平行高周波照明による透過光の抽出

田中 賢一郎¹ 向川 康博¹ 八木 康史¹

概要:プラスチックなどの光を透過する性質を持つ物体では,透視画像を撮影することで,その内部状態 を推定することができる.しかし,多くの物体では内部で光が散乱してしまうため,透視画像は不鮮明に なりやすい.散乱光を除去するために,偏光板やライトフィールドカメラを用いた解析が行われてきたが, 鮮明化には不十分であった.そこで,本論文では,透過光と散乱光を分離し,鮮明な透視画像を得るため の平行高周波照明を提案する.まず,高周波照明は,撮影法を工夫することで様々な成分を分離できるが, いずれも光路が重なる光と重ならない光を分離する手法として統一的に説明できることを示す.次に,照 明と観測を共に平行系にすることで,透過光が重ならなくなり,透過光と散乱光を分離できることを示す. アクリル板を用いた実験では,平行高周波照明が透過光の抽出に有効であることを定量的に確認した.ま た,この分離手法は従来の偏光解析と容易に組み合わせられることを示す.さらに,近赤外の波長を用い ることで,生体に適用した際の効果についても確認した.

キーワード:平行高周波照明,透過光,散乱光,鮮明化

Extraction of Transmitted Light using Parallel High-frequency Illumination

Kenichiro Tanaka¹ Yasuhiro Mukaigawa¹ Yasushi Yagi¹

Abstract: We propose a new sharpening method of transmitted scene called parallel high-frequency illumination. We can estimate inner structures of an object by captureing transparent images. However, lights strongly scatter inside a translucent object, hence the captured images tend to be unclear. In this paper, we show that various high frequency illumination techniques can be uniformly defined as a separation of crossed and uncrossed lights. Moreover, we show that the transmitted lights become uncrossed by constructing parallel projection system for both illumination and observation. In the experiment using acrylic board, we quantitatively evaluated image sharpening effect by extracting transmitted lights. We also confirmed that the proposed method using infra-red wavelength is effective for imaging human body.

Keywords: parallel high-frequency illumination, transmitted light, scattered light, image sharpening

1. はじめに

あるシーンを撮影したときに得られる画像が不鮮明にな る原因のひとつとして,光線が微粒子等に衝突して進路が 変化する散乱という現象があげられる.光線が散乱する と,光の直進性が乱されるため,画像は不鮮明になる.散 乱体内部の不鮮明なシーンを鮮明化する技術は,様々な分 野において重要な基礎技術である.図1(a)は,食品中に存 在する釘の透視画像の例であり,産業界では,このように 製品内部に異物が紛れていないか検査したいという要求が ある.また,霧の中にいる人の姿を検知するような車載セ ンサの開発も行われている.医療分野では,生体内部の可 視化に関する研究が盛んに行われている.近赤外光を用い ることで,図1(b)のような透視画像を得ることができる. このような生体内部の可視化技術は,例えば指にシャープ ペンシルの芯が刺さった事故などにおける治療時に必要と される[1].

大阪大学 産業科学研究所 The Institute of Scientific and Industrial Resaerch, Osaka University

 (a) 異物検査の例
 (b) 生体の透視画像

 図 1 透視画像の例

コンピュータビジョン分野では,特殊な光学系や計算機を 併用した画像撮影法であるコンピューテーショナルフォト グラフィ技術が活発に研究され,散乱光の除去にも利用され ている.Gilbert と Pernicka[2] や Treibitz と Schechner[3] は円偏光を用いた後方散乱光の除去によってシーンを鮮明 化した.しかし,散乱光は完全な非偏光となるわけではな いため,鮮明化の効果は限られている.Narasimhanら[4] は単一散乱をモデル化することで,濁った液体中の物体の 見えを鮮明化した.しかし,単一散乱のみという強い制約 があるため,多重散乱を含む一般的なシーンには適用が難 しい.Kimら[5] は,ライトフィールドカメラを用いた時 に,散乱光と透過光ではセンサに到達する際の入射角度が 異なることを利用し,散乱光を除去した.しかし,解像度 が大きく低下する問題があった.

