
Blind Watermarking for 3-D Printed Objects using
Surface Norm Distribution

Arnaud Delmotte, Kenichiro Tanaka, Hiroyuki Kubo, Takuya Funatomi and Yasuhiro Mukaigawa
Nara Institute of Science and Technology

8916–5 Takayama-cho, Ikoma, Nara 630–0192 Japan
Email: {arnaud.delmotte.zr3,ktanaka,hkubo,funatomi,mukaigawa}@is.naist.jp

Abstract—We present a new blind watermarking algorithm for
3d printed objects that has applications for copyright protection,
proof of authenticity, object identification, and traitor tracing.
It allows to embed a few bits of data in a 3d printed object
and retrieve it by 3d scanning without requiring the original
mesh. While prior methods embed the watermark in the vertex
of the object, our method embeds in the histogram of shape to
obtain the robustness for resampling and can thus work with
any 3d printer and scanner. In addition, our method avoids the
shape degradation by subdividing the bins of the histogram, and
increases the robustness of bin localization by introducing bin
margins. In the experiment, our method has been successfully
tested with print simulation and with real print-scan.

Index Terms—3D printing, blind watermarking

I. INTRODUCTION

3D printing is a technology that expanded a lot recently,
with affordable and reliable printers from a few hundred dol-
lars to a few thousand dollars, with more and more materials
supported such as plastic, metal, concrete, ceramic, or even
food. 3D scanning technology becomes also more and more
affordable, with photometric reconstruction, or with depth
cameras. Due to digital right concerns for the 3d objects,
3d watermarking technology plays an important role. For
example, embedding the author ID gives a proof of owner-
ship in case someone else tries to distribute it as his own.
Another example, called traitor tracing, consist of embedding
a different ID in each object we sell, allowing to identify the
user that illegally distributed the model. A user could do a
3d scan of the object and upload the reconstructed mesh, or
directly distribute a copy of the physical object, and we would
have interest to be able to prove our ownership or to identify
the leak source.

A lot of research has been done on 3D mesh watermarking,
that embeds an ID to the 3D mesh data. Most of the mesh
watermarking methods rely on the topology of the mesh
and are not applicable to 3d print-scan context because the
topology is lost during the printing and scanning. Tetrahedral
volume ratio (TVR) [1] is an example of this kind of methods,
it relies on the vertex connectivity which will be different
after the print-scan. A way to overcome this topology loss
is to use the original mesh and align it with the watermarked
mesh. Yamazaki et al. [2] have developed a spectral-domain
watermarking for 3d printed objects that requires to align
and compare with the original mesh. For copyright context,

Fig. 1: 3d watermarking resisting to the print-scan process

blind watermarking1 is generally preferred to avoid the risk
of theft [3]. In this paper, we focus on blind watermarking
resisting to the print-scan process as illustrated in Fig. 1.

Recently, Li et al. [4] have developed a method to embed
a tag similar to a QR code below the surface of an object.
The main limitation is that the surface needs to be flat or can
be just slightly curved, which constrains the meshes on which
it is applicable. Up to our knowledge, only one method [5]
has been published yet for blind watermarking resisting to the
print-scan process. It works by analyzing the layering artifacts
caused by Fused Deposition Modeling (FDM) printing to find
the printing axis, reorient the mesh and uses spread-spectrum
watermark on a set of slices. The main limitation is that it
doesn’t work without the layering artifacts, which are not
detectable with higher quality printer, other technology such
as curving, or if the scanner has a lower resolution than the
layer height. This also does not allow to reprint the model
with a different orientation than the watermark.

In this paper, we propose a new blind watermarking algo-
rithm to be applicable to the print-scan process.Our method
is inspired by the vertex norm watermarking method for 3d
mesh [6], [7]. Compared to previous work, the novelty of our
approach is that we have less constraints to use it. Because
it is rotation invariant, finding the original orientation is not
necessary and thus we don’t rely on the printing axis and the
layering artifacts, meaning that we can use it on a printer with
higher quality or with a different technology than FDM, and
also that we can reprint the object from another orientation
and still retrieve the watermark. .

