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Shape from Scattering: Shape Estimation for Translucent
Objects Based on Light Transport Analysis
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Abstract: Accurate shape measurement has a long history in computer vision yet still remains a challenging task. In
particular, a translucent object is one of the most difficult targets because of complex scattering and transmission of
light in the media, which cannot be represented by a simple image formation model. To address this issue, we propose
a shape from scattering framework, which enables estimation of 3D shape of translucent objects by either exploiting
or explicitly modeling scattering. Our key idea is to represent the inherently complex relationship between the object
shape and scene appearance due to scattering using a simple yet accurate model. Because the scattering distribution
depends on optical properties of target material, we first measure and analyze a light transport on various types of
translucent material as 8-dimensional bidirectional scattering surface reflectance distribution function (8D BSSRDF),
then determine appropriate parameters of a scattering model. Based on the analysis of BSSRDF, we estimate ob-
ject shape from observed appearances with a light attenuation model of single scattering for optically thin material
and convolutional scattering distribution model for optically thick material, respectively. We show the effectiveness
of our shape estimation method with experiments using translucent objects in real scenes. Although scattering has
been regarded as a nuisance and eliminated by employing various pre-processing methods in the past, our shape from
scattering framework eliminates the need of such external methods and makes direct inference of object shape in the
presence of scattering.

1. Introduction
Shape measurement techniques are used in various industrial

situations, such as visual inspection, digital archiving of world
heritage and obtaining object models for computer graphics. Ac-
quisition of object shapes broadens application of computer vi-
sion, thus, shape estimation methods have been advanced for var-
ious types of material such as metal [1], glass [2], [3], and wa-
ter [4]. It is still challenging to obtain the shape of translucent
objects, which transmits and scatters incident light in their subsur-
face because characteristics of illuminated light on their surface
change from simple diffuse reflection. As pointed out by Godin
et al. [5], the brightest observation of incident light on a translu-
cent surface is shifted by scattering. Holroyd and Lawrence [6]
also show the error in shape estimation with sinusoidal projection
patterns for translucent objects depends on the degree of translu-
cency of the target object. There are many translucent objects
around us such as wax, marble, plastic products, and precious
stones. Shape estimation for translucent objects remains an im-
portant and open problem.

While scattering is well studied in the field of computer graph-
ics to render realistic images, it is less discussed in computer vi-
sion because complicated light interactions on the object surface
generated by scattering render inverse problems difficult. Scat-
tering has thus been regarded as a nuisance and eliminated by
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various approaches in applications of computer vision such as
polarization [7], coating with diffuse powder [8], high-frequency
illumination [9], [10], analysis of the light field [11], and phase-
shift method [12]. However, these methods need an additional
preprocessing stage, and it remains difficult to completely ignore
the effect of strong scattering [6]; e.g., the phase-shift method
requires modulation of the projection pattern depending on the
degree of translucency of the target material [13]. Consequently,
shape estimation without the reduction of scattering phenomena
is required.

Contributions of the thesis
This thesis proposes a new shape estimation framework named

shape from scattering, where the shape of a translucent object
is estimated from the observed scattering itself. While the im-
age formation model of translucent objects is needed to estimate
the object shape from observed appearances, it is challenging be-
cause outgoing light from a point on the object surface is an inte-
gration of lights from neighboring areas. Thus, we need a simple
image formation model for the shape estimation in practice. The
image formation models substantially vary by optical property of
target material as shown in Fig. 1. While shading in Fig. 1 (a) is
greatly smoothed, that in (b) is only slightly smoothed. To deal
with these differences of object appearance, we need to select an
appropriate observation model for each material. Based of prior
discussion, we develop a shape from scattering in the following
steps.
(1) Measurement and analysis of light transport on a translu-
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(a) Optically thin translucent object (b) Optically thick translucent object

Fig. 1 Examples of translucent appearance. Although the shape and illumi-
nation are the same, the observed translucent appearances differ in
terms of the optical thickness.

cent surface: Because an observed appearance depends on a light
transport on the object surface, we measure a light transport of
various translucent materials and analyze their characteristics to
select appropriate scattering models. To observe light transport
on a surface, we use a polyhedral mirror to spherically distribute
virtual cameras and projectors around target surface. We also an-
alyze the sampled light transport to obtain a more simple repre-
sentation of scattering light in translucent media by visualization
and angular decomposition of light transport.
(2) Development of a shape estimation algorithm based on an
appropriate scattering model: From the analyzed light trans-
port, we develop image formation model for translucent objects
in a simple but accurate expression. We construct an image for-
mation model for optically thin translucent objects with single
scattering, which is refractive light. We also construct a forma-
tion model for optically thick translucent objects with convolu-
tional scattering model, which spatially distributes light. Based
on these simple image formations, object shapes are estimated
from observed intensities.

2. Related work
In this section, we summarize related work focusing on the

measurement and analysis of light transport in scattering media
and shape measurement under various light transport on object
surfaces.

2.1 Measurement and analysis of light transport in scatter-
ing media

While scattering has been regarded as a nuisance, recent re-
searches analyze complex scattering effect to obtain optical prop-
erties of target media.

Single scattering as a simple one-bounce scattering model is
often used to estimate optical parameters of homogeneous me-
dia [14], [15] and spatial distribution of scattering media [16].
Of course, general scattering also has been analyzed by employ-
ing approximated scattering distributions. Jensen et al.’s dipole
model is the representative multiple scattering model [17], and
Mukaigawa et al. [18] estimated scattering parameters of plastics
based on the dipole model. Gkioulekas et al. [19] analyzed the
object appearance with a phase function, which controls shape of
scattering distributions.

While a usual conventional camera observes target scenes with
an exposure time in the unit of milliseconds, recent ultrafast
camera can observe light propagations at trillion frames per sec-
ond [20]. Because time-scale images represent a process of light

propagation, Wu et al. [21] identify the type of light interaction
in a scene and estimate scattering parameter from images cap-
tured by ultrafast camera. Additionally, they extend normally
four-dimensional light field into a five dimensional light field [22]
with time-scale images. Although time-scale images are useful to
analyze scattering light, we need an expensive ultrafast imaging
system. We thus analyze the scattering light captured by a con-
ventional camera and develop a shape estimation method based
on the scattering characteristics.

2.2 Shape measurement for various light interactions
Shape-from-intensity

Shape-from-intensity is a generic framework for shape mea-
surement from observed intensities. Traditional shape-from-
intensity estimates the object shape from diffuse reflection [23],
[24] or specular reflection [1], [25]. Recent methods focusing on
other types of light interactions on an object surface are also used
such as iridescence [26], attenuated light from light source [27]
and multi-spectral polarization [28]. While object shapes can be
directly estimated from local light interactions, the use of global
light interactions such as interreflections and scattering is difficult
because they do not directly relate to object shape.

Interreflection and scattering often increase the intensity of the
unilluminated area with repeatedly reflected or propagated light
rays on the target surface or in the subsurface. Thus, the surface
shape is estimated from simulated interreflections [29] and light
transport on target object [30]. However, scattering has not been
used in the context of shape estimation because of the difficulty
of exact rendering of scattering light.
Shape measurement of transparent objects

Transparent objects also transmit incident light in a similar
manner to translucent objects. As light does not spread in a
transparent object, shape of transparent objects is easily estimated
from the path of the refracted light.

Most existing methods use pixel correspondence between the
observed appearance and known background texture to obtain the
light path in transparent media [4], [31]. However, it is difficult
to estimate the original background from the appearance of trans-
parent objects. Hence, the light is tracked with other types of
light interactions, such as use of specular reflection and trans-
mission [2], the light field probe [32], multiple interreflections in
the object with polarization [3], partially reflected light [33] and
phase imaging with coherent illumination [34].

