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Phase ambiguity is a major problem in the depth measurement in either time-of-flight or phase shifting. Resolving the ambiguity
using a low frequency pattern sacrifices the depth precision, and using multiple frequencies requires a number of observations.
In this paper, we propose a phase disambiguation method that combines temporal and spatial modulation so that the high depth
precision is preserved while the number of observation is small. A key observation is that the phase ambiguities of temporal and
spatial domains appear differently with respect to the depth. Using this difference, the phase can disambiguate for a wider range
of interest. We develop a prototype to show the effectiveness of our method through real-world experiments.
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I. INTRODUCTION

DEPTH measurement is widely used in applications such
as 3D reconstruction, object detection, robotics, and

autonomous driving. In the field of computer vision, there
are two common techniques for measuring scene depth using
modulated illumination. One is temporal modulation such as
time-of-flight (ToF); the other is spatial modulation such as
phase shifting on a pro-cam system. The temporally modulated
illumination is used to measure time delays, and the spatially
modulated illumination is used to find the correspondence
between the projector and camera pixels for triangulation.

A common problem is how to resolve the periodic ambiguity
of the phase because either measurement gives the phase that
is defined between 0 to 2π. Typically, multiple frequencies
are used to resolve the phase ambiguity. However, the phase
ambiguity still exists in the frequency of the greatest common
divisor, which requires several measurements to obtain a wider
range of interest. Another possible approach is to use a low
frequency that sacrifices the depth precision. The aim of this
study is to resolve the phase ambiguity in fewer observations,
where both the wide range of interest and the precision of the
depth are guaranteed.

A key point of this paper is that the phase ambiguities of the
ToF and phase shifting appear differently on the depth domain.
Since the temporal phase is proportional to the depth, the depth
candidates from the phase appear at equal intervals along with
the depth. On the other hand, the spatial phase is defined as
the disparity domain; hence, the depth candidates appear at
gradually increasing intervals. Based on this difference, the
phase ambiguity can be resolved by combining temporal and
spatial modulation. Because the candidate that satisfies both
measured phases seldom appears, the number of observations
can be reduced to a single respective frequency.

In this paper, we discuss ordinary ToF and phase shifting
in the same framework. We show that precise depth can
be measured in a wide range by combining temporal and
spatial modulation. We also reveal the conditions under which
the advantage of our method is gained, and we build a
prototype to show the effectiveness of our method via real-

world experiments.

II. RELATED WORK

Active depth measurements have been widely studied in the
computer vision field. Earlier work used a projector-camera
system to convert the projector’s pixel index into multiple
projection images based on the gray code [1]. The phase
shifting approach [2] recovers subpixel correspondences by
detecting the phase of the sinusoid. Gupta et al. [3] unwrapped
the phase from slightly different frequencies so that it became
robust to indirect light transport with a small budget of
projection numbers. Mirdehghan et al. [4] proposed an optimal
code for the structured light technique.

The time-of-flight method is another way to measure depth.
It emits amplitude modulated light and a delayed signal is
detected that corresponds to the scene depth [5]. Because the
range of interest and the depth resolution are tradeoffs, a better
resolution is obtained by limiting the range of interest [6].
Another problem regarding the ToF is multi-path interference
due to indirect light transport. Recovering the correct depth of
multi-path scenes has been broadly studied using a parametric
model [7], [8], K-sparsity [9], [10], frequency analysis [11],
and data-driven approaches [12]–[14]. Because the scene depth
can be recovered by the first-returning photon, the depth can
be obtained after recovering light-in-flight imaging [15]–[20].

Multi-path interference is mitigated by combining ToF and
projector. Naik et al. [21] combined the ToF camera and
a projector-camera system to mitigate a multipath that uses
direct-global separation [22]. Similar ideas are implemented
with the ToF projectors that can modulate both spatially and
temporally [23], [24]. In both cases, direct-global separation
is utilized to mitigate multi-path interference.

