No.03 Scattering Tomography Using Ellipsoidal Mirror

Ryuichi Akashi[¶], Hajime Nagahara[†], Yasuhiro Mukaigawa[‡], Rin-ichiro Taniguchi[†] [¶]NEC, [†]Kyushu University, [‡]Nara Institute of Science and Technology

•Abstract

Optical tomography provides visual images of the interior of objects. When scattering is strong, light paths are scattered and a large field of view is required to observe all of the scattered light. We propose a method based on computed tomography which employs large field of view and observes the scattered light efficiently. We implement a projector-camera system that can send light and receive scattered light from all fields of view.

Simulation Result

At the boundary area, obstacle's distribution is estimated accurately.

Contribution

- Estimate cross-sectional image from scattered light.
- Efficiently observe the scattered light by large FoV.
- Implemented large FoV system by using ellipsoidal mirror.

Motivation

Food contamination is serious problem.

Contaminant detection is required.

Contaminant in jelly

•Estimation of Cross-sectional Image

Observed

•Large FoV Implementation

Property of Ellipsoid

Light from a focal point is reflected toward the other focal point.

Not need mechanical motion.

Simple system

Shorten the time for capture

Ellipsoidal mirror

• Experiment of Real Object

We used silicorn with metal wire as a target object.

Silicorn object

When we know the scattering

Merit of Large FoV Efficient observation of scattered light.

Observe almost all scattered light.

Observe weakly attenuated light by the target oject.

without obstacle, . . .

We can estimate distribution of obstacle.

Without obstacle

•Future Work

• Improve the estimation result of real object.

• Consider multiplexing, encoding and compressive sensing.