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Abstract. Gait analyses have recently gained attention as methods of
identification of individuals at a distance from a camera. However, ap-
pearance changes due to view direction changes cause difficulties for
gait recognition systems. Here, we propose a method of gait recognition
from various view directions using frequency-domain features and a view
transformation model. We first construct a spatio-temporal silhouette
volume of a walking person and then extract frequency-domain features
of the volume by Fourier analysis based on gait periodicity. Next, our
view transformation model is obtained with a training set of multiple
persons from multiple view directions. In a recognition phase, the model
transforms gallery features into the same view direction as that of an in-
put feature, and so the features match each other. Experiments involving
gait recognition from 24 view directions demonstrate the effectiveness of
the proposed method.

1 Introduction
There is a growing necessity in modern society for identification of individuals
in many situations, such as from surveillance systems and for access control.
For personal identification, many biometrics-based authentication methods are
proposed using a wide variety of cues; fingerprint, finger or hand vein, voiceprint,
iris, face, handwriting, and gait. Among these, gait recognition has recently
gained considerable attention because gait is a promising cue for surveillance
systems to ascertain identity at a distance from a camera.

Current approaches of gait recognition are mainly divided into model-based
and appearance-based ones.

The model-based approaches extract gait features such as shape and motion
by fitting the model to input images. Some methods [1][2] extracted periodical
features of leg motion by Fourier analysis. Bobick et al. [3] extracted parameters
of shape and stride. Wagg et al. [4] extracted static shape parameters and gait
period with an articulated body model, and Urtasun et al. [5] extracted joint
angles with an articulated body model. Those model-based approaches often
face difficulties with model fitting or feature extraction.

Appearance-based approaches directly analyze images and extract features
without body models. Sarkar et al. [6] proposed direct matching of silhouette im-
age sequences as a baseline algorithm. Murase et al. [7] represented a gait image
sequence as a trajectory in an eigen space and matched the trajectories. Ohara et
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al. [8] and Niyogi et al. [9] constructed a spatio-temporal volume (x-y-t volume)
by combining gait images and matched features extracted from the volume. In-
deed, many gait features are proposed as being useful [10][11][12][13][14][15][16].

One of the difficulties facing appearance-based approaches is that appearance
changes due to a change of the viewing or walking directions. In fact, BenAb-
delkader [17] and Yu et al. [18] reported that view changes caused a drop in gait
recognition performance.

To cope with the view changes, Shakhnarovich et al. [19] and Lee [20] pro-
posed methods to synthesize an image for a virtual view direction using a visual
hull. However, this method needs images taken synchronously from multiple view
directions for all subjects and then necessitates the use of a multi-camera system
or for there to be a solution to the troublesome problem of frame synchroniza-
tion. Kale et al. [21] proposed a method to synthesize arbitrary-view images
from a single-view image with perspective projection by assuming gait motion
occurs in a sagittal plane. This method, however, does not work well because
self occlusion occurs when an angle formed by an image plane and the sagittal
plane is large.

To overcome these defects, we exploit a view transformation model (VTM)
for appearance-based gait recognition. In the proposed method, once we obtain
a VTM using a training set, made up of images of multiple subjects from mul-
tiple views, we can make images of a new subject taken from the multiple view
directions by transforming a single-view image of the new subject.

In other computer vision areas, many methods have achieved adaptation to
view direction changes with VTM. Mukaigawa et al. [22] applied the model to
face image synthesis with pose and expression changes, and Utsumi et al. [23]
applied it to transform images with pose and view changes.

However, these approaches just transform a static image into another static
image; gait analysis, on the other hand, treats not a static image but a spatio-
temporal volume. View transformation from a volume into another volume,
though, causes troublesome problems such as frame synchronization. To over-
come this, we first extract frequency-domain features from a spatio-temporal gait
silhouette volume (GSV), and then we apply the VTM for frequency-domain
features. Note that the use of the frequency-domain features releases us from
the need for frame synchronization when view transformation and matching are
performed.

The outline of this paper is as follows. We describe the construction of a
GSV in section 2, and the matching of a GSV in section 3. Then, adaptation to
view direction changes is addressed with the formulation of our VTM in section
4, and experiments of gait recognition from various view directions are shown in
section 5. In section 6, we present our conclusions and indicate future works.