To obtain the fine resolution, Gupta et al. [25] proposes the
optimal code for ToF modulation. Kadambi et al. [26] uses
the polarization cue to recover the smooth surface. An inter-
ferometer can also obtain micrometer precision. Interferometry
gives micrometer precision [27] in a carefully controlled envi-
ronment. Li et al. [28] recovered micro-resolution ToF using
the superheterodyne technique. Maeda et al. [29] leverages the
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Fig. 1: Modulation variations. (a) ToF modulates the light temporally. (b) Phase shifting modulates the light spatially. (c) Our
method combines temporal and spatial modulations at the same time to mitigate the phase ambiguity problem while preserving
the depth precision.

heterodyne technique to the polarization imaging to obtain the
accurate depth.

Phase unwrapping is a subproblem in the depth measure-
ment. The phase has to be unwrapped with either the phase
shifting or the ToF; otherwise, the estimated depth will have
2π ambiguity. The number of observations can be reduced by
sacrificing the spatial resolution. The projector’s coordinates
can be obtained from a single image using a color code [30],
a wave grid pattern [31], and a light-field ToF [32]. Our
method falls into this class but does not sacrifice the spatial
resolution nor require many patterns. Our method leverages
the asymmetric relations of spatial and temporal wrapping to
solve the ambiguity of the phase.

III. DEPTH MEASUREMENT TECHNIQUES USING
MODULATED ILLUMINATION

Before explaining our method, we will briefly review the
ToF and phase shifting methods. We will respectively explain
them as the phase measurements using temporally or spatially
modulated light.

A. Temporal modulation (time-of-flight)

The ToF camera emits the temporally modulated light as
shown in Fig. 1(a). It measures the amplitude decay and phase
delay of the modulated light, and the phase delay corresponds
to the time it takes for the light to make a round trip.

The ToF camera measures the correlation between the sig-
nals emitted and those received. For each frequency, the phase
delay is calculated from the correlations with NT reference
signals, which are temporally shifted. For the k-th signal, the
correlation ck(x) at the camera pixel x is represented as

ck(x) = g

(
t+

2πk

NT

)
∗ s(x, t) (1)

=
A(x)

2
cos

(
φT (x) +

2πk

NT

)
+O(x), (2)

where g
(
t+ 2πk

NT

)
is the reference signal with the shifted

phase 2πk/NT , s is the returned signal, the ∗ operator rep-
resents the correlation, A is the amplitude decay, φT is the
phase delay, and O is the ambient light. In the case of NT = 4,
the phase φT and the amplitude A of the returned signal can

be recovered by a direct conversion method from multiple
observations while changing the phase 2πk

NT
as

φT (x) = arctan

(
c3(x)− c1(x)

c0(x)− c2(x)

)
, (3)

A(x) =

√
(c3(x)− c1(x))2 + (c0(x)− c2(x))

2
. (4)

The depth d is obtained as

d(x) =
c

2ωT
φT (x), (5)

where ωT is the modulation frequency and c is the speed of
light.

B. Spatial modulation (phase shifting)

The phase shifting spatially modulates the projection pat-
tern. Finding the correspondences between the projector and
camera pixels is the main part of the spatial phase shifting. The
idea is to project the sinusoidal pattern as shown in Fig. 1(b)
and measure the phase of the sinusoid for each pixel, which
corresponds to the projector’s pixel coordinates.

The observed intensity of the camera Il(x) for l-th shift is
represented as

Il(x) = A(x) cos

(
φS(x)− 2πl

NS

)
+O(x), (6)

where φS is the spatial phase of the projection pattern due to
disparity. There are three unknown parameters, which are the
offset O, the amplitude A(x), and the phase φS(x); therefore,
they can be recovered from NS ≥ 3 observations while
changing the phase of the pattern. In the case of NS = 4,
the spatial phase φS and the amplitude A can be recovered in
the same way as the ToF as

φS(x) = arctan

(
I3(x)− I1(x)

I0(x)− I2(x)

)
, (7)

A(x) =

√
(I3(x)− I1(x))2 + (I0(x)− I2(x))

2
. (8)

From the estimated disparity, the scene depth can be re-
covered using the triangulation theory. For example, when the
parallel stereo is assumed, the depth is inversely proportional
to the disparity as

d(x) =
bf

x− φS(x)
ωS

(9)
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where x − φS
ωS(x)

is the disparity, ωS is the spatial angular
frequency of the projection pattern, f is the focal length, and
b is the baseline of the pro-cam system. Here, x represents the
horizontal pixel position.