II. ALGORITHM DESCRIPTION

Our method is based upon the vertex norms watermarking
algorithm ([6] and first method from [7]), but we did some
improvements to make it suitable for 3d print-scan scenario.
Vertex norm watermarking algorithm has been developed for

1Blind watermarking is a watermarking method that does not use any data
from the original media

2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and
2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR)

978-1-5386-5163-6/18/$31.00 ©2018 IEEE
282

Fig. 2: Watermark extraction algorithm

Fig. 3: Watermark embedding algorithm

digital data with mesh structure, not for print-scan scenario. It
has great advantage due to the invariant to translation, rotation,
rescaling and vertex connectivity, but it can also have problems
when resampling is applied, which is the case in 3d print-scan.
In this section, we first quickly explain the original method,
then explain our contributions to make it suitable for 3d print-
scan. Figures 2 and 3 give an overview of the watermarking
extraction and embedding process, and sec. III describes the
implementation details.

A. Vertex Norms Watermarking [6], [7]

Each vertex can be represented in spherical coordinates
(pi, θi, φi) where pi is the norm of the vertex, which is the
distance to the center, and (θi, φi) are the direction angles.
By taking all the vertex norms, we can make an histogram of
the norm distribution as shown in Fig. 4a. The vertical lines
represent the separations between the different bins. Inside
each bin, we embed one bit of information by modifying
the norm distribution such that the mean of the distribution
is respectively on the left or the right of the center of the
bin, to encode a 0 or 1, as shown in Fig. 5. To modify
the norm distribution, each vertex norm pi will be increased
or decreased, without exceeding the bounds of their bin.
The directions (θi, φi) stay unchanged. Figure 4b shows an
example of histogram of watermarked object.

B. Increasing robustness against resampling

The original method uses the vertices to encode the water-
mark. The print-scan process produces a complete resampling
of the mesh, and may cause decoding errors because the vertex
positions in which watermark has been encoded are lost, and
new vertices are generated. Using a uniform sampling with
high vertex density could reduce the effect of the resampling
because the newly generated vertex would be close to the
original ones and in same density, but the watermarking

process does not preserve this uniformity so it would still be
a problem.

In order to avoid the resampling problem, we compute a
probability density function of the surface norm, which is
the distance between the surface and the center of gravity,
over the complete surface instead of a set of vertex. This
corresponds to a continuous approach instead of a discrete
one, and is not sensitive to resampling if the shape is not
degraded. For the computation of the mean of each bin, each
triangle is subdivided such that each sub-triangle is included
only in one bin, then we take the mean of the norm of the
three vertices of each triangle inside a bin, multiplied by the
area of these triangles, and we divide by the total area of all
the triangles inside a bin. Note that this is an approximation
of the real value, but if the triangle is far enough from
the center of gravity relatively to its size, the error is very
small. Additionally, for the watermark encoding, instead of
modifying a vertex position by changing its norm, we move
it along the normal of the surface. This prevent the vertex to
move along the tangent of the surface, which would have no
effect after resampling, and would have a risk of producing
invalid mesh, as shown in Fig. 7.

C. Combination of multiple non-consecutive bins

Because the bin segmentation is done regularly by distance
to the center of gravity, some bins are filled by a large surface
of the model, others by only a small surface. For example, in
Fig. 2.b, the surface of a bin on the ear of the bunny is much
smaller than a bin on the central part of the body. Fig. 4a
shows that the bin 5,6,7 contain much less surface than the
other bins and are thus more sensitive to local printing or
scanning errors. Additionally, the norm distribution inside a
bin is not always uniform, it is especially visible in Fig. 4a in
bin 3. If the bin would be originally biased likely to have a
bit, and the bit to encode is the opposite value, it requires a
large modification in the distribution. To get a more uniform
surface distribution, reducing the impact of regions difficult
to watermark where is parallel to the vector to the center, we
subdivide each bin and combine equally spaced sub-bins to
form a new bin. Figure 8 illustrates this combination, we can
observe that the resulting histogram is more uniform than the
original one.

D. Increasing robustness of bin localization

The limits of each bin are calculated based on the center
position, minimal and maximal distance to the center. If any of
these values is slightly changed, it has a big impact on all the
extraction process so we must try to make it robust to errors.

1) Center preservation : As explained in [8], if the center
position has been changed, the norms will be modified too
and the watermark will not be extracted correctly. Because
the mean of the vertices is not resistant to resampling, we use
a moment-based center estimation that has been proven to be
more resistant in 3d printing context [5].

c = (x, y, z) =
(M100,M010,M001)

M000
, (1)

283

(a) original distribution (b) after the watermarking process (c) after the print simulation

Fig. 4: Distribution of vertex norms from the bunny model, each vertical line represent the border of a bin.