本研究では,透過光と散乱光を分離することで,透視画像を鮮明化できる平行高周波照明を提案する.まず,Nayar ら[6]が提案した高周波照明およびその拡張手法[7][8][9] は,光路が重なる光と重ならない光を分離する手法として 統一的に説明できることを示す.次に,照明と観測を共に 平行系にすることによって,透過光が重ならなくなり,透 過光と散乱光を分離できることを示す.また,テレセント リックレンズを用いた平行系を構築し,不鮮明な透視画像 の鮮明化に取り組む.さらに,この鮮明化が,従来から利 用されている偏光解析による散乱光の低減手法と容易に組 み合わせられることを示し,その効果を検証する.

2. 関連研究

医療診断や工業品検査では鮮明な透視画像を得るため に,X線撮影が広く使われている.X線は透過性が高く散 乱しにくいため,鮮明な透視画像を得ることができる.し かし,X線には被曝の問題があり,適用範囲は限られる.

また,近赤外光も生体への透過性が比較的高いため,生体イメージングによく用いられている.例えばセキュリティ分野では近赤外光による静脈認証が利用されている. また,医療分野では,酸化ヘモグロビンと還元ヘモグロビンでは近赤外光の吸収特性が違うことを利用し,血中の酸素濃度が測定されている.松田ら[10]は,複数の波長を用いて血管透視像の動静脈判別を行った.また,西田ら[11]は,2波長間の透視画像を除算することで,血管透視画像 を改善した.この手法は,透視画像の背景領域の明るさの 不均一さをなくすことで画質改善を施したものであり,散 乱光が除去されたわけではない.

一方,本研究では,可視光や近赤外光などの安全な光を 用いて,散乱光を除去することで透視画像を鮮明化するこ とを目的とする.

3. 透視画像の撮影

3.1 透視画像の成分

光源から発せられた光を散乱体を通して反対側からカメ ラで撮影することで,図1のような透視画像が得られる. カメラで観測される光は,2種類の成分が考えられる.-つは,光路が散乱体に影響されることなく直進して観測さ れる 透過光 であり,もう一つは,光が微粒子と衝突を繰 り返すことによって光路が様々に変化した散乱光である. 散乱光には,物体内部の吸収体に対して回り込むように広 がる光も存在する.また,入射光は,吸収体に到達する過 程でも散乱し,周りの観測光に影響を与える.つまり,透 視画像が不鮮明になる主な原因は,散乱光が光の直進性を 乱すためである.

透過型のシーンで観測される光は透過光と散乱光のみと すれば,観測光(L)は,透過光(L_t)と散乱光(L_s)の 和として次式のように表される.

$$L = L_t + L_s \tag{1}$$

鮮明な透視画像を得るためには, L_s を除去し, L_t のみを 抽出する必要がある.

3.2 透過光と散乱光の性質の違い

透過光と散乱光を分離するためには,まず両成分の性質の違いを明らかにする必要がある.本節では,偏光,角度,空間的な広がりに関する性質の違いについて述べる. 3.2.1 偏光に関する性質

図 2(a) に示すように,物体に偏光の性質を持った光を 入射させる場合,透過光と散乱光では,その偏光の性質が 異なる.透過光は散乱体の影響を受けないので,入射光の 偏光性は保たれる.しかし,光は微粒子に衝突して光路が 変化する度に徐々に偏光の性質を失ってゆく.そのため, 衝突回数の少ない散乱光は偏光の性質が乱れた部分偏光 となり,衝突を何度も繰り返した多重散乱光は偏光の性質 を失った非偏光となる.この違いを利用し,偏光板を2枚 用いることで散乱光を抑制することができる.直線偏光 板は,偏光面に平行な偏光を透過し,垂直な光を遮断する ため,入射光はその偏光度によって強度が減衰する.した がって,偏光板を散乱体前後に平行に配置することで,散 乱光の強度を抑え,透視画像を改善できる.

3.2.2 角度に関する性質

図 2(b) に示すように, ある観測点からは様々な方向に光

IPSJ SIG Technical Report

が出射しており,透過光と散乱光ではこの角度が異なる. 透過光は,散乱物体により光路が変化しないため,入射光 と同一直線上に同じ向きで出射する.一方,散乱光は,光 路が様々に変化するため,出射時の角度も様々である.こ の性質を利用し,Kimら[5]は,ライトフィールドカメラ で光の角度情報を記録し,透過光強度を推定した.しかし, ピンホールアレイやレンズアレイを用いたライトフィール ドカメラは解像度が大きく低下する問題を抱えている.

