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Abstract

In this paper, we proposed an improved optical
scattering tomography for optically dense media. We
model a material by many layers with voxels, and light
scattering by a distribution from a voxel in one layer to
other voxels in the next layer. Then we write attenua-
tion of light along a light path by an inner product of
vectors, and formulate the scattering tomography as
an inequality constraint optimization problem solved
by an interior point method. To improve the accu-
racy, we solve simultaneously four configurations of
a multiple-scattering tomography, however, this would
increase the computational cost by a factor of four if
we simply solved the problem four times. To reduce
the computation cost, we introduce a quasi-Newton
method to update the inverse of a Hessian matrix
used in the iteration of the interior point method. We
show experimental results with numerical simulation
for evaluating the proposed method and comparisons
with our previous work.

1. Introduction

In this paper we describe a method for scattering
optical tomography of highly scattering media. Unlike
X-ray computed tomography (CT) which uses X-ray
penetrating human body, optical tomography uses vis-
ible or infrared light sources and has been developed
over the last decades [1, 2]. Diffuse optical tomography
(DOT) [3] is a kind of optical tomography widely used
today. Our current paper aims to develop an optical
tomography method that uses infrared light input and
observed outgoing light at the opposite side of the
body, shown as in Figure 1(a), like as a source-detector
configuration that X-ray CT uses. The incident light
is however heavily scattered inside a medium when
the medium is optically thick; this usually happens
in the case of human body. This problem is called

scattering tomography and recently studied in optics
[4, 5], physics [6, 7], computer vision [8, 9], and even
computer graphics [10, 11].

Light scattering is modeled usually by the radiative
transfer equation (RTE) [12, 13] in physics and optics,
and by the volume rendering equation [10, 14] for
a time-independent case, which has been developed
in in computer graphics. A forward problem of light
scattering uses those equations and is therefore studied
both in physics for simulation [12, 13] and in graphics
for rendering [15, 16, 17, 18]. An inverse problem of
light scattering — this is often called inverse scattering
or scattering tomography — has been studied in many
different approaches, for example, approximations of
RTE [4], single scattering assumption [6, 7], and
uniform media approximation [10]. Often scattering is
assumed to be weak [4] or single [6, 7] because highly
scattering media and multiple scattering is difficult to
analyze.

We present a method of multiple scattering tomog-
raphy whose approach is based on an approximation
of the volume rendering equation in order to deal with
highly scattering media and multiple scattering. In this
paper, we extend our previous work [9] for improving
accuracy and efficiency. The model of light scattering
of our method is based on the path integral [17, 19, 20]
developed in graphics community. Since the scattering
model with path integral is so general, we take the
following assumptions (see Fig. 1(b)) : (1) multiple
(not single) scattering is dominant, (2) forward scat-
tering is also dominant relative to backward scattering,
(3) a material consists of many parallel layers made
of voxels, and (4) light is scattered from one layer
to another because forward scattering is assumed be
dominant. Combining these assumptions together, we
develop a constraint optimization problem to solve the
scattering tomography.

Contributions of this paper are summarized as
follows:
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Figure 1. Configurations of light sources and
observations. (a) Source-detector configuration of
CT. (b) A single configuration with the layers
model. A light source at position ¢ emits light to
the first layer, then the light is scattered to the next
layer. At the last layer, output is observed at each
position j. (c) Four configurations. The object is
fixed while the light source and detector are rotated
by 90 degrees.

e We develop an optimization method to solve
simultaneously four configurations a multiple-
scattering tomography (shown in Figure 1(c)),
while the previous work [9] is limited to a sin-
gle configuration. This significantly improves
the quality of results.

e  We introduce a quasi-Newton method to effi-
ciently solve the optimization problem.

We will describe the scattering model in section 2 as a
forward and inverse models. The developed constraint
optimization problem and algorithm to solve it with
an interior point method with quasi-Newton is shown
also in section 2. Experimental results of numerical
simulation are shown in section 3. In the simulation,
we demonstrate that accuracy of the results increases,
and computation time decreases to about 30% com-
pared to the previous work. This improvement seems
promising, while the material used in the simulation
is of the size 10 by 10 in 2D and also the number of
configurations are four instead of 360 as in CT because
of the inherent difficulty of multiple scattering.