Fig. 5: Encoding 1 bit of data by shifting the mean to the left
or right side of the bin.

Fig. 6: Example of watermarking result for 2 bins. Encoding
opposite successive bits is easier than same bits because it
avoid a huge gap at the border between the bits

where Mpqr denotes the p, q, r-th order volume moment of
the mesh. The watermarking process has generally very small
effect on the center position because the shape is only slightly
changed, but for safety, we include the conservation of the
center in the list of parameters to optimize.

2) Preservation of the minimal and maximal norm : If we
modify the surface around the minimal or maximal norm, all
the bins will be shifted and it will result in decoding errors.
We keep a border distance around the minimal and maximal
norm where we make no modifications on the surface. In case

Fig. 7: Example of vertex transformation during the wa-
termarking process. Vertices are modified along the vector
from the center. When the vector is nearly parallel to the
surface (red arrows), the shape will not be affected by the
vertex displacements, and the modification will be lost after
remeshing. Blue circles are the border of bins, red point is the
center and black points are the vertices

the surface around the minimal or maximal norm corresponds
to a spike or any very thin volume in the model, it may be
difficult to print or scan and produce errors. We can increase
the resistance by slightly rounding the border.

3) Margin between the bins : As shown in Fig. 6, vertices
on the border of two bins get a huge change of density
if the two bins encode the same bit value. New vertices
will be generated in this gap after the resampling, reducing
the strength of the watermark. For example, on Fig. 4b, the
transition between the bin 2 and 3 is a bin maximum to bin
minimum transition. After the printing simulation, on Fig. 4c,
this gap has been partially filled, reversing the value of bin 3.
Additionally, a small shift of the bin borders may also have
a really strong effect on the mean. To reduce this problem,
we included a small margin in which surface is not used
for computation of the mean of the bin. This allows a softer

284

Fig. 8: Fusion of multiple non-consecutive bins to get a more
uniform histogram

change of density and reduce the effect of misalignments.

III. WATERMARK EMBEDDING AND EXTRACTION
ALGORITHM IMPLEMENTATION

We will now describe more precisely the embedding and
extraction algorithm. We first describe the input parameters for
the watermarking, we need to use the same set of parameters
for embedding and extracting the watermark. Then we describe
the extraction algorithm and finally the embedding algorithm.

A. Algorithm parameters

Here are the parameters of the algorithm:
minNorm minimal norm of the mesh
maxNorm maximal norm of the mesh
N number of watermark bits
Nd number of sub-bins per bits (see sec. II-C)
m ratio of margin in the bin (generally set to

5%, see sec. II-D3)
b number of sub-bins that we keep constant

around minNorm and maxNorm (generally
set to 1, see sec. II-D2)

#subBin number of sub-bins
subBinSize size of a sub-bin
minBound [j] lower bound of the sub-bin j
maxBound [j] upper bound of the sub-bin j
S[j] total area of the triangles inside sub-bin j
µ[j] mean norm inside sub-bin j
S′[i] total area of the triangles inside bin i
µ′[i] mean norm inside bin i
w[i] ith bit of the watermark signal
strength[i] strength of the ith bit in the range [-1,1],

negative value if the bit is wrong

B. Watermark extraction algorithm

As shown in Fig. 2, the extraction algorithm consists of
computing the value in each sub-bin, then combine the sub-

bins together and computing the mean of each bin. We then
output 1 if the mean is greater than 0.5, or 0 otherwise.

More concretely, we begin by centering the model with the
moment method described in sec. II-D1. Then we subdivide
each triangle such that it is fully included in a single sub-bin.
The boundaries of the sub-bins are computed by
#subBin = N ∗Nd + 2 ∗ b,
subBinSize = maxNorm−minNorm

#subBin ,

minBound [j] = minNorm + (j +m) ∗ subBinSize,
maxBound [j] = minNorm + (j + 1−m) ∗ subBinSize,

(2)

where j is the index of the sub-bin. To compute the area of a
triangle, we use the formula

Surf (A,B,C) =
|
−−→
AB ×

−→
AC|

2
(3)

where A,B,C are the three vertex coordinates of the triangle.
We also define the function

fj(X) =
X −minBound [j]

maxBound [j]−minBound [j]
(4)

that remap the norm X , which is inside the sub-bin j, to the
range [0,1]. Then we compute the total area S[j] and mean
norm µ[j] in each sub-bin :