3.2.3 空間的な広がりに関する性質

図 2(c) に示すように,透過光と散乱光では出射位置に関 して性質が異なる.透過光は,入射光と同一直線上に存在 するのに対して,散乱光は散乱体内部で広がるため,様々 な位置から出射する.一本の光線を入射したとき,透過光 は鋭いピークを持って観測される.そのため,光線の入射 位置をわずかに変えると,観測値もそれに合わせて変動す る.一方,散乱光は,たとえ入射光が一本の光線であった としても観測値は広がりを持って観測される.そのため, 入射位置がわずかにずれただけでは,観測値に大きな違い は生じない.我々は,この散乱光が空間的に広がる性質を 利用して透過光と散乱光の分離に取り組む.

3.2.4 その他の性質

以上で述べた他にも,透過光と散乱光の性質の違いが利用されている.例えば,散乱の特性は波長依存であることから,多波長解析が行われている[12].また,散乱光は透

過光に比べて光路長が長くなり,到達時間が遅れることを 利用した解析も行われている[13].

4. 高周波照明による成分分離

4.1 高周波照明の原理

Nayar ら [6] は,照明としてプロジェクタを用いて,白と 黒が交互に繰り返される細かいチェッカーパターン(高周 波パターン)をシーンに投影することで,観測画像を直接 成分と大域成分に分解できる高周波照明を提案した.ここ でいう直接成分とは,プロジェクタから出射された光線が 物体表面上で一度だけ反射し,そのままカメラで観測され る成分を指す.具体的には,拡散反射と鏡面反射であり, パターン光の高周波成分がそのまま残っている.一方,大 域成分とは,反射を繰り返して様々な光路を通ることで投 影パターンが平均化されて観測される成分を指す.具体的 には,相互反射や表面下散乱,体積散乱などであり,パター ン光の高周波成分は失われてしまい,低域通過フィルタと して働く現象である.

そのため,高周波パターンの位相をわずかに変化させると,直接成分もそれに合わせて変化するが,大域成分はほとんど変化しない.この違いを利用して,両成分を分離することができる.ここで, $L_d[c] \ge L_g[c] を,それぞれカメラのピクセル c で観測される直接成分と大域成分とする.高周波パターンの白と黒の画素数が同数であるとし,高周波パターンの位相を様々に変化させた場合の,カメラのあるピクセル c で観測される最大値 <math>L_{max}[c] \ge 最小値 L_{min}[c]$ は,それぞれ次式のように表される.

$$L_{max}[c] = L_d[c] + \frac{1}{2}L_g[c]$$
(2)

$$L_{min}[c] = \frac{1}{2}L_g[c] \tag{3}$$

この関係から,直接成分と大域成分は以下のようにして推定できる[6].

 $L_d[c] = L_{max}[c] - L_{min}[c]$ (4)

$$L_g[c] = 2L_{min}[c] \tag{5}$$

4.2 高周波照明の拡張手法

前節では,高周波パターンを投影した場合に,高周波成 分が残るか,あるいは低域通過フィルタとして働くかの違 いによって成分が分離できる原理を説明した.一方で,高 周波パターンの白画素に対応する光線に着目すると,直 接成分とは光線が互いに重ならずに観測できる成分である と見なすこともできる.高周波照明法は,照明と撮影を工 夫することで,様々な成分を分離できるように拡張されて いる.本節では,これらの拡張手法を光線の重なりという 観点で見直すことで,仕組みを統一的に説明できることを 示す.

4.2.1 拡散・鏡面反射成分と大域成分の分離

Nayar ら [6] の手法では,直接成分は拡散・鏡面反射で あった.プロジェクタから出射し,物体表面上で反射して, カメラで撮影されるまでの直接成分の光路の一例を,図 3(a)の赤線で示す.この赤線は,青色で示す別の直接反射 の光路と重ならない.光線が互いに重ならないことで,高 周波成分が残ることとなる.

4.2.2 拡散反射と鏡面反射の分離

Lamond ら [7] は, 半球状スクリーンに高周波パターン を投影し,その映り込みを観測することで,拡散反射と鏡 面反射を分離できることを示した.この場合,直接成分は 鏡面反射であり,図3(b)に示すように,鏡面反射に対応す る赤線や青線の光路は互いに重ならない.