2. Method

In this section, we first describe the forward prob-
lem; how light goes through a medium in terms of path
integral. Then we describe the developed algorithm to
solve the the inverse problem of scattering tomography.

2.1 Forward model

Our layered model is shown in Figure 1(b). A
scattering material is a 2D grid consisting of N layers,
each of which has M voxels; @, . Our aim is to
estimate each voxel’s extinction coefficients, o¢(y, m ),
which describe how much light is attenuated at that
voxel. To this end, we emit light from a light source
to the first layer at position 4 from the top side of the
material. The light is attenuated and scattered to the
next layer, while some portion of light goes outside.
What we observe is the light I;; going outside from the
bottom layer at position j. By changing incident and
outgoing positions (4, j), we have a set of observations
I;;. We describe the scattering and attenuation models
below.

We use a simple scattering model [9] from voxel ¢
at layer n to voxel j at layer n + 1 :
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where x,,; is the coordinate of the center of voxel
i at layer n, and C' = 202. The Gaussian model
of scattering [21] encodes the scattering coefficient
(or scattering cross section) and the phase function.
It has parameter o2 describing how broad the light is
scattered. This model results in a scattering factor c;;

of a particular path;
N-1
cijr =[] ps 2)
n=1

where (i, §, k) is index of kth path (k = 1,..., MV ~2)
that starts at ¢ and ends at j.

Attenuation of light is modeled by the integral of
extinction coefficients along a path. For a segment of
a path (Fig. 2(a)) from voxel ¢ at layer n to voxel j
at layer n + 1, the attenuation factor can be exactly
written as the following form of exponential decay;

1 ) )
pt(mn,ivmn-i-l,j) — e I5 m,((1—5)27,,,1-4-smn-¢-1,_7)ds7 3)

where () is extinction coefficient at x.
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Figure 2. A path segment (a) from x,, ; 10 &y, 41,i42
and corresponding four subsegments (b) only in
contributing voxels.

In our 2D layered model, extinction coefficients
are assumed to be constant in each voxel. Hence this
integral over the path segment can be transformed into
the sum of the length, d,, ;, over a voxel ¢ in layer
n multiplied by the extinction coefficient, o¢(x,, ;). of
that voxel, as follows [9]:
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Here we somehow abuse the notation: d_, ; is the length
of the part where the path segment (from voxel 1
at layer n to voxel j at layer n+ 1) passes across
voxel ¢ at layer 7. An example is shown in Fig.
2(b). Here, a path segment from x, ; to ;11,12 1S
decomposed into four subsegments, hence four voxels
only contribute to compute the attenuation (3). Other
voxels are ignored and corresponding d ; in (4) are
zero. Therefore we can write the exponential decay
along a path as a sum of extinction coefficients.

The attenuation at each layer is accumulated as the
light goes along a path from layer to layer. To simplify
the notation, we introduce a vector notation; Let d;;,
be a path represented as a length vector that consists
of d,, ; of all voxels and o be a vector of extinction
coefficients of oy(x, ;). Now the attenuation factor
a;j, of a particular path (4, j, k) can be written as

T
Qijk = Hpt = e~ %, (5)

n

Observations I;; are the sum of contributions of all
paths;
MN—2

Izj = Z Iy Cijk Gijk, (6)
k=1

where [j is the intensity of incident light. Because the
observation is the sum of all path contributions, this
model is called a path integral [17, 19, 20] while in
our case integral is replaced wit summation.

2.2Inverse model

Next we describe our inverse problem.

By changing a pair of (i,j), the positions of
incident and outgoing points of light, we have M?
observations I;; and equations to solve the following
least squares problem:
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where the symbol =< denotes generalized inequality
that every elements in a vector must satisfy the in-
equality. The lower bound comes from the fact that the
extinction coefficient must be positive, and the upper
bound is for numerical stability to exclude unrealistic
values to be estimated.

As shown in Figure 1(c), we have four configu-
rations of light sources and detectors. To use all of
them at the same time, we add corresponding four cost
functions to form a single function fj; there are four
different sets of observations I;; and paths ¢jk while
they all share the same variables o, to be estimated.
This makes us to use the same problem (7) in a single
formulation at the expense of additional (factor of four)
computation cost.