2 Construction of a GSV
2.1 Extraction of gait silhouette images
The first step in constructing a GSV is to extract gait silhouette images; to
do this, background subtraction is exploited. Background subtraction, however,
sometimes fails because of cast shadows and illumination condition changes (see
Fig. 1(a)(b)). To avoid such difficulties, we execute a temperature-based back-
ground subtraction using an infrared-ray camera (NEC TH1702MX) instead of
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(a) Input image
with color camera

(b) Background
subtraction

(c) Input image
with infrared-ray

camera

(d) Background
subtraction

Fig. 1. Comparison of background subtraction between color camera and infrared-ray
camera (In (c), brighter colors indicate higher temperature))

(a) time slice images (x-y plane, every 3 frames)

(b) horizontal slice image (t-x plane at y = 27)

(c) vertical slice image (t-y plane at x = 6)

Fig. 2. An example of GSV

a conventional color camera. The infrared-ray camera captures 30 frames per
second sized at 320 × 240 pixels. Figure 1(c) is an input image taken by the
infrared-ray camera. In it we can see that the temperatures of a person are
higher than those of the background; therefore we can extract clear regions as
a gait silhouette image (see Fig. 1(d)). Here, for simplicity we assume only one
person exists in the image, thus we keep only the largest connected region as the
person.

2.2 Scaling and registration of silhouette images

The next step is scaling and registration of the extracted silhouette images. First,
the top, the bottom, and horizontal center of the regions for each frame are
obtained. The horizontal center is chosen as the median of horizontal positions
belonging to the region. Second, a moving average filter of 30 frames is applied
to those positions. Third, we scale the silhouette images so that the height can
be just 30 pixels based on the averaged positions, and so that the aspect ratio
of each region can be kept. Finally, we produce a 20 × 30 pixel-sized image in
which the averaged horizontal median corresponds to the horizontal center of
the image.

We show an example of a constructed GSV in Fig. 2 as time slice (x-y plane),
horizontal slice (t-x plane), and vertical slice (t-y plane) images. We can confirm
gait periodicity from Fig. 2(b), (c).
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3 Matching of a GSV
3.1 Gait period detection
The first step for matching is gait period detection. We calculate the normalized
autocorrelation of a GSV for the temporal axis as

C(N) =

∑
x,y

∑Ntotal−N−1
n=0 ggsv(x, y, n)ggsv(x, y, n + N)√∑

x,y

∑Ntotal−N−1
n=0 ggsv(x, y, n)2

√∑
x,y

∑Ntotal−N−1
n=0 ggsv(x, y, n + N)2

,

(1)
where C(N) is the autocorrelation for the N frame shift, ggsv(x, y, n) is the
silhouette value at position (x, y) at the nth frame, and Ntotal is the number of
total frames in the sequence. We set the domain of N to be [20, 40] empirically
for the natural gait period; this because various gait types such as running, brisk
walking, and ox walking are not within the scope of this paper. Thus, the gait
period Ngait is estimated as

Ngait = arg max
N∈[20,40]

C(N). (2)

3.2 Extraction of frequency-domain features
As mentioned in the introduction, we use frequency-domain features based on
the gait period Ngait as gait features to avoid troublesome frame synchronization
when matching and view transformations are executed. First we pick up the
subsequences {Si}(i = 1, 2, ..., Nsub) for every Ngait frames from a total sequence
S. Note that the frame range of the ith subsequence Si is [iNgait, (i+1)Ngait−1].
Then the Discrete Fourier Transformation (DFT) for the temporal axis is applied
for each subsequence, and amplitude spectra are subsequently calculated as

Gi(x, y, k) =
(i+1)Ngait−1∑

n=iNgait

ggsv(x, y, n)e−jω0kn (3)

Ai(x, y, k) = |Gi(x, y, k)|, (4)

where ω0 is a base angular frequency for the gait period Ngait, Gi(x, y, k) is
the DFT of GSV for k-times the gait period, and Ai(x, y, k) is an amplitude
spectrum for Gi(x, y, k).

Direct-current elements (k = 0) of the DFT do not represent gait periodicity;
therefore, they should be removed from the features. Moreover, high frequency
elements (k > kthresh) have less intensity than lower-frequency ones and mainly
consist of noise, thus they also should be removed. In this paper, we decide
kthresh = 5 experimentally. As a result, Ai(x, y, k)(k = 1, · · · , 5) is used as the
gait feature and its dimension NA sums up to 20× 30× 5 = 3000.