4.2.3 平面内での単一散乱と多重散乱の分離

Mukaigawa ら [8] は,厚みのない平面上の半透明物体に 対して側方からストライプ状の高周波パターンを投影し, 物体の法線方向から撮影することで,単一散乱と多重散乱 を分離できることを示した.この場合,直接成分は単一散 乱である.図3(c)に示すように,対象を平面に限定するこ とで,単一散乱に対応する赤線や青線の光路が互いに重な らないように工夫していることが特徴である.

4.2.4 体積内での単一散乱と多重散乱の分離

Mukaigawa ら [9] は,前節で述べたストライプ状の高周 波パターン投影を拡張し,パターンを走査することで,体

積のある半透明物体中で生じる単一散乱と多重散乱を分離 できることを示した.この場合も同様に,直接成分は単一 散乱である.2次元状の高周波パターンを投影すると単一 散乱が互いに重なってしまうが,図3(d)に示すように,奥 行きごとに別々に投影することで,光線の重なりを防いで いる.

4.3 光線の重なりを防ぐ工夫

前節で紹介した高周波照明に基づく様々な拡張手法は, 光線が互いに重ならない光を直接成分として分離すると いう点で共通している.高周波パターン中の白画素は一本 の光線に対応し,たとえ空間上でそれらが重なることはな かったとしても,カメラ・プロジェクタの配置や注目して いる光学現象によっては,それらの光線が重なって計測 されることがある.そのため,分離したい成分が互いに重 なって観測されないように工夫することができれば,高周 波照明が適用できることがわかる.

5. 平行高周波照明

5.1 透視画像における光線の重なり

本研究の目的は,透視画像に含まれる透過光と散乱光を 分離することである.そこで,光源としてプロジェクタを 用いて,高周波照明を利用することを考える.図4(a)のよ うに,単純にプロジェクタから高周波パターンを投影し, 反対側からカメラで撮影しても,透過光は抽出できない. なぜなら,透過光そのものは空間中で互いに重ならないが, 透過光は直接観測できず,透過光に沿った単一散乱を観測 することになる.そのため,赤線の光路の奥には青線の光 路があり,これらが図4(c)のように重なって観測されてし

まうからである.

この透過光の重なりを避けるための解決法は,照明と観 測を平行系にすることである.図4(b)のように,高周波パ ターンを平行投影し,その透視画像を同じく平行投影で撮 影すれば,光線はシーン中を平行に進行するため,図4(d) のように透過光が互いに重なって観測されることはない. 一方,散乱光は反射を繰り返すため,互いに重なって観測 される.

我々は,この照明・観測方法を「平行高周波照明」と呼ぶ.この平行高周波照明では,透視画像中の透過光と散乱 光を分離できる.

5.2 平行系計測システム

平行高周波照明を実現するためには,2種類の方法が考 えられる.1つは,図5(a)のように,テレセントリック レンズを用いる方法である.テレセントリックレンズは, 高価で実視野は狭いが,既製品が多く扱いやすい.2つ目 は,図5(b)のように,放物面鏡を用いる方法である.放物 面鏡は,比較的安価で視野も大きくしやすいが,放物面鏡 の焦点をカメラとプロジェクタの投影中心に一致させる必 要があり,位置合わせが難しい.

実際には,対象シーンのサイズ,コスト,セットアップ の容易さなどを考慮して,設計すればよい.もちろん,カ メラとプロジェクタで,テレセントリックレンズと放物面 鏡を別々に組み合わせることができる.なお,対象シーン の厚みが薄ければ,望遠レンズでも代用できる.

6. 実験

6.1 波長に関する予備実験

光の透過性や散乱の性質は波長に強く依存する.そこで,透過画像を鮮明化するにあたり,まず,波長による透

図 6 アクリル板を用いた対象物体

(青) (緑) (赤) (近赤外) 図 7 各波長による透視画像の違い

過性の違いを比較した.光源として,470nm(青),525nm (緑),660nm(赤),850nm(近赤外)の4種類のLEDを用 いた.対象物体は,図6に示すように直径約4mmの被覆 ケーブルを乳白色のアクリル板で挟んだものを利用した. 各波長における通常の照明での透視画像を図7に示す.また,各画像中の縦方向の輝度値の変化を図8に示す.波長 が長いほど,ケーブルの像の広がりが少なく,近赤外光が 最もコントラストが高く透過性が高いことがわかる.