Even though our target object is not a transparent object, re-
fracted light is an informative cue in shape estimation. In fact,
we estimate the shapes of optically thin translucent objects using
refracted light in the target objects.
Shape measurement under scattering effects

Scattering has been removed in shape estimation by including
an additional preprocessing stage. In contrast, underwater imag-
ing techniques analyze target scenes in the presence of scattering
because scattering light in underwater is simply attenuated in the
medium. Narasimhan et al. [35] and Tsiotsios et al. [36] mod-
eled attenuation of light propagation, and estimate reflectance of
the target object. However, these methods cannot be directly ap-
plied to estimate the shape of translucent objects because incident
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light spreads in translucent objects.
While shape estimation from scattering effects remains a chal-

lenging problem, Dong et al. [37] estimated the shapes of translu-
cent objects from observed intensity that includes scattering ef-
fects. They represent complex scattering process in simple model
under assumption of an optically thick homogeneous medium,
and estimate object shape from observed appearances. Our pro-
posal is similar to this approach, where we use a simple scattering
model according to the analysis of light transport in translucent
media.

3. Representation of light transport
Before beginning the main discussion, we describe the basic

theory of light transport with emphasis on a translucent surface.
We first present typical light transport phenomena on a translu-
cent surface and then discuss the representation of light transport.

3.1 Light transport on a translucent surface
When a light ray strikes a translucent surface, the light partially

is reflected on the surface, and partially transmits and scatters in
the medium as shown in Fig. 2. The ratio of the surface reflection
and subsurface scattering is physically determined by the Fres-
nel reflectance and transmittance [38]. Although distributions of
reflected and scattered light are complicated, they can be simply
categorized into several elementary components.

Surface reflection is categorized into two basic types: diffuse
and specular reflections. Diffuse reflection reflects light in all
directions from a microscopically rough surface. Ideal diffuse re-
flection is well known as Lambertian reflection [39]. Specular
reflection reflects light to directions around the mirror reflection
direction. Reflection gives an object a glossy or shiny appearance
depending on the observation angle.

Subsurface scattering is also categorized into two types: Sin-
gle and multiple scattering. This categorization depends on the
number of collisions between light and particles in the medium.
While single scattering is a single collision of light with a particle
in the medium, multiple scattering is the collision of light with
particles more than once in the medium before being observed.
The light path of single scattering is determined by refraction on
an object surface, because the single scattering changes the trav-
eling direction of light only once in the medium. In contrast, the
light path of multiple scattering cannot be identified because re-
peated scattering produces an uncountable number of light paths.
As a result, the light of multiple scattering travels and distributes
completely random in the media.

3.2 Representation of light transport
As described in Sec. 3.1, light transport can be characterized

as outgoing distributions of light produced by varying incident
light. This means that light transport can be represented by a re-
lationship between the incident light ray and outgoing light ray. A
bidirectional scattering surface reflectance distribution function
(BSSRDF) provides a framework to express the light transport
on an object surface [40] with the incident and outgoing light ray.
Figure 3 illustrates the notion of the BSSRDF.

The BSSRDF represents the ratio of outgoing light from point

Surface 
reflection

Subsurface 
scattering

Refraction
Single scattering Multiple scattering

Diffuse reflection Specular reflection

Fig. 2 Overview of light transport on a translucent surface. Incident light
not only reflects on a surface but also travels into the medium. The
direction of a light ray changes on a surface because of refraction.

  

  

  

 

 
 

 

Fig. 3 Notion of the bidirectional scattering surface reflectance distribu-
tion function (BSSRDF). When a light ray coming from ωi incidents
at point xi, part of the light scatters into the subsurface. After scat-
tering in the medium, light outputs from a different point xo and is
distributed in the direction ωo.

xo = (xo, yo) in direction ωo = (θo, φo) to incident light at point
xi = (xi, yi) from direction ωi = (θi, φi), and is thus expressed

fBS S RDF(xi,ωi, xo,ωo). (1)

The BSSRDF is an eight dimensional function defined by four
positional parameters and directional parameters.

4. Measurement and Analysis of Light Trans-
port with Full-dimensional BSSRDF

To analyze light transport on translucent objects, we need to
measure the full-dimensional BSSRDF that represents general
light transport in real scenes. However, it has been challenging
researchers have measured only low-dimensional BSSRDFs for
the analysis of isotropic scattering or propagating light in opti-
cally homogeneous media [41]. Sampling of the full-dimensional
BSSRDF is achieved by capturing the intensity for all possible
illumination and observation directions via surrounding illumi-
nation and observation of the target medium. As this sampling
takes an enormous time and requires large numbers of devices,
an appropriate sampling method is needed for the measurement.

In this section, we present a sampling and analysis method for
the full-dimensional BSSRDF. We use a polyhedral mirror sys-
tem to place many virtual cameras and projectors around the tar-
get medium. We also analyze the sampled BSSRDF by visualiz-
ing four-dimensional slices and decomposing into them isotropic
and anisotropic components to observe the characteristics of light
transport. This analysis is the first attempt to sample and analyze
a full-dimensional BSSRDF for general translucent objects.
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(a) Turtleback reflector (b) System overview

Fig. 4 Turtleback Reflector [43]. The combination of the reflector with a
camera and a projector. Many virtual cameras and projectors can be
distributed on a hemisphere.

𝜙 = 0o 

𝜙 = 90o 
𝜃 = −60o 

𝜙 = 180o 

𝜙 = 270o 
𝜃 = 60o 𝜃 = 0o 

𝜃 = −30o 𝜃 = 30o 

Fig. 5 Sampling positions on a hemisphere. Left: virtual cameras and pro-
jectors are placed uniformly in a spherical coordinate system. Right:
sampling positions correspond to the vertexes of the geodesic dome.

4.1 Sampling the full-dimensional BSSRDF
To sample the BSSRDF, we need to surround the target ob-

ject with many cameras and projectors. Obviously, such large
numbers of devices are impractical. Therefore, mirror systems
[42], [43] are often used to produce many virtual cameras and
projectors. While existing mirror systems are designed for spe-
cial imaging methods such as shallow depth-of-field imaging and
confocal imaging, these systems can observe target scenes from
various directions with controlled illuminations. We reuse the
Turtleback reflector shown in Fig. 4, which is developed in pre-
vious research [43]. The sampling densities of the incident po-
sition xi and outgoing position xo are 20 by 20 and 100 by 100,
respectively. The number of sampling directions of ωi and ωo

is 48. Figure 5 shows the position of the virtual cameras and
projectors. In total, 19,200 (48 incident directions × 20 by 20
resolution) images are captured for BSSRDF sampling. If the
shutter speed is set to 100ms, the total sampling time becomes 32
minutes. Although the sampling is sparse, the full-dimensional
(eight-dimensional) BSSRDF can be obtained using our optical
device.

We sampled BSSRDFs of three different materials, namely (a)
epoxy resin, (b) rubber eraser, and (c) marble, as shown in Fig. 6.
These materials have different properties of translucency. The
epoxy resin is optically thin, while the rubber eraser is optically
dense. The marble is a typical inhomogeneous material. Square
regions indicated by red broken lines show the sampling areas.
Figure 6 shows examples of images captured by virtual cameras
that are enhanced by gamma correction (γ = 2.0). The left col-
umn of Fig. 6 shows images captured by different virtual cam-
eras under the same incident light. These are four-dimensional
(xo,ωo) slices of the sampled BSSRDFs under fixed illumination
xi = (0, 0) and ωi = (2.2◦, 154.3◦). Each small block shows the
brightness at each outgoing position xo from a particular outgoing
direction ωo. The right column of Fig. 6 shows images captured
by the same virtual camera under different incident lights. These

(a) epoxy resin	

(b) rubber eraser	

(c) marble	

Fig. 6 Examples of images captured by virtual cameras. The left column
shows images captured by different virtual cameras under the same
incident light. The right column shows images captured by the same
virtual camera under different incident lights. These images are en-
hanced by gamma correction (γ = 2.0).

are four-dimensional (xo,ωi) slices sampled from the fixed inci-
dent point xi = (0, 0) and outgoing direction ωo = (2.2◦, 154.3◦).
As there is color bleeding in the captured images owing to the
color filter pattern of the projector, we analyze the scattering in-
tensities in grayscale. Although simple analysis of the spatially
distributed light with fixed illumination and observation direc-
tions is possible, it is difficult to observe the directionally dis-
tributed light for the outgoing direction from measurements in
Fig. 6. Here, we analyze the sampled BSSRDFs in terms of both
directional and spatial distribution.