C. Phase ambiguity and depth resolution

A common problem in both temporal and spatial methods
is 2π ambiguity, where the phase is wrapped when the depth
exceeds the maximum depth of interest. A naı̈ve approach is
using a low frequency to avoid the phase ambiguity. However,
a tradeoff exists between the range of interest and the depth
precision. While the phase ambiguity does not appear at a
lower frequency, the depth precision becomes low. With a
higher frequency, the depth resolution improves while the
phase ambiguity becomes significant, and the depth cannot
be uniquely recovered for a wide range of interest.

The phase ambiguity is usually relaxed by using multiple
frequencies in either a temporal or a spatial domain. We
propose a hybrid approach of disambiguation that can take
advantage of a different nature in temporal and spatial modu-
lation.

IV. PROPOSED METHOD

A. Spatio-temporal modulation

We propose a hybrid method of temporal and spatial mod-
ulation as shown in Fig. 1(c). The phase ambiguity can be
resolved by using both temporal and spatial phases instead of
using multiple frequencies in either domain.

Our key idea is that the depth candidates from the ambiguity
of the temporal and spatial phases are different. In the case
of the temporal phase, the intervals of depth candidates are
the same as the depth because the depth is proportional to
the phase, as shown in Eq. (5). On the other hand, the
spatial phase is defined in the disparity domain. Because the
depth is inversely proportional to the disparity (as shown in
Eq. (9)), the intervals of depth candidates increase along with
the depth. Figure 2 shows the phase observations along with
the scene depth. Multiple depth candidates correspond to a
single phase. The depth candidates appear at the same interval
for the temporal phase, while the intervals of the spatial phase
increase. This difference is a key feature of our method to
resolve the phase ambiguity.

Depths that satisfy both temporal and spatial phases seldom
appear. The unwrapped phase is not restricted by the greatest
common divisor, and the set of temporal and spatial phases is
unique for the wider range of interest. The candidate depths
can be respectively obtained from the following equations as

dT =
c

2ωT
(2πnT + φT ) (10)

dS =
bf

x− 2πnS+φS
ωS

. (11)

The integer pair (nT , nS) that satisfies dT = dS seldom exists.
Therefore, the phase ambiguity problem can be resolved using
phases of different domains.
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Fig. 2: Phase observations with the depth. While depth can-
didates of the temporal phase appear at the same intervals,
those of the spatial pattern appear at increasing intervals. This
difference is the cue to disambiguate the depth candidate.

B. Phase disambiguation and depth estimation

Assuming the spatial phase is fixed within the ToF accu-
mulation period, the pixel value c(x, k, l) of the k-th temporal
shift and the l-th spatial shift is represented as

c(x, k, l) =
A(x)

2
cos

(
φS(x)− 2πl

NS

)
cos

(
φT (x) +

2πk

NT

)
+O(x). (12)

In the case of NT = 4, NS = 2, the temporal phase φT , and
spatial phase φS are obtained as

φT (x) = arctan c(x,3,0)−c(x,1,0)
c(x,0,0)−c(x,2,0)

A′(x) =
√

(c(x, 3, 0)− c(x, 1, 0))2 + (c(x, 0, 0)− c(x, 2, 0))2

O(x) = 1
4

∑
k

(
c(x, k, 0)−A′(x) cos(φT (x)− πk

2 )
)

φS(x) = arctan c(x,3,1)+c(x,1,1)−2O(x)
c(x,3,0)+c(x,1,0)−2O(x) .