また,生体の主な吸収体である水とヘモグロビンの吸収 特性は図9のような分布になっており,近赤外光に対して 高い透過性がある.特に波長700nm~1200nmは,水とヘ モグロビンの両方で透過性が高いことから光学の窓と呼ば れている.以上をふまえて,我々は,アクリル板に対して 最も透過性が高く,生体に対しても高い透過性が期待でき る850nmの近赤外光を以降の実験で使用し,透視画像の 鮮明化に取り組んだ.

6.2 実験環境

本実験では,近赤外波長帯域での平行高周波照明を実現 するために,近赤外 LED を光源とするプロジェクタと,モ ノクロ CCD カメラ(Point Grey 社 Grasshopper2)を使用 した.カメラには Edmund 製テレセントリックレンズを装 着した.プロジェクタは, Texas Instruments 製 DMD プ ロジェクタ開発キット(LightCommander)である.この プロジェクタの光源に近赤外 LED を設定することで,近 赤外光プロジェクタを実現した.なお,プロジェクタには TAMRON 製望遠レンズを装着した*1.計測環境は図 10 の *1 我々が用意したプロジェクタ用テレセントリックレンズは,マウ

図 9 生体の吸収特性 [13]

(a) 近赤外 LED の分
 (b) CCD の感度特性
 光分布
 図 11 プロジェクタとカメラの波長特性

図 10 計測環境

通りである.

プロジェクタが使用する光源は近赤外光 850nm の LED であり,分光分布は図 11(a) の通りである.また,CCD の 感度特性は図 11(b) であり,近赤外に対しても,十分な感 度がある.プロジェクタが投影するパターンは 9px×9px のチェッカーパターンであり,テクスチャのサイズに対し て十分に細かい.

6.3 アクリル板の透視画像

まず,アクリル板の透視画像を鮮明化する実験を行った.撮影対象物体は,図6に示すような直径約4mmの被覆ケーブルを乳白色のアクリル板で挟んだものである.アクリル板は光を散乱させる性質があるため,図12のように透視画像は不鮮明になる.図の赤い線で囲まれた部分に対して分析を行った.実験結果を図13に示す.(a)は通常

ントの互換性の問題で装着できなかったため , 現在鏡筒部を切削 加工中である .

図 13 アクリル板を用いた実験結果

観測される透視画像である.エッジがぼやけて見えが不鮮 明になっている.(b)は偏光板により散乱光を抑えた透視 画像である.(c)は提案手法により透過光を抽出した画像 である.(d)は提案手法と偏光板を組み合わせた結果であ る.(e)は上部のアクリル板を外して撮影した画像(真値) である.

各画像の縦方向の輝度値の変化をグラフにしたものが図 14 である.提案手法によって,エッジが明確になり画像が 鮮明化されていることがわかる.また,アクリル板を外し た値を真値とみなした時の正規化相互相関を,図15 に示 す.提案手法および,偏光板と組み合わせた手法で真値と 相関が高く,鮮明さが向上していることがわかる. 情報処理学会研究報告

IPSJ SIG Technical Report

図 15 正規化相互相関 (a) は通常の透視画像,(b) は偏光板のみを用いた場合,(c) は提案手法,(d) は偏光板を組み合わせた提案手法

(a) 通常の透視画像(b) 提案手法図 16 生体に対する実験結果

6.4 生体の透視画像

次に近赤外光の透過性が比較的高い生体を対象として実 験を行った.対象物体は,人体の小指と,金属のクリップ を挿入した鶏肉である.図16に人体の小指への適用結果 を示す.(a)は,通常の透視画像である.血管層が確認で きるが,生体内部で散乱し,不鮮明である.(b)は,提案 手法により透過光を抽出した画像である.画像を強調して いるため,ノイズが多くなっている.各画像の赤い領域に おける輝度値の変化を図17に示す.通常の透視画像では 血管領域が不鮮明であり確認し難いが,提案手法により血 管領域が鮮明化された.

最後に,鶏肉に対する実験結果を図 18 に示す.(a) は通 常の透視画像,(b) は提案手法による結果である.画像中 の赤色の線分で示す領域の輝度値の変化を図 19 に示す. 鶏肉に対しては,透過光が少なく,異物領域の鮮明化には 至らなかった.鶏肉は厚みがあり,望遠レンズを用いた計 測システムでは完全な平行系を実現できなかったことも理

(a) 通常の透視画像(b) 提案手法図 18 鶏肉に対する実験結果

図 19 輝度値の変化

由の一つとして考えられる.