4.2 Analysis of Sampled BSSRDF
In the first, we analyze sampled BSSRDFs by visualization.

It is difficult to directly show the eight-dimensional function
f (xi,ωi, xo,ωo). Hence, we visualize the low-dimensional BSS-
RDF f (xo,ωo) with fixed incident light.

Figure 7 shows four-dimensional slices f (xo,ωo) =

f (xo, yo, θo, ϕo) of the BSSRDF at a couple of incident positions
as six-dimensional slices f (xi, xo,ωo) = f (xi, yi, xo, yo, θo, ϕo)
of the BSSRDF. The direction of illumination is fixed at
ωi = (44.9◦, 74.8◦). We plot the value of the BSSRDF at xo from
−10 to 10 in 10 intervals for all viewing directions in log-scale
pseudo color on a spherical coordinate system at each outgoing
position. The center and right columns in Fig. 7 show four-
dimensional slices of the BSSRDF obtained with illumination at
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(a) epoxy resin	

(b) rubber eraser	

(c) marble	

Fig. 7 Visualized BSSRDF. The direction of illumination is fixed at
(θi, ϕi) = (44.9◦, 74.8◦). The left column of images in (a) - (c) shows
illuminated positions for the visualization of each material. The cen-
ter column of images in (a) - (c) presents visualizations of the BSS-
RDF for illumination at the red point. The right column of images in
(a) - (c) presents visualizations of the BSSRDF for fixed illumination
at the blue point. The red arrow shows the direction of illumination.

the red and blue points, respectively. Figure 7 (a) shows slices
of the BSSRDF of epoxy resin in which there is a straight light
distribution. Visualized directional distributions at each position
have a peak value for a specific direction and BSSRDFs have
large values along the azimuth angle of the direction of illumi-
nation. This shows that scattering in epoxy resin is accounted
for by single scattering because single scattering preserves the
directionality of incident light. Additionally, slices of BSSRDFs
are similar despite having different incident positions because
epoxy resin is a homogeneous medium. Figure 7 (b) shows a
visualized slice of the BSSRDF of rubber eraser. BSSRDF slices
obtained for different incident points are also similar owing to
the homogeneity. The directional distribution at each position
has an almost constant value that decreases with distance from
the incident point. This shows that multiple scattering loses the
directionality of the incident light and is distributed uniformly
among the outgoing directions. Figure 7 (c) shows the visualized
BSSRDF of marble. Because marble is optically thin, light
propagates in a particular spatial region as for epoxy resin.
However, slices of BSSRDFs for different incident positions
are not the same owing to the inhomogeneous structure. As
eight-dimensional BSSRDF includes spatial information such as
the incident and outgoing positions, we can analyze the spatial
structure according to the similarity of BSSRDF slices.

Figure 8 shows six-dimensional slices f (ωi, xo,ωo) =

f (θi, ϕi, xo, yo, θo, ϕo) of the BSSRDF. The red distribution is ob-
tained for the direction of illumination (θi, ϕi) = (44.3◦, 127.2◦),
and the blue distribution is obtained for (θi, ϕi) = (43.7◦, 233.7◦).
Directions of illumination are almost symmetric. Optically thin
materials such as epoxy resin and marble changes the shape of
the distribution according to the direction of illumination and dis-
tributions at each point are anisotropic. Light distributions of op-

tically dense rubber eraser do not change with the incident angle.
Additionally, distributions at each incident point are isotropic.
For any material, angular distributions with the direction of il-
lumination represent optical characteristics of the material.

In this section, we analyze the sampled BSSRDFs by visual-
ization. If the BSSRDF is represented by an approximated low-
dimensional function, it is difficult to analyze both spatial and an-
gular distributions simultaneously. We carry out detailed analysis
by sampling the full-dimensional BSSRDF.

4.3 Decomposition of isotropic and anisotropic components
To analyze light transport on an object surface, it is important

to decompose the observed phenomenon into basic optical com-
ponents. As traditional photometric methods have assumed only
diffuse reflection, surface reflection is often decomposed into dif-
fuse and specular reflection components to remove specular ef-
fect [44]. Nishino et al. [45] focused on the angular dependency
of surface reflection, and decomposed surface reflection into an-
gular dependent specular reflection and angular independent dif-
fuse reflection. Inspired by their method, we decompose the ob-
served BSSRDF according to the angular dependency.

In the previous section, we showed various directional depen-
dencies of the scattered light; i.e., the BSSRDF can be decom-
posed into an angular independent isotropic component and angu-
lar dependent anisotropic component as illustrated in Fig. 9. The
isotropic component does not depend on the viewing direction,
while the anisotropic component varies according to the viewing
direction. Hence, we formulate the decomposition as

f (xi,ωi, xo,ωo) = fi(xi,ωi, xo) + fa(xi,ωi, xo,ωo), (2)

where the function fi represents the isotropic component and the
function fa represents the anisotropic component. It is noted that
the argument ωo is not included in the function fi because of the
independency on the viewing direction.

The two components are decomposed according to the con-
stancy of the angular distribution. To implement this idea, we
refer to a separation method proposed by Nishino et al. [45]. In
their work, they simply extracted view-independent components
by taking the minimal pixel value at each surface point as a con-
stant component over image sequences. We also apply this idea
to decompose sampled BSSRDFs. The isotropic component is
separated by finding the minimal value along viewing directions
at each surface point:

fi(xi,ωi, xo) = min
ωo∈Ω

f (xi,ωi, xo,ωo), (3)

where Ω denotes the hemispherical directions. The anisotropic
component is then computed as the residual according to

fa(xi,ωi, xo,ωo) = f (xi,ωi, xo,ωo) − fi(xi,ωi, xo). (4)

An overview of this decomposition is depicted in Fig. 10.
Figure 11 shows the decomposition results of sampled BSS-

RDFs of epoxy resin, rubber eraser and marble in pseudo color.
The left column shows the sum of sampled BSSRDFs for all ob-
servation directions Eboth, the center column shows the sum of the
decomposed anisotropic BSSRDF for all observation directions

c⃝ 2015 Information Processing Society of Japan 5

Vol.2015-CVIM-197 No.34
2015/5/19



IPSJ SIG Technical Report

(a) epoxy resin (b) rubber eraser (c) marble

Fig. 8 Close up of the visualized BSSRDF, showing the angular distribution at (xo, yo) = (−10, 0), (10, 0).
The red arrow represents the direction of illumination (θi, ϕi) = (44.3◦, 127.2◦) and the blue arrow
represents the direction of illumination (θi, ϕi) = (43.7◦, 233.7◦). Blue and red distributions repre-
sent the visualized angular distribution for each illumination

(a) Both
components

(b) Anisotropic
component

(c) Isotropic
component

Fig. 9 Concept of decomposition. We decompose sampled BSSRDFs into
isotropic and anisotropic components according to the directional de-
pendency.

General BSSRDF 

Outgoing 
direction 𝝎𝑜  

Outgoing direction 𝝎𝑜  

   BSSRDF 
𝑓(𝒙𝑖 , 𝝎𝑖 , 𝒙𝑜, 𝝎𝑜) 

Angular dependent 
Component 

𝑓𝑎(𝒙𝑖 , 𝝎𝑖 , 𝒙𝑜, 𝝎𝑜) 

Angular independent 
Component 
𝑓𝑖 𝒙𝑖 , 𝝎𝑖 , 𝒙𝑜  

Fig. 10 BSSRDF decomposition with analysis of outgoing direction ωo.
Constant bias in the BSSRDF corresponds to an angular indepen-
dent component, and the remainder of the BSSRDF is the compo-
nent dependent on angle.