(13)

Now, we have two phases: the temporal phase φT and the
spatial phase φS . Depth estimation from the two phases is
similar to the unwrapping problem in both the multi-frequency
phase shifting and the ToF, and it can be solved by searching
a lookup table [3]. The observed phases should respectively
equal to the phases computed from the same depth as

ϕT (d) =
2ωTd

c
mod 2π (14)

ϕS(d, x) = ωS

(
x− bf

d

)
mod 2π. (15)

A lookup table is built for each horizontal pixel position x
of the camera because the spatial phase depends on the pixel
position. The table Tx at the horizontal position x consists
of the vector ΦDi,x = [ϕT (Di), ϕS(Di, x)] of the candidate
depth Di as

Tx(Di) = ΦDi,x = [ϕT (Di), ϕS(Di, x)]. (16)

For each pixel, the depth can be estimated by searching the
lookup table as

d̂(x) = argmin
d
‖Tx(d)− [φT (x), φS(x)]‖22 . (17)
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Fig. 3: Depth candidates of spatial and temporal phases. The
blue line shows the depth candidate from the temporal phase
and the orange line shows it from the spatial phase. Because
the depth is inversely proportional to the spatial phase, the
candidates gather at a short distance. In the close-up image,
the precision of the ToF is illustrated as the width of the line.
When the spatial frequency is high, the precision of the phase
shifting is much better than that of the ToF.

C. Analysis of the proposed method

Frequency selection
The effectiveness of our method depends on the selection

of both temporal and spatial frequencies. At least one of
the frequencies should be sufficiently high to achieve better
precision, because the precision will not improve if they are
low. Modulating current ToF cameras at a very high frequency
is difficult in practice, so we make the spatial frequency high.

Figure 3 shows the candidate depths of certain frequencies.
Because the depth is inversely proportional to the spatial
phase, the phase ambiguity of the spatial phase is dense at
a short distance and coarse at a long distance. This property
gives the bound of the spatial frequency for the designated
working range. Inversely, the valid working range is deter-
mined when the spatial frequency is fixed.

1) Lower bound of the spatial frequency
When the spatial frequency is too low, the depth precision

of the phase shifting becomes low, as shown in Fig. 4(a). As
the depth precision of the ToF is also low, there is no benefit
from combining these frequencies. The lower bound of the
spatial frequency is where the depth precision of the phase
shifting is better than that of the ToF, as shown in Fig. 4(b).

The precision of the spatial measurement should be better
than the ToF as

∆dS ≤ ∆dT , (18)

where ∆dS is the precision of the phase shifting and ∆dT is
the precision of the phase shifting and the ToF, respectively.
The precision is respectively represented as [5], [24]

∆dT =
cπ

ωT

√
B

2
√

8A
, (19)

∆dS =
2πd2

bfωS

√
B

2
√

8A
, (20)

where A is the number of photo-electrons that have gathered
on the sensor and represents the amplitude of the returned
signal, and B is the number of photo-electrons that represents
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Fig. 4: Bounds to select appropriate spatial frequency. Orange
lines represent the candidate depths of spatial modulation; blue
lines represent the candidate depths of temporal modulation.
The width of the line shows the realistic precision. Several
candidates are in (c) and (d), so it looks filled. If the spatial
frequency is too low (a), the precision of both frequencies
is low and therefore ineffective. The precision of the spatial
frequency is at least better than the ToF, as shown in (b).
On the other hand, if the spatial frequency is too high, phase
ambiguity cannot be resolved because multiple candidates
exist within the ToF precision, as shown in (d). The upper
bound of the spatial frequency is that only one line exists
inside the ToF ambiguity.

the DC component of the returned signal. Finally, the lower
bound of the spatial frequency is given as

ωS ≥
d2max

bf

2ωT
c
, (21)

where dmax is the designated maximum working distance of
the measurement system.