S[j] =
∑

(A,B,C)∈Tri[j]

Surf (A,B,C) (5)

µ[j] =
∑

(A,B,C)∈Tri[j]

fj

(
||A||+ ||B||+ ||C||

3

)
Surf (A,B,C)

S[j]

(6)

where A,B,C are the coordinates of a vertex,
Tri [j] is the list of triangles included in the range
[minBound [j],maxBound [j]]. We merge the sub-bins
into the bins:

S′[i] =

Nd∑
j=1

S[i+ j ∗N + b] (7)

µ′[i] =
1

S′[i]

Nd∑
j=1

µ[i+ j ∗N + b] ∗ S[i+ j ∗N + b] (8)

And finally get the watermark signal by w[i] = (µ′[i] > 0.5).
We define the strength of a watermark bit by the distance to
the mean : strength[i] = 2|µ′[i]− 0.5|

C. Watermark embedding algorithm

As shown in Fig. 3, the embedding algorithm is just using
a gradient descent to move the mean of the bins. It computes
the derivative of the function from the extraction algorithm
for each vertex and loop until the watermark is encoded with
enough strength. Algorithm 1 describe this process.

The first and last b sub-bins are not used for computation
of the bins value so will remain unaffected by the algorithm.
We can also reinforce these points by encoding 0 in the first
sub-bin and 1 in the last sub-bin, which will have the effect

285

Algorithm 1: Embedding algorithm
Result: Watermarked mesh
Center the object with the moment method described in
sec. II-D1;

Subdivide the triangles to be smaller than the sub-bin
size, but bigger than the layer height.;

Compute the normal of the surface at each vertex.;
while encoded strength <target strength do

Compute the mean of each bin (similar to the
extraction algorithm);

Compute the derivative of the mean for each vertex
along the precomputed normal;

Compute the derivative of the object center for each
vertex;

Apply one step of gradient descent;
end

Fig. 9: 3d objects used for evaluation. From left to right :
bunny, dragon, happy, venus, rabbit, horse

of increasing the concentration of surface of norm close to
minNorm and maxNorm without exceeding it.

IV. EXPERIMENT RESULTS

Our goal in this paper is to have a watermarking algorithm
resistant to the print-scan process, so our experiments focus on
this process. We did our experiments both in simulation and
with real print-scan. Real experiment is very time consuming,
so we could only do a few ones for validation.

A. Simulation Results

For the simulated result, we introduce a new method to
evaluate watermark algorithm for the print-scan context. Our
goal is to simulate the printing process and generate a new
mesh that has a shape similar to a real printed object, and try to
extract the watermark from generated mesh. We take as input
a 3d mesh and a layer thickness, and generate the “gcode”,
which corresponds to the list of the commands sent to the
printer during the printing process, via a slicing software called
“slic3r” 2. Based on these printer commands, we generate each
2D slice as a Truncated Signed Distance Function (TSDF), fill
the holes inside the object because we only need the external
shape. Finally, we generate the new mesh with Marching Cube
Algorithm, assuming the layers have an ideal shape with round
borders. This simulation does not cover all the errors that occur
in a real print-scan process, but it lets us evaluate the effect
of the layering. It simulates the result of an ideal FDM printer
for a given layer thickness.

2http://slic3r.org/

TABLE I: Simulation results by original method (encoding
strength 10%, layer height 0.2mm)

Volume Decoding Decoding strength
N Model (cm3) errors min mean
8 bunny 250 1.6 -10.69% 6.16%
8 rabbit 250 2.4 -6.58% 3.03%
8 venus 250 0.8 -7.56% 8.06%
8 horse 250 2.4 -19.29% 2.55%

16 bunny 250 4 -8.54% 6.32%
16 rabbit 250 2.6 -10.13% 3.79%
16 venus 250 0.8 -8.56% 7.13%
16 horse 250 3.8 -9.76% 3.32%
24 bunny 250 4.2 -7.54% 4.00%
24 rabbit 250 2.6 -10.16% 3.97%
24 venus 250 1 -8.23% 5.54%
24 horse 250 6 -9.87% 2.26%
32 bunny 250 4.6 -7.24% 4.05%
32 rabbit 250 3.6 -10.02% 3.69%
32 venus 250 1.4 -7.89% 5.27%
32 horse 250 2.4 -11.77% 3.84%

We did multiple simulations by embedding a watermark of
8 to 32 bits in the 3d models from the dataset represented in
Fig. 9, simulating the printing process and testing if we could
retrieve the watermark. We compared results with the original
vertex norm watermarking algorithm [6], [7].