Figure 3 shows extracted amplitude spectra for various view directions. The
view direction is defined as the angle formed by an optical axis and a walking
direction, as shown in Fig. 4, and in this paper the unit of the view direction is a
degree. Amplitude spectra vary widely among view directions for each subject,
and to some extent they also have individual variations for each view direction.
Moreover, we can see that all the subjects have similar common tendencies for
amplitude spectra variations across view direction changes. This fact indicates
a real possibility that the variations across view direction changes are expressed
with the VTM independently of individual variations.
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Fig. 3. Extracted features for every 15 degree view direction for some subjects

optical axis

walking direction

walking person

view direction: θcamera

Image plane

virtual camera 

at opposite side

Fig. 4. Definition of view direction θ at top view

3.3 Matching measures

We first define a matching measure between two subsequences. Let a(Si) be a
NA dimensional feature vector composed of elements of the amplitude spectra
Ai(x, y, k). The matching measure d(Si,Sj) is simply chosen as the Euclidean
distance:

d(Si,Sj) = ||a(Si)− a(Sj)||. (5)

Next, we define a matching measure between two total sequences. Let SP

and SG be total sequences for probe and gallery, respectively, and let {SPi}(i =
1, 2, . . .) and {SGj}(j = 1, 2, . . .) be their subsequences, respectively. Gallery
subsequences {SGj} have variations in general and probe subsequences {SPi}
may contain outliers. A measure candidate D(SP,SG) to cope with them is
the median value of the minimum distances of each probe subsequence SPi and
gallery subsequences {SGj}(j = 1, 2, . . .):

D(SP,SG) = Mediani [min
j
{d(SPi ,SGj )}. (6)

4 Adaptation to view direction changes

We briefly describe the formulation of a VTM in a way similar to that in [23].
Note that we apply the model to the frequency-domain feature extracted from
gait image sequences while that in [23] directly applied it to a static image.
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We first quantize view directions into K directions. Let am
θk

be a NA dimen-
sional feature vector for the kth view direction of the mth subject. Supposing
that the feature vectors for K view directions of M subjects are obtained as
a training set, we can construct a matrix whose row indicates view direction
changes and whose column indicates each subject; and so can decompose it by
Singular Value Decomposition (SVD) as




a1
θ1
· · · aM

θ1
...

. . .
...

a1
θK
· · · aM

θK


 = USV T =




Pθ1

...
PθK




[
v1 · · · vM

]
, (7)

where U is the KNA×M orthogonal matrix, V is the M×M orthogonal matrix,
S is the M×M diagonal matrix composed of singular values, Pθk

is the NA×M
submatrix of US, and vm is the M dimensional column vector.

The vector vm is an intrinsic feature vector of the mth subject and is inde-
pendent of view directions. The submatrix Pθk

is a projection matrix from the
intrinsic vector v to the feature vector for view direction θk, and is common for
all subjects, that is, it is independent of the subject. Thus, the feature vector
am

θi
for the view direction θi of the mth subject is represented as

am
θi

= Pθiv
m. (8)

Then, feature vector transformation from view direction θj to θi is easily
obtained as

am
θi

= PθiP
+
θj

am
θj

, (9)

where P+
θj

is the pseudo inverse matrix of Pθj . In practical use, transformation
from one view direction may be insufficient because motions orthogonal to the
image plane are degenerated in the silhouette image. For example, it is difficult
for even us humans to estimate a feature am

90 from am
0 (see Fig. 3 for exam-

ple). Therefore, when features for more than one view direction (let them be
θj(1), . . . , θj(k)) are obtained, we can more precisely transform a feature for the
view direction θi as

am
θi

= Pθi




Pθj(1)

...
Pθj(k)




+ 


am
θj(1)

...
am

θj(k)


 . (10)

In the above formulation, there are no constraints for view transformation,
but each body point such as head, hands, and knees appears at the same height,
respectively, for all view directions because of the height scaling as described in
sec. 2. Therefore, we constrain transformation from a height yi to another height
yj(6= yi) and define the above transformation separately at each height yi.

Moreover, we introduce a simple opposite view transformation. Let the range
of a view direction [θi, θj ] be R[θi,θj ]. When a target subject is observed at a dis-
tance from a camera and weak perspective projection is assumed, the silhouette
image observed with a virtual camera at the opposite side from the view direc-
tion1 θ as shown in Fig. 4 (let the image be Iopp(θ)), becomes a mirror image of
1 Note that the view direction θ is defined for the actual camera and that it is used

in common for both the actual and the virtual cameras.
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the original silhouette image from view direction θ (let it be I(θ)). In addition,
it is clear that Iopp(θ) is the same as I(θ + 180). Hence, I(θ + 180) is trans-
formed as a mirror image of I(θ). In the same way, once the amplitude spectra
for R[0,180) are obtained, the remaining features for R[180,360) are obtained by
transformation. Thus, a training set for VTM is only composed of features for
R[0,180).