Ea and the right column shows the scaled decomposed isotropic
BSSRDFs Ei, which are expressed as

Eboth =
∑
ωo

f (xi,ωi, xo,ωo), (5)

Ea =
∑
ωo

fa(xi,ωi, xo,ωo), (6)

Ei = s fi(xi,ωi, xo). (7)

As epoxy resin has strong directional scattering, most of the light
is categorized in the anisotropic component. In contrast, strong
multiple scattering in the rubber eraser belongs to the isotropic
component. Illuminated light gradually loses its directionality as
light scatters in the medium because the light path varies accord-
ing to a number of scattering, such that low-bounce scattering
retains the directionality, while higher-order scattering loses the
directionality of a propagating light in the media. Hence, we of-
ten see anisotropic scattering in optically thin media and isotropic
scattering in optically dense media. This result shows that we can
decompose the scattering component into low-bounce and high-
order scatterings according to the angular dependency, and the
angular dependency is a clue with which to analyze optical den-
sity. Marble also has a low isotropic component because its inho-
mogeneous structure generates angular varying distribution. This
result reveals that the spatial structure of an object affects the an-
gular dependency of scattered light in the media.

From the above results of decomposition, we confirm that
the sampled BSSRDFs can be decomposed into isotropic and
anisotropic components by the analysis of the BSSRDF in out-

Both 
components	

Anisotropic 
component	

Isotropic 
component	

Both 
components	

Anisotropic 
component	

Isotropic 
component	

Both 
components	

Anisotropic 
component	

Isotropic 
component	

(a) epoxy resin	

(b) rubber eraser	

(c) marble	

Fig. 11 Decomposition results for three materials. The left column
shows both components, the center column shows the decomposed
anisotropic component and the right column shows the decomposed
isotropic component. Each image shows the total energies of emit-
ted light at each surface point.

going direction. In addition, we can analyze optical thickness
and homogeneity using the decomposed BSSRDF.

4.4 Discussion
In this section, we presented a novel method of sampling and

analyzing full-dimensional BSSRDFs. For sampling, we used the
Turtleback reflector, which is a polyhedral mirror system that il-
luminates and observes the object surface from various directions
by virtual projectors and cameras. This system samples the full-
dimensional BSSRDF in relatively short time. For analysis, we
visualized spatial and angular distributions by slicing BSSRDFs
with fixed incident light ray and direction of outgoing direction.
The analysis on directional distributions of the light transport has
already done in research on BRDFs, the analysis on incident and
outgoing points is achieved by the full-dimensional BSSRDF.
In addition, we decomposed the BSSRDF into angular isotropic
and anisotropic components by the analysis of outgoing direc-
tion. The analysis revealed that the ratio of the two components
strongly depends on the optical thickness and homogeneousness
of the medium.
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5. Shape Estimation of an Optically Thin
Translucent Objects

From this section, we propose a shape estimation method for a
translucent object based on the discussion in Sec. 4.4. When trav-
eling through a translucent medium, light collides with particles
and scatters in the medium. Because the density of particles is
low in optically thin translucent media, incident light rarely col-
lides with particles and travels almost in a straight line. Thus, at-
tenuated light is often observed around refracted light as shown in
Sec. 4.2. The attenuation of light is modeled using the Lambert-
Beer law [46]. The law describes that incident light exponentially
attenuates along the length of the light path in a medium. While
the light path of scattering is usually complex owing to uncount-
able collisions with particles, the light path of a single scatter-
ing is identified uniquely because light collides with a particle
only once in the medium. Propagating light in an optically thin
medium is dominated by low-bounce scattering, and the light at-
tenuation model of single scattering is thus appropriate for our
target. We derive a solution method using a model of single scat-
tering that takes into account the refraction, an extinction coeffi-
cient and a phase function. Additionally, we develop an effective
solution method based on energy minimization for the simultane-
ous estimation of the shape and scattering parameters.

5.1 Background
Figure 12 (a) shows a parametric single scattering model.

In a scattering medium, incident light exponentially attenuates
along the length of the light path according to the Lambert-Beer
law [46]. It also scatters through a solid angle in the medium,
and a good approximation of the phenomenon is the Henyey-
Greenstein phase function [47]. With this phase function, the
observed intensity I of single scattering is described as [14], [15]

I = sp(g, θ)e−σt(d1+d2)dω, (8)

p(g, θ) =
1

4π
1 − g2

(1 + g2 − 2g cos θ)
3
2

, (9)

where s is a scaling constant that includes the intensity of the
incident light and scattering coefficient, σt is an extinction coeffi-
cient, (d1 +d2) is the length of the light path in the medium, dω is
the solid angle of the light ray, and p(g, θ) is the phase function.
The phase function represents the scattering distribution, and the
distribution profile is controlled by a parameter g (−1 ≤ g ≤ 1).
Fig. 12 (b), (c), and (d) show examples of the distribution profiles
produced by varying g.

5.2 Formulation
We formulate the relationship between observed intensities of

single scattering and the shape of a translucent target. Figure 13
shows our setting for the shape measurement. A translucent ob-
ject is illuminated from one side and observed from the top. We
assume a homogeneous material as a target object and ortho-
graphic projection for both illumination and observation. We also
assume that a incident light ray attenuates along horizontal line
in an object and does not reflect on other surfaces of the object.
In addition, we ignore multiple scattering for now, but explain a

𝑑1 𝜃 

𝑑2 

𝑝(𝑔, 𝜃) 

𝐼 

(a) Scattering model 

(b) 𝑔 > 0 

(c) 𝑔 = 0 

(d) 𝑔 < 0 

𝑑𝜔 

Fig. 12 Illustration of the scattering model and examples of distribution
profiles with a varying phase function.
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Fig. 13 Setting for shape estimation. A translucent object is illuminated
from the side and observed from the top. Light path in the target
object. The incident plane is almost planar, and incident light is as-
sumed to be parallel to the x-axis. The illuminated ray reaches the
surface point (x, y), changing its travel direction at the scattering
point (x′, y′).

method for handling it in later sections.
Figure 13 illustrates a light path of single scattering in a

medium. The incident ray ix scatters through a solid angle dω
at scattering point (x′, y′), and reaches surface point (x, y). n(x, y)
represents the surface normal and ix = [1, 0, 0]T and iz = [0, 0, 1]T

are incident and exiting light vectors, respectively. r(x, y) is a unit
scattering vector pointing from the scattering point (x′, y′) to the
surface point (x, y). The angle between the incident vector ix and
the scattering vector r(x, y) is denoted as θp. θr represents the
projected angle of θp on the plane spanned by r(x, y) and iz. Our
purpose is to estimate the height of the translucent object h(x, y)
from the observed intensity I(x, y) at the surface point (x, y) on
the surface, where the height of the incident ray is z = 0. The
scattered incident ray ix is finally refracted at the object surface.
The angle of refraction obeys Snell’s law, expressed as

n(x, y) × iz = ηn(x, y) × r(x, y), (10)

where η is the refractive index, and × represents a cross-product
operator. The total length of the light path becomes the sum of x′,
which corresponds to the sum of the distance from the incident
point to the scattering point and the distance from the scatter-
ing point to the surface point, h(x, y)/sin θr. As the intensity of
single scattering is modeled as Eq. (8), the observed intensity is
expressed as
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I(x, y) = sF in
t Fout

t (x, y)p(g, θp)e−σt

(
x′+ h(x,y)

sin θr

)
dω(h(x, y), θr),

(11)

dω(h(x, y), θr) =
sin θrdA
h(x, y)2 ,

where s is a scaling constant, Fout
t (x, y) is the Fresnel transmit-

tance on the surface point (x, y), and F in
t is the constant Fresnel

transmittance on the incident point because the incident light is
perpendicular to the incident plane. dA is the physical size of a
pixel in the observed image. Equation (11) shows that the ob-
served intensity depends on both the geometric shape and scat-
tering parameters, namely the extinction parameter σt, refractive
index η, and phase function parameter g. Given these scattering
parameters, the height of the translucent object is determined to
an unknown offset owing to s as

h(x, y) =
sin θr
σt

(
log s + log F in

t + log Fout
t (x, y) + log p(g, θp)

+ log dω(h(x, y), θr) − log I(x, y)
) − x′ sin θr.