2) Upper bound of the spatial frequency
When the spatial frequency is too high, the phase ambiguity

problem cannot be resolved because multiple candidate depths
exist within the precision of the ToF, as shown in Fig. 4(d).
The spatial frequency should be as high as possible unless
its wrapping distance is greater than the precision of the ToF.
The upper bound of the spatial frequency is where the phase
wrapping distance is larger than the precision of the ToF as
shown in Fig. 4(c) as

bf

x− φS
ωS

− bf

x− φS−2π
ωS

≥ ∆dT
2
. (22)

Substituting Eq. (15) and transforming the expression, the
upper bound can be obtained as

ωS ≤
2π
(
2d2min + ∆dTdmin

)
bf∆dT

, (23)

where dmin is the shortest depth of the designated working
distance of the system.
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The number of observations
Another benefit to combining temporal and spatial modula-

tion is that the temporal and spatial phases can be measured at
the same time without affecting each other because the time
and space are orthogonal and they can be superposed.

Our method requires six correlation values to estimate
two phases. These observations can be acquired by three
subframes because the complementary frames of the temporal
modulation can be simultaneously obtained using a typical 2-
tap ToF sensor. Concretely, a set of c(x, 0, l) and c(x, 2, l) is
simultaneously obtained, and the set of c(x, 1, l) and c(x, 3, l)
is also obtained at a single subframe, which is the benefit of
superposing spatio-temporal projection.

To reduce the number of projections, binding two pixels
or sub-pixels can viably obtain the spatial phase in a single
frame, which is an idea similar with a Bayer pattern. When
we assume the depth and reflectance of the neighboring pixels
are same, the phase of the spatial pattern is spatially shifted by
1/ωS at the neighboring pixel. In this case, the number of the
subframes is reduced to 2, while we can obtain two different
phases at the same time and the number of subframes is the
same as an ordinary ToF.

Brightness of the pattern
One may think that the temporal phase cannot be obtained

if the spatial pattern is completely black. Because the spatial
sinusoidal pattern is projected, all the pixels have a chance to
obtain the photons unless the spatial pattern is extremely low.
Another possible solution is to add the offset to the spatial
pattern so that the temporal phase can be obtained for all
the pixels. Adding the constant value can affect the spatial
phase estimation, so NS ≥ 3 is required to cancel this offset.
The equation for the spatial estimation becomes the same as
Eq. (7).

V. EXPERIMENT

We demonstrated the effectiveness of our method with real-
world experiments.

A. Hardware prototype

We developed a hardware prototype that can illuminate a
scene with a spatio-temporal modulated pattern. Our prototype
was built onto a ToF camera (Texas Instruments OPT8241-
CDK-EVM). The light source was replaced with a laser diode
and a DMD system that can project the spatial pattern. The
light source was an 830nm laser diode (Hamamatsu Photonics
L9277-42), and its emission was synchronized with the ToF
sensor. The light emitted by the diode was collimated and
expanded through lenses, and then reflected onto a DMD
device (Texas Instruments DLP6500) that had 1920 × 1080
pixels. Finally, the spatio-temporal pattern was projected onto
the scene through a projection lens, as shown in Fig. 5.

First, the measurement system was calibrated in a standard
way for the pro-cam systems using a reference board [33].
The phase of the ToF on each pixel was then calibrated to
share the same coordinates as the pro-cam system. A white
plane board was captured while its position was moved for
the phase calibration. For each measurement of the board, the

Laser diode
with collimate lens

Laser diode
control boards

Target

ToF camera

DMD Projection lens

Expansion lens

Laser diode
with collimate lensLaser diode

control boards

ToF camera

Projection lens

Expansion lens

DMD

Fig. 5: Hardware prototype. The light source unit consists of
a laser diode and a DMD device. The emission of the laser
diode is temporally modulated by the sync signal from the
ToF camera and then spatially modulated by the DMD. The
ToF camera and the projection lens of the projector are placed
side by side.

pair of the raw phase and the ground-truth depth was obtained
because the depth of the board was measured by the ordinary
phase shifting. The parameter to recover the depth from the
phase was calibrated by line fitting.