We solve the above optimization problem with
inequality constraints by using an interior point method
with barrier functions [22]. The developed algorithm
is shown in Algorithm 1. It iteratively solves un-
constrained optimization problems with modified cost
function (9) with barrier functions to keep solutions
feasible. The unconstrained optimization problems are
also solved iteratively, we call them iteration inner
loops, and iterations of them outer loops.

We introduce a quasi-Newton method to reduce the
computation cost of the inner loop. Newton method
is known to be computationally expensive, which was
used in our previous work [9], because it keeps Hessian
and computes its inverse for computing a direction at
each step. Instead, we use a quasi-Newton method,
more specifically, Broyden—Fletcher—Goldfarb—Shanno
(BFGS) algorithm to update the inverse of Hessian.
We will show in the experiments that computation
time decreases compared to the previous work whereas
results are much improved.



Algorithm 1: Proposed algorithm for the inverse
problem.

Input: Parameters > 1, € > 0, and
t = tinit > 0.

Data: A feasible initial solution o; = 0,
Hessian inverse H~1 = I.

Result: o;.
1 repeat// outer loop: interior
point
t < ut
3 Set a barriered cost function;

fi(t) = tfo = (log(on) +log(u — ou)),
l
9)

where oy is [-th element of o;.

4 | k0, H '+ H ol oy
5 repeat// inner loop:
quasi-Newton
6 Update H, ' with BFGS.
7 Compute direction: —H, 'V f1 (o).
8 Perform line search to find step size a.
9 Update estimate
ot gk — aH,:1Vf1(atk).
10 k< k+1
11 until converge;
12 H_l(—Hk_l,O't<—O'tk.
13 until 248 > ¢

t

3. Experimental results

We evaluate the proposed method by numerical
simulation. Four kinds of materials of the size 10 x 10
shown in Figure 3(a) are used. Each material has
almost homogeneous extinction coefficients (in light
gray) except few voxels with much higher coefficients
(in darker gray), which means those voxels absorb light
much more than others. Parameters are set as follows:
02 = 1.0 for scattering; u = 1.0 for the upper bound;
tinit = 1.0, 4 = 1.5, and € = 102 for interior point.

Estimated results are shown in Figure 3(b) and (c):
results in the second row (b) are obtained by previous
work [9], while results in the third row (c) are by our
proposed method. Our results (c) are much closer to the
ground truth (a) and better than the previous work (b).
This is also confirmed by qualitative results in terms
of root mean squares error (RMSE) shown in Table 1.
Table 2 shows computation time spent by the previous
work and proposed method; it is roughly reduced to

Figure 3. Simulation results for 02 = 1.0. (a)
Ground truth of four materials 1, 2, 3, and 4. (b)
Results of [9]. (c) Results of our method. Values in
each voxel are estimated value of o;, and darker
gray represents larger value.

Table 1. RMSEs of results for four materials. The
order is the same with Figure 3(b) and (c).

method ‘ 1 2 3 4
Fig. 3(b) [9] 0.016978  0.02731 0.043248  0.030447
Fig. 3(c) ours | 0.004987  0.01213  0.010154  0.022141

30% (by our unoptimized code in MATLAB on a PC
with Intel Xeon E5 2GHz).

Values of the cost function f; in Eq. (7) are shown
in Figure 4. At each iteration of the outer loop of
Algorithm 1, the difference between observation and
the model, Eq. (7), decreases and becomes smaller than
10~° at the convergence.

4. Conclusions

In this paper, we have proposed an improved scat-
tering tomography with a layered model. Based on
the assumptions we made for simplifying a scattering
material, we have formulated the inverse model as a
constraint nonlinear least squares problem. Then we
solved it by interior point method with a quasi-Newton



Table 2. Computation time (in seconds) of results

for four materials in Figure 3(b) and (c).

method | 1 2 3 4

Fig. 3(b) [9] 191.334  162.035 197.519 195.628
Fig. 3(c) ours 55.602 55.602 70.531 76.773

value of cost functions
=
=)

number of iterations

Figure 4. Cost function values f, over iterations of
outer loop. Numbers of f, are the order in Figure
3(c): 1 is the left most, and 4 is the right most.

method. In the experiments, results were much more
improved than the previous work as well as compu-
tational cost is decreased. Currently our simulation is
limited to discretized 2-dimensional media, however
the method can be applied to 3-dimensional media.
Also more larger size of grids will be used in future
work.
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