(12)

5.3 Solution method
In the previous section, we described a basic theory for ob-

taining the shape from single scattering. However, in reality, we
cannot directly estimate the object height h(x, y) using Eq. (12)
because of the unknown parameters and unclosed form of the
function. In addition, the observed intensities include contribu-
tions from not only single scattering but also multiple scattering.
In this section, we discuss a method that solves these problems.
Our method assumes that the refractive index η is known because
it can be directly measured using a refractometer.
Shape estimation by energy minimization

In our method, we employ an energy minimization approach to
simultaneously determine both the shape and scattering param-
eters. When the unknown parameters and height are correctly
estimated, Eq. (11) should give an intensity that is equivalent to
the observed intensity I(x, y). Although we can estimate the un-
known parameters by seeking parameters that generate the ob-
served intensity, parameter estimation tends to be unstable owing
to a larger number of unknown parameters than the captured in-
tensity. To reliably derive a solution to this problem, we use mul-
tiple n(2 ≤ n) images that are captured by changing the height of
the incident ray; i.e., we record multiple intensities Ii(x, y) with
varying heights of the incident rays z = di (i = 1, . . . , n) as shown
in Fig. 13. We now have n intensity observations per scene point
Ii(x, y), expressed as

Ii(x, y) = sF in
t Fout

t (x, y)p(g, θp)e−σt(x′i+
h(x,y)−di

sin θr
)dω(h(x, y), θr),

i = 1, . . . , n.(13)

We also take into account the signal-to-noise ratio of the observed
intensities; the darker observations suffer more from image noise
while the brighter observations are more reliable. We incorpo-
rate this by introducing a weighting factor wi when determining
the unknown parameters. We thus define an energy function for
computing heights h(x, y) and scattering parameters s, g, σt as

E(h(x, y), s, g, σt) =
∑

i

wi

∑
x,y

(
Ii(x, y) − Igen

i (h(x, y), s, g, σt)
)2
,

(14)

where Igen
i is the generated intensity obtained using Eq. (13), and

wi is a weighting factor that reduces the effect of noise. We define
the weighting factor wi as

wi =

∑
x,y Ii(x, y)∑n

k=1
∑

x,y Ik(x, y)
. (15)

The energy function E evaluates the closeness between the ob-
served intensity and intensity generated using Eq. (13). The min-
imization of the energy function E gives us estimates of the height
h(x, y) per-pixel and scattering parameters s, g and σt as

{h(x, y), s, g, σt} = argmin
h(x,y),s,g,σt

E(h(x, y), s, g, σt). (16)

We describe the optimization method in the following section.

5.4 Implementation
This section describes the implementation details of the solu-

tion method. Our method employs non-linear optimization be-
cause of the non-convexity of Eq. (14) with respect to the un-
known parameters. We now describe the method for making the
initial guess of the height h(x, y) and the following optimization
strategy.
Estimation of initial shape: To make an initial guess of the esti-
mated parameters, we use the initial shape h0(x, y) computed by
ignoring refraction (η = 1). When η = 1, the scattering vector co-
incides with the output vector iz, the two-dimensional projection
of the scattering point (x′, y′) becomes identical to the surface
point (x, y), and Fresnel transmittance Fout

t (x, y) is constant be-
cause refraction is disregarded. Since the angle θp equals π/2, the
phase function p(g, θp) becomes constant. In addition, we assume
that solid angle dω(h(x, y), θr) is a constant value. The intensity
generated from initial height h0(x, y) is described as

I0
i (x, y) = S e−σt(h0(x,y)+x−di), S = sF in

t Fout
t p
(
g,
π

2

)
dω. (17)

Here, unknown parameters are the height h0(x, y), scaling con-
stant S , and extinction coefficient σt. Using a pair of intensity
observations Ii(x, y) and I j(x, y) obtained for different heights of
incident rays di and d j, the extinction coefficient is calculated as

σt =
log Ii(x, y) − log I j(x, y)

di − d j
(di , d j). (18)

In practice, we take the average for all pairs of di and d j as the
estimate of σt. We employ the intensity at the incident point as
the initial scaling constant S for the scaling without attenuation.
The initial guess of the height h0(x, y) is therefore described as

h0(x, y) =
1
σt

(
log S − log Ii(x, y)

) − x + di, (19)

and is estimated using the parametersσt and S . We use this initial
guess as an input to the optimization: h(x, y)← h0(x, y).
Optimization: Now we estimate the shape and parameters by
minimizing Eq. (16) using h0 as the initial guess of the shape.
The unknowns to be estimated are the per-pixel height h(x, y) and
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Fig. 14 Experimental setting. A projector is placed on the side of the ob-
ject, and a camera is vertically placed. We used a telecentric lens
for orthographic projection.
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Fig. 15 Target object for evaluation

scattering parameters s, g, and σt. To efficiently avoid local min-
ima, we use a two-step approach for the optimization. Specifi-
cally, we first apply particle swarm optimization [48] to limit the
search range in a coarse manner, and then use the Nelder-Mead
method [49] to find the optimal parameter set on a fine scale.
Extraction of single scattering: As discussed above, actual ob-
servations consist of both single and multiple scatterings. To sep-
arate the single scattering component from multiple scattering,
we utilize a separation method [14] which uses projector as a light
source as shown in 13. The extracted single scattering component
is used as input for our method. Readers are referred to [14] for
the details of the separation method.

5.5 Experiments
We assess the effectiveness of the proposed method for real-

world scenes. Figure 14 shows the experimental setting. A 3M
MPro110 projector was placed on the side of the target object,
and a Point Grey Grasshopper camera that had a linear response
sensor was vertically placed to obtain a top view. To avoid the
perspective effect of the imaging system, we used an Edmund
optics telecentric lens for approximating an orthographic projec-
tion. To perform a comprehensive analysis, we used a concave
translucent object which is made in known size. We show target
objects and their sizes in Fig. 15. The ground truth of these ob-
jects was known for quantitative evaluation. We set the refractive
index η as 1.3. We captured intensities of single scattering Ii(x, y)
(di = 0.25 × i [mm], i = 0, · · · , 9) while shifting the height of
incident light.

Figure 16 shows the experimental result for the concave object.
Figure 16 (a) shows the decomposition of the scattering compo-
nents in pseudo color. We also horizontally plot intensities of
each scattering component in Fig. 16 (b). The red, green, and
blue plots show the intensities of single scattering, multiple scat-
tering, and observed scattering, respectively. It is observed that
single scattering is almost exponentially attenuated with increas-
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Fig. 16 Experimental result

ing distance from the incident point. Figure 16 (c) shows plots of
extracted single scattering with for different heights of incident
light. We estimate the target shape from these intensities. One-
dimensional plots of estimation results are shown in Fig. 16 (d).
The red, green, and blue lines are the ground truth, initial height,
and final result, respectively. The initial height is not very far
from the ground truth. The final result is estimated as being close
to the ground truth. However, the final result is estimated incor-
rectly in the region of a planar surface. A possible reason for the
incorrect estimation is insufficient intensity of single scattering
for shape estimation because the light paths are longer in observ-
ing this region. In addition, the shape near the incident plane does
not match the ground truth well owing to the bright observation
at the incident point and its glare. Scattering parameters are esti-
mated as s = 1.21 × 104, g = 0.042, and σ = 0.132[mm−1].

We show the result of another convex scene in Fig. 17. Fig-
ure 17 (c) shows the reconstruction result given by single scat-
tering with illumination from the front of the target object. Be-
cause of the insufficient intensities of single scattering as shown
in Fig. 17 (b), the estimated height has large error in the back
area. To reduce the error, we capture the intensities of single scat-
tering by illuminating from the other side of the target object, and
then merge the two estimated reconstruction results. Figure 17 (d)
shows the merged result. Large noise is reduced and whole the
shape is estimated. However, estimated surfaces are not planar
due to artifacts in the decomposed single scattering as shown in
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Fig. 17 Experimental results for an asymmetric convex scene. (b) Observed
single scattering in pseudo color. (c) Three-dimensional plot of the
estimation result with illumination only from one side of the object.
(d) Three-dimensional plot of the merged result.

Fig. 17 (b). This artifact is occurred by projected high-frequency
stripe pattern. It remains difficulty on separation of scattering
components with high accuracy.