We need a metric that evaluates the probability of having a
decoding error because having even a single bit error can be a
problem in a lot of watermarking scenarios, so we chose the
minimal detection strength (as defined in section III-B) among
the bins, and we take the minimal value out of five simulations
with different watermark values. Figure 10 shows the strength
for 8 bits watermark. We can observe that the ideal number
of sub-bins is between 3 and 6, and that a bigger volume
gives better results, which is normal because the shape is
proportionally less degraded by the layering effect. Figure 11
shows the strength for 16 bits watermarking. We now observe
that the ideal number of bins is between 2 and 4. Having more
sub-bins gives the advantage that the initial norm distribution
is more uniform and average the difficulty to watermark each
bin, but also give the disadvantage to be more sensitive to
misalignment and measurement errors because the bins are
smaller. Based on our experiments, using a number of sub-
bins per bit Nd = 48/N gives good results.

Figure 12 gives more detailed results. Mean decoding
strength is the mean value across all the bins and across
the five simulations, minimum decoding strength is still the
same metric as in fig. 10 and 11. Table I is the result of the
original method. We observe decoding errors in most of the
simulations.

B. Print-Scan Results

For 3d printing, we used a “DaVinci Color” 3d printer with
PLA filament. We did not use the color ink. This printer does
not support soluble support materials, it is often difficult to
totally remove the support material, and this manual removal
often degrades the faces on contact. This is visible on the
second bunny of Fig. 13, which has been printed on the
side instead of the normal orientation. The printing quality is

286

(a) volume : 85 cm3 (b) volume : 250 cm3

Fig. 10: Minimal detection strength for 8 bits watermark, layer height : 0.2mm

(a) volume : 85 cm3 (b) volume : 250 cm3

Fig. 11: Minimal detection strength for 16 bits watermark, layer height : 0.2mm

similar to most of the consumer 3d printers. For 3d scanning,
we used “HP 3D Structured Light Scanner Pro S3 Single
Camera” previously known as “David SLS-3”.

The 3d print-scan process is very time-consuming, so we
could only do a few experiments to verify that our method
could really be used in real condition. The table II contains
the results of our 3d print-scan experiments. “decoding errors”
is the number of bits wrongly decoded, “encoding strength”
is the strength set in each bin as defined in sec. III-B, and
“decoding strength” is the remaining strength after print-scan
process. The “min decoding strength” is the most important
metric because it is the smallest strength of all bins, and
indicate how close we are to decode wrongly a bit. Figure 13
shows a few 3d printed watermarked models.

We tested models with different number of bits, but also
tried to reprint a model: this consist of scanning a watermarked
3d printed object, and printing the scanned model. This
increases the degradation on the mesh because we have two
times the digital and physical conversions. Additionally, we
also used another printing axis. The angle following “reprint”
in the result table II indicates the rotation compared to the
original printing axis. We got one wrong bit on our test with
24 bits which may be due to the fact that we need to reduce
the number of sub-bins when we increase the number of bits
to encode, and thus making more sensitive to local errors.

TABLE II: print-scan results (layer height 0.2mm, volume
85.75 cm3)

Decoding Encoding Decoding strength
N Nd Model errors strength min mean stddev
8 6 bunny 0 10% 3.17% 4.35% 0.99%
8 6 bunny 0 reprint 10° 1.25% 2.96% 0.91%
8 6 bunny 0 reprint 90° 0.54% 1.74% 0.85%
8 6 rabbit 0 10% 2.75% 3.85% 0.77%

16 3 bunny 0 10% 3.32% 4.35% 0.76%
24 2 bunny 1 10% -0.34% 3.57% 2.01%

V. DISCUSSION AND FUTURE WORK

We presented a blind watermarking algorithm for 3d printed
objects, with low visibility and resisting to the print-scan
process even in presence of some printing and scanning errors.
Our method has less constraint than the previous work, so our
method supports reprint in any orientation or higher quality
printer without slicing artifacts. We used a rotation invariant
method to avoid orientation synchronization step. Our main
improvements were to embed the watermark signal in the
histogram of the shape instead of individual vertex to be robust
to resampling, subdivide and shuffle the bins to equalize the
robustness of the signal in the different bins, and increased the
robustness of the bin localization.