5 Experiments

5.1 Datasets
We use a total of 719 gait sequences from 20 subjects for the experiments. The
sequences include 24 view directions at every 15 degrees. The training set for
the VTM is composed of 120 sequences of 10 subjects from 12 view directions:
θ =0, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, and 165. Then, we prepare
5 gallery sets: G0, G45, G90, G135, G0−90, where Gθ has 20 sequences from 20
subjects with view direction θ, and Gθi−θj is a compound gallery of Gθi and Gθj ;
that is, it has 40 sequences from 20 subjects with 2 views, θi and θj . A probe
set (test set) is composed of the other sequences except for those of subjects
included in the training set, and each sequence is indexed in advance with the
view direction because view direction estimation is easily done using a walking
person’s velocity in the image or by view direction classification with averaged
features for each view direction. In the following subsections, for convenience,
we represent a gallery transformed by eq. (9) or eq. (10), and probe with view
direction θ as Gsθ and Prθ, respectively.

5.2 Feature transformation
For comparison, we first briefly describe image transformation by perspective
projection (PP) [21]. This method approximates that gait motion is represented
in the sagittal plane when the person is observed at a distance from a camera.
This method cannot transform images if G0 is given, thus we substitute a lon-
gitudinal plane orthogonal to the sagittal plane in such case. Moreover, in the
case of G0−90, we use the sagittal plane for R[45,135] and R[225,315] and use the
orthogonal plane for the other directions.

We show transformed features using PP in Fig. 5. We can see that the trans-
formed features whose view directions are near those of the original galleries
are relative fine (especially Gs75 and Gs105 for G90) and that the other features
differ a lot from the original features.

We show transformed features with our VTM in Fig. 6. Because G0 contains
relatively few features, the transformed features from G0 are very poor (Fig.
6(b)). On the other hand, the other view directions contain relatively many
features, and the transformed features (Fig. 6(c)-(f)) seem to be similar to the
original ones (Fig. 6(a)).

5.3 Performance of gait recognition
We constructed a matching test using the transformed features by both PP and
VTM from the 5 above gallery sets. A probe is assigned verification when eq.
(6) is above a certain threshold value, and a Receiver Operating Characteristics
(ROC) [24] curve is obtained by plotting pairs of verification rate and false alarm
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(a): original feature, (b)-(f): transformed features from G0, G45, G90, G135, and G0−90

respectively. Fig. 5. Transformed features with PP

rate for various threshold values. The tests are repeated for different 20 training
sets and the averaged performance evaluated by the ROC curve shown in Fig.
7. In this graph, probes are limited to Pr0, Pr45, Pr90, and Pr135 for visibility.

It is clear that the probes with the same view direction as the gallery have
very high performances for all galleries. Then, as seen from the transformed
features in the previous subsection, the performances for G0 are very poor for
both PP and VTM. In the other galleries, Pr135 for G45 and Pr45 for G135 in PP
have relatively high performances; which is why the transformed features for the
view directions θ and (180− θ) become the same in the case that gait motion is
completely symmetric with a phase shift of a half of the gait period. Except for
this point, the performances of the VTM are better than those of PP, especially
in G0−90 (Fig. 7(e)).

Figure 8 shows that the verification rate at a false positive rate (PF ) is 10 % in
the ROC curves and the averaged verification rate. For view directions R[180,360),
the mirror (horizontally reversed) features are transformed as described in sec.
4.

As shown in Fig. 7, performances for G0 are very poor in both PP and
VTM. As for PP, probes whose view directions are near to those of the gallery
have relatively high performances (e.g. Pr75 and Pr105 for G90) because the
weak perspective projection to the sagittal plane works well. In addition, probes
with advantages of symmetry (e.g. Pr135 for G45 and Pr45 for G135) also have
relatively high performances.

On the other hand, almost all of the other VTM performances except for
the above probes are superior to those of PP, especially Pr45, Pr135, Pr225, and
Pr315 in G0−90 achieve fairly good performances compared with PP. As a result,
the averaged performance of the VTM is superior to that of PP, except for G0.
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(a): original feature, (b)-(f): transformed features from G0, G45, G90, G135, and G0−90

respectively. Fig. 6. Transformed features with VTM

6 Conclusion and future works

In this paper, we proposed a gait recognition method using amplitude spectra for
the temporal axis and our view transformation model (VTM). First, a walking
person is extracted utilizing temperature-based background subtraction using
an infrared-ray camera, and the gait silhouette volume (GSV) is constructed by
scaling and registering the silhouette images. Then the gait period is detected by
normalized autocorrelation, and the amplitude spectra of the GSV are calculated
by Fourier analysis based on the gait period. After the VTM is obtained with
a training set of multiple subjects from multiple view directions, the features of
various view directions can be made by transformation from features of one or
a few of the view directions. We made experiments using 719 sequences from 20
subjects of the 24 view directions. As a result, the proposed methods achieve
higher performance than the previously proposed perspective projection (PP)
method.

Future works are as follows.
– Combination of VTM and PP for better view change adaptation.
– Experiments for a general database, such as the HumanID Gait Challenge

Problem Datasets [6].
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