5.6 Discussion
Computation time: In this experiment, it took about 15 minutes
to capture images (six images for extracting single scattering at
each of 10 different depths), and it takes a few hours to compute
the shape with an unoptimized Matlab implementation. We com-
puted estimates on an Intel Core 2 Duo central processing unit
(3.00 GHz) with 3GB random access memory. The size of the
problem is 259 (256 points for h(x, y), s, g, and σt) in symmetric
real data, and 873 (870 points for h(x, y), s, g, and σt) in asym-
metric real data.
Limitations: There are a few limitations to the current method.
These limitations will be overcome in our future work.
• Object shape: Our current formulation requires that the in-

cident plane is planar and incident light on the target object
is parallel to the x-axis for the extraction of single scatter-
ing using high-frequency projection. When projected pat-
terns interfere with each other, single scattering cannot be
extracted. This assumption needs to be relaxed when it is
applied to a more general shape.

• Single scattering in an inhomogeneous material: As our
method uses single scattering, which exponentially attenu-
ates with constant scattering parameters, we cannot estimate
the shape of an inhomogeneous material. To deal with spa-
tially varying scattering media, it is required to estimate scat-
tering parameters in a three-dimensional volume. However,
estimation of a huge number of unknown scattering parame-
ters is a challenging task.

5.7 Summary
In this section, we proposed a method of estimating the shape

of optically thin translucent objects based on the attenuation of
single scattering. Because the light in optically thin translucent
object is dominated by low-bounce scattering, the attenuation

model of single scattering is appropriate for target objects in this
section. We modeled the light attenuation in the object based on
Lambert-Beer law and make relationship between the shape of
target object and observed intensities of single scattering. Ex-
periments with real-world results demonstrated that our method
has the potential for the accurate modeling of translucent objects,
which has been difficult to achieve with other appearance-based
methods. While the method works well for translucent objects,
the accuracy suffers from low-intensity measurements and a high
signal-to-noise ratio when measuring optically thick objects, for
which multiple scattering dominates the appearance. In addition,
the accuracy of shape estimation depends on quality of extracting
single scattering by high-frequency illumination. Another issue
relating to the current approach is the high computational cost.
We are interested in looking into these aspects further to make
the approach more practical.

6. Shape Estimation of an Optically Thick
Translucent Objects

The shape of the optically thin translucent object is estimated
from single scattering, which is attenuated along the refracted
light. Refracted light is useful in reconstructing the object shape
because it depends directly on the surface direction. By contrast,
in optically thick translucent objects, incident light does not prop-
agate along the refractive direction, but rather distributes around
the incident point owing to uncountable collisions with particles
in the medium as described in Sec. 4.2. As a result, we cannot ob-
serve refractive transmitted light in the medium but rather obtain
shading of the target object. Observed shadings are often used
to estimate surface normals, which represent the direction of the
object surface, in a photometric stereo technique [24]. The photo-
metric stereo technique is known as a method of estimating object
shape from multiple shading images. While conventional photo-
metric stereo methods have been developed for simple Lamber-
tian diffuse surfaces [39], recent generalizations can handle more
complex reflections in real-world scenes [50], [51]. However, the
estimation of the surface normals of translucent materials remains
a difficult task, with subsurface scattering being significant [52].

While the exact modeling of subsurface scattering remains a
difficult task that requires complicated models, prior studies in the
field of computer graphics show that the image formation model
of subsurface scattering can be well approximated as the convolu-
tion of the scattering kernel and surface radiance of optically thick
materials, which distribute light regardless of the incident direc-
tion [53]. In Sec. 4, we show that light transport in an optically
thick translucent medium does not depend on the directions of the
incident and outgoing light. Hence, we use this approximation to
develop surface normal deconvolution, which recovers the orig-
inal surface normal from the blurry surface normal obtained by
applying the conventional photometric stereo method to translu-
cent objects. This idea is similar to Dong et al.’s method [54],
which estimates the surface normal using deconvolved input im-
ages to remove the subsurface scattering effect. While Dong et al.
assumed parametric subsurface scattering (i.e., photon beam dif-
fusion of optically homogeneous media), we represent subsurface
scattering by non-parametric convolution kernels for either opti-
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Fig. 18 Light interactions on a translucent surface. Incident light is partially
reflected from the surface, while the remaining light transmits and
spreads inside the subsurface.

cally homogeneous or inhomogeneous media. The convolution
kernels can be either calibrated or estimated, and various decon-
volution techniques in the literature (such as image deblurring
methods) can be used in the implementation to recover the de-
blurred surface normal. We present estimation results obtained
using our deconvolution formulation and using existing deconvo-
lution in experiments.

6.1 Convolutional Image Formation Model
We begin with the image formation model for a translucent sur-

face. When light illuminates a translucent surface, it is reflected,
transmitted and absorbed as depicted in Fig. 18. A portion of the
transmitted light returns to the surface via subsurface scattering;
thus, the radiance I(x, l, v) at a scene point x with incident vec-
tor l and observation vector v becomes the sum of the reflection
Ir(x, l, v) and subsurface scattering Is(x, l, v) components:

I(x, l, v) = Ir(x, l, v) + Is(x, l, v). (20)

The subsurface scattering component Is(x, l, v) is modeled as [17]

Is(x, l, v) = γ(x) F(v, n(x), η)
∫
y∈A

R(x, y)F(l,n(y), η)n(y)T ldy

, (21)

where γ(x) is a scale factor for the subsurface scattering compo-
nent, F represents Fresnel transmission, and v,n, l ∈ R3 are the
observation, surface normal, and incident vectors, respectively.
η is a refractive index, R(x, y) represents an extinction term for
light traveling from scene point x to its neighbor y such as a
dipole model [17], and A defines a neighboring area. Generally,
the subsurface scattering component describes a nonlinear rela-
tion between the surface normal and observed intensity owing to
the Fresnel transmission term. To relax this complexity, we ap-
proximate the original model as a simpler form by assuming an
optically thick material, as in [55]. On the surface of an optically
thick material, subsurface scattering does not depend on the di-
rection of the light, because the transmitted light scatters uncount-
able times and loses its directionality due to random light paths
as in the diffusion approximation. Thus, subsurface scattering
is invariant to the incident direction and outgoing direction, and
the Fresnel term F can be regarded as constant for an optically
thick material. As a result, the subsurface scattering component

Is(x, l, v) is simplified as

Is(x, l) = γ′(x)
∫
y∈A

R(x, y)n(y)T ldy, (22)

where γ′(x) is a new scale factor of subsurface scattering that in-
cludes constant Fresnel transmission terms.

Assuming a Lambertian reflectance model for the reflection
component
Ir(x, l) = ρ(x)n(x)T l with a diffuse albedo ρ(x), the intensity ob-
servation I(x, l, v) can be written as

I(x, l) =

ρ(x)n(x) + γ′(x)
∫
y∈A

R(x, y)n(y)dy


T

l. (23)

The first factor of Eq. (23) can be regarded as a simple convolu-
tion model as

I(x, l) =


∫
y∈A

h(x, y)n(y)dy


T

l = (h ∗ n(x))T l, (24)

where ∗ is the convolution operation, and the kernel h represents
a scattering effect for the surface normals and is expressed as

h(x, y) = ρ(x)δ(x − y) + γ′(x)R(x, y). (25)

The kernel h expresses the spatial attenuation of scattering from
incident point on the object surface.

A similar convolutional approximation of subsurface scattering
is also discussed in the work of Munoz et al. [55] for the forward
rendering of optically thick materials. This method is inspired by
the works of convolutional approximated subsurface scattering by
d’Eon et al. [56] for the rendering of human skin and Donner et
al. [41] for multi-layered materials. Unlike their method, where
the extinction term R(x, y) is defined as a function parameterized
only by the relative positions of x and y, our method allows more
flexibility for the extinction term R(x, y) so that inhomogeneous
translucent materials can also be handled.

