �� is the silhouette value at position ��� �� at the �th



Figure 7. Extracted features for every 15 de-
gree view direction for some subjects

frame, � ��� is defined as ������
�����, and �����
 is the
number of total frames in the sequence. We set ���� � ��
and���	 � �� empirically as the natural gait period.
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First, we pick up the subsequences ������ �

�� �� ���� ����� for every����� frames from a total sequence
�. Note that the frame range of the �th subsequence � �

is �������� �� 
 ������� � ��. Then the Discrete Fourier
Transformation (DFT) for the temporal axis is applied for
each subsequence, and amplitude spectra normalized with
the gait period are subsequently calculated as

����� �� �� �
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where �� is a base angular frequency for the gait period
�����, ����� �� �� is the DFT of GSV for �-times the
frequency, and ����� �� �� is an amplitude spectrum for
����� �� ��. In this paper, ����� �� ���� � �� � � � � �� is
used as the gait feature and its dimension �� sums up to
��� ��� � � ����.

Figure 7 shows extracted amplitude spectra of straight-
walk sequences for various directions. Note that the unit of
the walking direction is a degree in this paper. Amplitude
spectra vary widely among directions for each subject, and
to some extent they also have individual variations for each
direction. Moreover, we can see that all the subjects have
similar common tendencies for amplitude spectra variations
across direction changes. This fact indicates a real possibil-
ity that the variations across direction changes are expressed
with the VTM independently of individual variations (see
sec. 4).

��� ��	��
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We first define a matching measure between two sub-

sequences. Let ����� be a �� dimensional feature vector
composed of elements of the amplitude spectra � ���� �� ��
for subsequence ��. The matching measure �������� is
simply chosen as the Euclidean distance:

�������� � �������� �������� (10)
Next, we define a matching measure between two total

sequences. Let �� and �� be total sequences for probe
and gallery, respectively, and let ������� � �� �� � � �� and
������� � �� �� � � �� be their subsequences, respectively.
Gallery subsequences ����� have variations in general and

probe subsequences ����� may contain outliers. A mea-
sure candidate�������� to cope with them is the median
value of the minimum distances of each probe subsequence
��� and gallery subsequences ������� � �� �� � � ��:

�������� � ������� ����
�
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4 VTM in the frequency domain
We briefly describe the formulation of a VTM in a way

similar to that in [8]. Note that we apply the model to
the frequency-domain feature extracted from gait image se-
quences while that in [8] directly applied it to a static image.

We first quantize view (walking) directions into � di-
rections. Let ���� be a �� dimensional feature vector for
the �th view direction of the �th subject. Supposing that
the feature vectors for� view directions of� subjects are
obtained as a training set, we can construct a matrix whose
row indicates view direction changes and whose column in-
dicates each subject; and so can decompose it by Singular
Value Decomposition (SVD) as�
��
���� � � � ����
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where is the����� orthogonal matrix, " is the��
� orthogonal matrix, ! is the � � � diagonal matrix
composed of singular values, #�� is the���� submatrix
of  !, and �� is the� dimensional column vector.

The vector �� is an intrinsic feature vector of the �th
subject and is independent of view directions. The subma-
trix #�� is a projection matrix from the intrinsic vector � to
the feature vector for view direction 	�, and is common for
all subjects, that is, it is independent of the subject. Thus,
the feature vector ���� for the view direction 	� of the �th
subject is represented as

���� � #���
�� (13)

Then, feature vector transformation from view direction
	� to 	� is easily obtained as

����� � #��#
�
�	
���	 � (14)

where #�
�	

is the pseudo inverse matrix of #�	 . In practical
use, transformation from one view direction may be insuf-
ficient because motions orthogonal to the image plane are
degenerated in the silhouette image. For example, it is dif-
ficult for even us humans to estimate a feature ��	� from ���
(see Fig. 7 for example). Therefore, when features for more
than one view direction (let them be 	����� � � � � 	����) are
obtained, we can more precisely transform a feature for the
view direction 	� as

����� � #��
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In the above formulation, there are no constraints for
view transformation, but each body point such as head,
hands, and knees appears at the same height, respectively,
for all view directions because of the height scaling as de-
scribed in sec. 2. Therefore, we constrain transformation
from a height �� to another height ����� ��� and define the
above transformation separately at each height � �.



Figure 8. Verification rate for each direction

5 Experiments

In this section, experiments of gait identification for
straight-walk and circular-walk sequences are described.

���  �	���	�

We use a total of 744 straight-walk sequences from 20
subjects and 15 sequences of 3 rounds of approximately
circular-walk sequences from 15 subjects. The straight-
walk sequences are quantized at every 15 directions, and
then the number � of directions is 24. The training set for
the VTM is composed of 480 straight-walk sequences of 20
subjects from 24 view directions. The gallery sets from 24
directions for each subject are constructed by transforming
straight-walk sequences from 3 directions: 0, 90, and 180
degrees based on the trained VTM.

Probe sets (test sets) are composed of the other straight-
walk sequences and the circular-walk sequences. For the
circular-walk sequences, we extracted two types of fea-
tures with and without body tilt correction. In the follow-
ing subsections, for convenience, we denote probe sets of
the straight-walk sequence, and the circular-walk sequences
with and without body tilt correction as ”straight”, ”circular
w/ BTC”, and ”circular w/o BTC”, respectively.
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In matching process for circular-walk sequences, we cal-
culate an average walking direction �	 for each subsequence,
and match to galleries whose direction is �	 or ��	 � ��� de-
grees.

We evaluate a performance by a verification rate at 10%
false positive rate in a Receiver Operating Characteristics
(ROC) [6] curve. We first show the verification rate when
each subsequence including one gait period is matched sep-
arately for each walking direction in Fig. 8. In this time,
directions of ”straight” are limited for every 45 degrees.
We can see that body tilt correction makes the performance
better, especially for near frontal-view subsequences which
affected severely by body tilt rotation in the image. In addi-
tion, the performance of ”circular w/ BTC” is competitive
to that of ”straight”.

Next, we show average verification rates when multiple
periods of subsequences are used to matching in Fig. 9. As
a result, the performance improves as the number of peri-
ods increase, and the performance of ”circular w/ BTC” is
always superior to that of ”circular w/o BTC”. Moreover
the performance of ”circular w/ BTC” is competitive to that
of ”straight” when the number of periods is more than 3.

Figure 9. Verification rate for each #period

6 Conclusion and future works
In this paper, we proposed a method of adaptation to

gradual changes of walking directions for gait identifica-
tion. First, we proposed a body tilt correction based on an
estimated centrifugal force when constructing a gait silhou-
ette volume (GSV). Second, we introduced a view transfor-
mation model (VTM) in the frequency domain to transform
the gallery features into the same walking direction as that
of an probe feature. Finally, we demonstrated the effective-
ness of the proposed method by experiments of gait identi-
fication for straight-walk and circular-walk sequences.

Future works are as follows.
� Adaptation to appearance changes due to camera tilt
� Experiments for a general database, such as the Hu-

manID Gait Challenge Problem Datasets [7].
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