B. Result

First, we measured a white planar board and placed it at
approximately 350mm from the camera and slightly slanted it,
as shown in Fig. 6(a). The temporal frequency was 60MHz,
and the period of the spatial pattern was 60 pixels on the
projection image. The baseline between the camera and the
projector was approximately 70mm, and the focal length of
the projection lens was 35mm.

The depths were obtained by an ordinary ToF with a single
low frequency, phase shifting with single high frequency,
and our method for the comparison. Because the unique
depth could not be obtained by using the phase shifting
with a single high frequency due to the phase ambiguity, we
added an arbitrary offset (2πnS) to fit the global scale, but
the phase wrapping is not compensated. Figure 6(b) shows
the estimated depth images. Both the ToF and our method
recovered the global depth while the phase shifting suffered
from the ambiguity, causing the stepping pattern to appear.
The cross-section of the red line is shown in Fig. 6(c).
While the depth measured by the ordinary ToF is noisy and
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Fig. 6: Results with a white planar board. Ordinary ToF,
phase shifting (single high frequency), and our method are
compared. (a) The object was placed at a slight slant. (b) The
estimated depth images. Because the depth cannot be identified
in the phase shifting, the wrapping ambiguity appeared as the
stepping effect. (c) The cross-section of the red line is shown.
While the ordinary ToF is noisy and phase shifting has many
candidates, our method recovered a smooth and unique depth
candidate.

there are many depth candidates due to phase ambiguity in
the phase shifting, our method recovered a smooth surface
while resolving the phase ambiguity. The region near the
edge was not correctly disambiguated because the precision
of the temporal measurement exceeded the interval of the
phase shifting because the ToF precision was larger than what
we expected. However, decreasing the spatial frequency might
have mitigated it.

Finally, we measured a plaster bust and placed it approx-
imately 400mm from the camera, as shown in Fig. 7(a).
The estimated depth images are shown in Fig. 7(b). The
cross-section of the depth is shown in Fig. 7(c). Our method
recovered a unique and smooth depth.
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Fig. 7: Results with a plaster bust. (a) The scene. (b) The depth
maps. (c) The cross-section of the red lines drawn on (b). Our
method recovered a unique and smooth surface.

VI. DISCUSSIONS

We developed a depth sensing method that uses spatio-
temporally modulated illumination. We showed that the phase
ambiguities of the temporal and spatial modulations are differ-
ent, so it is possible to effectively resolve the ambiguities while
reducing the observations and preserving the depth precision.

While our method is of interest from the viewpoint of phase
wrapping, another factor contributes to the wide range of
interest. Our method might not work well at a short distance
because the spatial ambiguity could become smaller than the
ToF precision. Using a lower frequency or narrower baseline
is an option that will make a short working distance while the
precision of the far region worsens. The co-design of spatial
frequency, baseline, and working distance are necessary to
achieve the best performance.

Our hardware prototype has some limitations. Because
the DMD produces the sinusoidal pattern by controlling the
mirrors on and off, it can make artifacts to the ToF. We ignored
this effect, but it should be considered to control the DMD or
to use a solid spatial light modulator appropriately. We also
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ignored the temporal mismatch of the ToF due to the baseline.
The depth measured by the ToF camera corresponds to the
light path length from the light source to the camera; it is
affected by a long baseline and should be compensated. In
practice, the baseline is much smaller than the object depth,
so it can be safely ignored.

The quality of the spatio-temporally modulated illumination
of our prototype is not very high. The temporal phase contains
a systematic distortion and the spatial resolution of the projec-
tor is currently limited to 64 pixels on the DMD, corresponding
to 4 pixels on the camera, because the pattern is blurred. This
might be due to the collimation and the alignment accuracy
of the optics or the diffraction on the DMD. The light source
cannot emit a spatial pattern that is equal to or less than the
camera pixel’s size, resulting in diminished phase shifting. In
future implementations, we will develop a better light source
unit to improve the temporal phase measurements and generate
higher spatial resolutions.
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