6.2 Solution method
Based on the convolutional image formation model, we de-

velop a photometric stereo method for estimating the surface nor-
mals of an optically thick translucent surface. Our input is the
same as that of the traditional photometric stereo method in that
a set of images is taken under varying lighting directions from a
fixed viewpoint. To simplify the discussion, we assume that the
light directions are calibrated and the observations do not include
shadows. In the rest of the paper, we consider the discretized pixel
sites u and v that correspond to scene points x and y, respectively;
thus, Eq. (24) becomes

I(u, l) = (h(u, v) ∗ n(u))T l. (26)

The convolution equation Eq. (26) has the simple linear algebraic
expression

D = HNL, (27)

where D ∈ Rm×k is an observation matrix, m and k are the num-
bers of pixels and light directions, respectively, H ∈ Rm×m is
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a scattering matrix, N ∈ Rm×3 is a surface normal matrix, and
L ∈ R3×k is an incident light matrix, which is assumed to be
known. This linear expression indeed has similarity to the expres-
sion of the Lambertian photometric stereo method [24], where the
observation D, scaled surface normal Ns, and light matrix L have
the relationship

D = NsL. (28)

From Eqs. (27) and (28), we see that the scaled surface normal
Ns corresponds to HN according to

Ns = HN. (29)

Therefore, we can regard the scaled surface normal Ns as a blurry
version of the original surface normal N that we wish to estimate.
In the following, we call Ns a smoothed surface normal.

We estimate the surface normal N by taking the following two-
step approach. (a) Obtain the smoothed surface normal Ns by
Lambertian photometric stereo [24], (b) Estimate the surface nor-
mal N in a deconvolution framework using the subsurface scat-
tering matrix H.
(a) Estimation of the smoothed surface normal Ns.

We use a conventional Lambertian photometric stereo
method [24] to derive the smoothed surface normal Ns as

Ns = DL†, (30)

where † represents a Moore-Penrose pseudo inverse.
(b) Estimation of the original surface normal N.

Once the smoothed surface normal Ns is obtained, we use
Eq. (29) to derive the original surface normal N. If the scattering
matrix H is available and invertible, we can directly obtain the
estimate of the original surface normal N in a linear least-squares
fashion as N = H−1Ns. As the estimation result produced by such
simple deconvolution is often degraded by ringing artifacts owing
to the loss of high-frequency information in the original signal,
we use a smoothness constraint to stabilize the estimation. We
design the smoothness term s as a weighted second-order differ-
ence of n(u) between u’s neighborhood locations t and v as

n′′(u) = w(t, u) (n(t) − n(u)) − w(u, v) (n(u) − n(v)) . (31)

The weight w(u, v) controls the discontinuity of surface normals
by taking the difference of intensity observations across varying
lightings li as

w(u, v) = exp

− 1
m

k∑
i

(I(u, li) − I(v, li))2

 . (32)

The matrix expression of the smoothness N′′ is given as

N′′ =WN, (33)

where W ∈ Ra×m is a matrix of the second-order derivative filter,
and a is the number of triplets used to compute the second-order
derivatives. In our case, we define the triplets along horizontal
and vertical directions in the image coordinates. Finally, our es-
timation problem becomes a ridge regression problem expressed
as

Target object	

Thin  
light ray	

Projector	Camera	

Incident 
pattern	

Observation at each point	

Projector	Camera	

Diffuse surface	

Fig. 19 Setting for measuring the convolution kernel. A projector casts a
thin light ray on the target object. We estimate the convolution ker-
nel from the incident pattern and light distributions on the target
object. In the case of an inhomogeneous medium, we capture light
distributions of optically different regions.

N̂ = argmin
N

||HN − Ns||2F + λ||WN||2F , (34)

where λ controls the smoothness of the estimates. An explicit so-
lution to this problem is given by setting the first-order derivative
to zero as expressed by

N =
(
HT H + λWT W

)−1
HT Ns. (35)

In this manner, the estimates for the original surface normal N
can be obtained in a closed-form.

The mathematical expression of the problem is equivalent to
that of the image deblurring problem, where the original sharp
image is recovered via deconvolution. The important difference,
however, is that our problem deals with the deconvolution of
surface normals. Therefore, conventional image priors that are
developed for natural images may not be suitable. Other than
this aspect, existing deconvolution techniques can be alternatively
used to estimate the surface normal N from the smoothed surface
normal Ns. The convolution kernel H is generally unknown, but
can be either calibrated (non-blind deconvolution) or estimated
(blind deconvolution). While most image deblurring techniques
are limited to spatially invariant point spread functions (PSFs),
which corresponds to handling optically homogeneous materi-
als in our case, the formulation of Eq. (35) can naturally handle
optically inhomogeneous materials, corresponding to the case of
spatially-varying PSFs.
Calibration of the Convolution Kernel

As mentioned above, the surface normal deconvolution can be
performed without knowing the convolution kernel using blind
deconvolution techniques; however, knowledge of the convolu-
tion kernel is useful for stabilizing the estimation. In addition,
spatially variant deconvolution is a challenging task in research
on image deconvolution [57], [58]. Thus, we need to know con-
volution kernels at each position for dealing with optically inho-
mogeneous translucent objects. Here we describe a simple pro-
cedure for measuring the convolution kernel. Fig. 19 shows our
setting for measuring the convolution kernel. By illuminating a
diffuse surface and the target translucent material individually by
a thin ray emitted from a projector, we obtain the measurements
of the incident light distribution and scattering response on the
surface, respectively. The measured scattering response corre-
sponds to the convolution between the incident light distribution
and the convolution kernel. From this relationship, we calibrate
the convolution kernel h which represents spatial attenuation of
scattering. When the target medium is optically inhomogeneous,
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Camera 
(Nikon D90) 

Light source 
(3M MP220) 

Target 
object 

Specular 
Sphere 

Polarizer 

Fig. 20 Experiment setting and target objects. We used a projector as a light
source. The camera was equipped with a telescopic lens. Polarizers
were used to reduce the effects of specular reflection on the target
object.

we need to calibrate the convolution kernel in each optically dif-
ferent region.

6.3 Experiments
We now evaluate our method using real-world data for the pur-

poses of qualitative evaluations. Figure 20 shows our experiment
setting. We used a Nikon D90 camera with a linear radiometric
response function (RAW mode) and a telescopic lens to approxi-
mate an orthographic projection. We used a 3M MP220 projector
to provide illumination. The target scenes are illuminated under
directional lighting, and the light directions are calibrated using
a dark specular sphere. In addition, to avoid specular reflections
from the scene, we placed polarizers in front of both the light
source and camera. We used two target objects: a bar of soap as
a homogeneous medium and unicorn ornaments as an inhomoge-
neous media. Each scene was recorded for 12 different lighting
directions. The image sizes of the soap and unicorn scenes were
232×164 and 158×230 pixels, respectively. Prior to the measure-
ment, the convolution kernels were measured using the procedure
described in Sec. 6.2. For the inhomogeneous objects, we mea-
sured two distinct kernels for the different material regions, one
for a white region and the other for a pink region.

Figure 21 shows the experimental results for the soap. The
recorded intensity image is not notably blurry, but the details are
smoothed by subsurface scattering as shown in Fig. 21 (a). The
observed PSF shows incident light distributed on the surface of
the soap. Figure 21 (b) shows the surface normals estimated
using the Lambertian photometric stereo method [24] and our
method. While the result of the Lambertian photometric stereo
method shows smoothed surface normals, our result is sharper.
We also reconstruct the surface shape from normals estimated
using Agrawal et al.’s method[59] as shown in Fig. 21 (c). We
recognize that detailed shapes can be estimated from the normals
of our method.

Figure 22 show experimental results for the unicorn. Observed
PSFs have different light distributions for the different materials
as shown in Fig. 22 (a). Although the observed image is blurred
compared with decomposed direct image, our method estimates
sharper surface normals by reducing scattering effects.
6.3.1 Discussion
Computation time: In the case of optically homogeneous mate-
rials, we can apply various fast deconvolution methods for image

(a) Example of measured image 
     and observed PSF 

Lambertian photometric stereo  

Our method 
(b) Estimated 
     surface normals	

(c) Reconstructed shape 
      from surface normals 

Fig. 21 Result for a real-world scene of soap as a homogeneous medium.
The direct image is calculated using Gu et al.’s method[60], and
shapes are reconstructed using Agrawal et al.’s method [59].