We presented a new evaluation method that allows to
simulate the layering effect which is one of the main sources
of errors for the print-scan scenario, and is much faster than
a real print-scan evaluation.

287

(a) bunny (b) dragon

(c) happy (d) venus

(e) rabbit (f) horse

Fig. 12: Simulation result for the different objects, using Nd =
48/N . X axis is the number of bits, Y axis is the detection
strength.

Fig. 13: Real print of watermarked models. From left to right
: bunny 8 bits, reprint 90°of bunny 8 bits, rabbit 8 bits, bunny
16 bits. For the second bunny, we used the first bunny, scanned
it, then printed the scanned model with a 90°angle, some
degradations are visible because we printed it on the side,
and the surface was on contact to the support material.

We successfully validated our method on a set of 3d models
on simulation and with real print-scan experiments. The num-
ber of bits usable in practice will depend on the context, the
size of the objects, and the quality of the printer and scanner
used. We focused our experiments on natural shapes. CAD
files are more difficult to watermark with our method because
flat surfaces make the watermark very visible, allowing to use
less strength if we want to maintain imperceptibility.

Our 3d printer only supports PLA so we did not try other
materials such as ABS, resin or powder. Our method is not
dependent on the type of material or the printing and scanning
technique used, and could theoretically be used with any
materials as long as the printing and scanning quality is good
enough. For ABS, it is generally considered a little bit more
difficult to print than PLA due to warping and shrinking
problems, but with a good temperature control during the print
with a heated bed and enclosure, it is still possible to get high
quality print. Dark or translucent materials make the scanning
process more difficult with standard techniques such as laser
scan or structured light, resulting in poor scanning quality and
affecting the decoding process.

For future work, we plan to improve the encoding algorithm
to better handle different resolutions instead of having to
resample the model to a chosen resolution, and to improve
the imperceptibility by weighting the area to encode by the
roughness [9]. We also plan to do more experiments including
different printers like the high quality ones from online 3d
printing services to see if we can embed more than 16 bits
with a better printer. We will also evaluate some attacks such
as surface treatments like smoothing.

REFERENCES

[1] R. Ohbuchi, H. Masuda, and M. Aono, “Watermarking three-dimensional
polygonal models through geometric and topological modifications,”
IEEE Journal on selected areas in communications, vol. 16, no. 4,
pp. 551–560, 1998.

[2] S. Yamazaki, S. Kagami, and M. Mochimaru, “Extracting watermark
from 3d prints,” in Pattern Recognition (ICPR), 2014 22nd International
Conference on, pp. 4576–4581, IEEE, 2014.

[3] B. Macq, P. R. Alface, and M. Montanola, “Applicability of watermarking
for intellectual property rights protection in a 3d printing scenario,” in
Proceedings of the 20th International Conference on 3D Web Technology,
pp. 89–95, ACM, 2015.

[4] D. Li, A. S. Nair, S. K. Nayar, and C. Zheng, “Aircode: Unobtrusive
physical tags for digital fabrication,” in Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology, pp. 449–
460, ACM, 2017.

[5] J.-U. Hou, D.-G. Kim, and H.-K. Lee, “Blind 3d mesh watermarking for
3d printed model by analyzing layering artifact,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 11, pp. 2712–2725, 2017.

[6] J.-W. Cho, M.-S. Kim, R. Prost, H.-Y. Chung, and H.-Y. Jung, “Robust
watermarking on polygonal meshes using distribution of vertex norms,” in
International Workshop on Digital Watermarking, pp. 283–293, Springer,
2004.

[7] J.-W. Cho, R. Prost, and H.-Y. Jung, “An oblivious watermarking for 3-d
polygonal meshes using distribution of vertex norms,” IEEE Transactions
on Signal Processing, vol. 55, no. 1, pp. 142–155, 2007.

[8] R. Hu, P. Rondao-Alface, and B. Macq, “Constrained optimisation of 3d
polygonal mesh watermarking by quadratic programming,” in Acoustics,
Speech and Signal Processing, 2009. ICASSP 2009. IEEE International
Conference on, pp. 1501–1504, IEEE, 2009.

[9] G. Lavoué, “A local roughness measure for 3d meshes and its application
to visual masking,” ACM Transactions on Applied perception (TAP),
vol. 5, no. 4, p. 21, 2009.

288