Pink region	

White region	

(a) Example of measured image 
     and observed PSF 

Lambertian photometric stereo  

Our method 
(b) Estimated 
     surface normals	

(c) Reconstructed shape 
      from surface normals 

Fig. 22 Result for a real-world scene of a unicorn ornament as an inhomo-
geneous medium.

deblurring to recover the surface normal. However, in the case
of inhomogeneous media, we have to solve Eq. (35) to deal with
spatially variant convolution kernels. Our Matlab implementa-
tion on an Intel Core i7 central processing unit (3.5 GHz) takes
about 17.6 and 3.5 seconds to recover the surface of the soap and
unicorn scenes, respectively. The density of non-zero elements of
matrix FT F + λWT W in Eq. (35) is about 2.5%. The computa-
tion time depends on the size and number of non-zero elements of
matrix FT F + λWT W, which are determined by the input image
size and apparent sizes of PSFs in the image coordinates.
Limitations: Our method has a couple of limitations. First,
we have ignored the effect of Fresnel transmissions. Thus, our
method is restricted to optically thick materials. As a material
has directional scattering, the accuracy of our method may grad-
ually decrease. We are interested in exploring an iterative estima-
tion framework that can be used to adaptively update the con-
volution kernels for the incorporation of the Fresnel transmis-
sion effects. The second limitation is that our method in prac-
tice relies on known convolution kernels, especially when deal-
ing with optically inhomogeneous materials. Although a sophis-
ticated blind deconvolution method may resolve this issue, at this
point, knowledge of the convolution kernel plays an important
role in obtaining accurate surface normal estimates. We are inter-
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ested in investigating good prior information for surface normal
fields that may potentially improve the blind deconvolution.

6.4 Summary
In this section, we proposed a shape estimation method for op-

tically thick translucent objects. As optically thick translucent
objects show shading on their surfaces, we estimate surface nor-
mals as the object shape from observed images employing the
photometric stereo method. We extended the previous study on
the convolutional approximation of subsurface scattering and de-
veloped a surface normal deconvolution technique, which con-
sists of a conventional photometric stereo method and image de-
convolution. Our experiment shows that the surface normals of
translucent objects are reliably estimated by our method. In ad-
dition, we showed that our method is able to deal with optically
inhomogeneous media.

7. Summary and Discussions
In this thesis, we proposed methods of estimating the shape

of translucent objects from observed scattering light according to
light transport analysis. Scattering in translucent media adversely
affects shape measurement because it prevents reference to the re-
flection on object surface. While most existing methods extract
the scattering effect and thus ignore complex phenomena, scatter-
ing is not completely reduced owing to the degree of the spatial
distribution [13]. Our shape from scattering framework tackles
these problems by obtaining the object shape from the observed
scattering effect itself. The key concept is how to model the rela-
tionship between the observed scattering effect and shape of the
target object. Scattering observations depend not only on the tar-
get shape but also on the optical characteristics of the medium.
Hence, we developed an approximation model of subsurface scat-
tering according to the analysis of light transport in a real translu-
cent medium.

First, we measured light transport in real translucent objects
as described in Sec. 4. We used the Turtleback Reflector to dis-
tribute virtual illuminations and observations around the target
scene, and captured the light transport as the eight-dimensional
BSSRDF that is parameterized by the directions and positions of
incident and outgoing light. The captured BSSRDF was visual-
ized as a distribution around the outgoing direction at each outgo-
ing point with fixed illumination for the analysis of the behavior
of light transport. We also decomposed the BSSRDF into direc-
tional and nondirectional components by analyzing the BSSRDF
along outgoing directions. As a result, we obtained the character-
istics of the response of the BSSRDF to optical properties such
as the directional light in an optically thin translucent medium,
directionally invariant light in optically thick translucent objects,
spatially invariant light in a homogeneous medium, and spatially
varying light in an inhomogeneous medium. While reflection
analysis of the outgoing direction is conducted using the four-
dimensional BRDF, spatial analysis of light transport is available
using the eight-dimensional BSSRDF.

According to the discussion in Sec. 4, we constructed shape
estimation methods for translucent objects. We related scatter-
ing observations and object shape with optical parameters, and

estimated the object shape from observations. For optically thin
translucent objects, we used the attenuation model of single scat-
tering to represent the directional light distribution around the re-
fracted light in the medium. We formulated single scattering ob-
served in the experimental setting as a function of object shape,
and estimated object shape by minimizing an energy function,
which evaluates the difference between observed and synthesized
intensities. We evaluated the estimation accuracy of our method
with real data, and showed the availability of our method when
single scattering inputs are sufficiently bright. For optically thick
translucent objects, we approximate non-directional scattering in
the convolution model. This models not the direct relationship be-
tween the observed intensity and surface shape but the observed
intensity and surface normals, which represent the direction of
the object surface. Although the object shape needs to be re-
constructed from the estimated normals, the convolution model
provides a simple estimation process using a deconvolution algo-
rithm. While we need to calibrate the scattering distribution on
the target surface of each material, we can handle optically in-
homogeneous media. Experiments employing real scenes were
conducted to evaluate the effectiveness of deconvolution-based
scattering reduction in our method.

Our proposal of the shape from scattering framework allows
us to estimate a translucent shape from observed scattering itself
without complicated light transport analysis. Shape from scatter-
ing extends shape estimation to a variety of targets having translu-
cent appearance. Such extension could benefit a wide range of
applications in the field of computer vision that require shape in-
formation; e.g., the automatic visual inspection of industrial prod-
ucts and the archiving of artistic sculptures, where translucent
objects are made of plastic, marble, and wax. Meanwhile, our
framework can also be used in the application of medical imag-
ing because target organs have strong scattering properties. On
the microscope scale, the main application of our method would
be cell imaging.

We still face the problem that our method works on only
translucent objects whose scatterings are modeled as the atten-
uation of single scattering or non-directional multiple scattering.
While we extracted single scattering component from scatterings
in optically thin translucent objects, the single scattering does not
always become a main component in scattering. In optically thin
materials, low-bounce scatterings such as two and three-bounce
scattering are also a main scattering component. Thus, even if
the target object is relatively optically thin translucent, there is a
possibility that extracted single scattering is insufficient intensity
for shape estimation. The spatially varying optical properties of
target objects are also limited in proposed shape estimation. In
the method for optically thin translucent objects, we assume the
spatially homogeneous material. This constraint allows us to es-
timate optical parameters such as extinction coefficient, however,
we cannot apply this shape estimation method to optically inho-
mogeneous translucent object. On the other hand, in the method
for optically thick translucent objects, we can handle optically
inhomogeneous objects, but advancely calibrated scattering ker-
nels at each point on the object surface are needed. Simultaneous
estimating the object shape and optical parameters of optically

c⃝ 2015 Information Processing Society of Japan 14

Vol.2015-CVIM-197 No.34
2015/5/19



IPSJ SIG Technical Report

inhomogeneous material is the most difficult problem setting.
The ultimate solution to deal with any type of translucency

is a brute-force search via the simulation of light propagation
in arbitrary translucent media without any parametric scattering
models. However, it is an ill-posed problem to estimate spa-
tially distributed optical properties and the object shape from a
two-dimensional observed image in real time because a search
range of an enormous number of unknowns is too huge to obtain
an optimal solution. A conventional camera obtains only two-
dimensional information, whereas recently developed advanced
cameras can obtain richer information; e.g., the light field cam-
era and ultrafast imaging camera [61]. The light field camera can
store directions of incoming light from a scene, and the captured
data then give the directional information of propagating light.
Because the information of directionality relates to the directional
distribution on BSSRDFs of a target object, the light field cam-
era imaging helps to shrink the search range of shape estimation.
Ultrafast imaging [61] observes the temporal sequence of light
propagation at a trillion frames per second. Since this ultrafast
speed competes with the speed of light, we see the process of
the light propagation from the captured image sequence. In the
field of computer graphics, realistic image is rendered by simu-
lating the propagation of light rays. Therefore, temporal image
sequence becomes a clue for inversely rendering of target scene.
These rich information will allow us to analyze light transport
and make it possible to obtain the shape of a general translucent
material in the future.

Our shape from scattering framework contributes technique of
photometric analysis in the field of computer vision in the terms
of using scattering light for obtaining object shape.
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