6.5 制限と考察

実験により,提案手法よって散乱光が除去され,エッジ が明確になる効果を確認した.一方で,いくつかの問題点 も明らかとなった.

まず,提案手法によって得られる画像には,多くのノイ ズが含まれてしまう場合がある.対象物体によっては,観 測光における透過光の割合が著しく低くなることがあり, 結果として透過光の強度とカメラの観測ノイズが同程度に なってしまう.冷却 CCD カメラ等を用いたり,ノイズ除 去の画像処理によって,ある程度の改善は期待できるが, 本質的な解決は難しい.

また,本実験では,プロジェクタ側を望遠レンズで代用 したが,アクリル板のような薄い形状ではぼ平行系を実現 できていた.しかし,鶏肉のように厚みがあると,厳密な 平行系ではなくなるため,鮮明化の効果は限定的であった. 現在,プロジェクタにもテレセントリックレンズを装着で きるようにマウント部の加工作業を進めている.今後は, カメラとプロジェクタで,光軸を完全に一致させた平行系 を実現するためのアライメント法の開発が必要である. なお,透過光がほとんど存在せず,散乱光のみが観測される場合は,本手法は適用できない.そのため,例えば近赤外光を用いて人体の内臓を可視化するといった用途には 適用できない.

7. 結論

本研究では,物体の透視画像を鮮明化するために,観測 光に含まれる透過光を分離する手法を提案した.まず,高 周波照明法の原理について説明し,抽出したい光に対して, 光路が重ならないように観測することで高周波照明法が適 用できることを示した.また,高周波照明によって透過光 を抽出するために,カメラとプロジェクタの投影を共に平 行系とした平行高周波照明を新たに提案した.

乳白色のアクリル板を用いた実験では,平行高周波照明 により,実際に透視画像が鮮明化されることを確認した. また,平行高周波照明は偏光板と簡単に組み合わせること ができることを示し,その効果についても確認した.正規 化相関を比較することによって,提案手法が画像の鮮明化 に貢献していること定量的に示した.

生体に対する実験では,血管領域の鮮明化はできたが, 透過光の量が少ないことに起因するノイズが目立った.今後,機材や画像処理アルゴリズムの工夫によって更なる鮮 明化に取り組んでいきたい.

謝辞

本研究は,総合科学技術会議により制度設計された最先 端・次世代研究開発支援プログラムにより,日本学術振興 会を通して助成されたものである.

参考文献

- [1] 早川 吉彦,山下 拓慶,大粒来 孝,妙瀬田 泰隆,佐川 盛久, 近藤 篤,辻 由美子,本田 明,近赤外線イメージングによ る皮下異物の検出実験,医用画像情報学会雑誌, Vol. 27, No. 3, pp.50–54, 2010
- [2] G.D. Gilbert and J.C. Pernicka, "Improvement of underwater visibility by reduction of backscatter with a circular polarization technique", *Applied Optics*, Vol. 6, No. 4, pp. 741–746, 1967.
- [3] T. Treibitz and Y.Y. Schechner, "Active Polarization Descattering", *IEEE transactions on pattern analysis* and machine intelligence, pp. 385–399, 2008.
- [4] S. G. Narasimhan, S. K. Nayar, B. Sun, S. J. Koppal, "Structured light in scattering media", Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, pp. 420 - 427 Vol. 1, 2005
- [5] J. Kim, D. Lanman, Y. Mukaigawa, R. Raskar, "Descattering tansmission via angular filtering", ECCV'10 Proceedings of the 11th European conference on Computer vision: Part I, pp.86 - 99, 2010
- [6] S.K. Nayar, G. Krishnan, M.D. Grossberg, and R. Raskar, "Fast Separation of Direct and Global Components of a Scene using High Frequency Illumination", In ACM SIGGRAPH 2006 Papers, pp. 935–944. ACM, 2006.

- [7] B. Lamond, P. Peers, and P. Debevec "Fast Image-based Separation of Diffuse and Specular Reflections", ICT-TR-02.2007, 2007
- [8] Y. Mukaigawa, Y. Yagi, and R. Raskar, "Analysis of Light Transport in Scattering Media", In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp. 153–160. IEEE, 2010.
- [9] Y.Mukaigawa, R.Raskar, and Y.Yagi, "Analysis of Scattering Light Transport in Translucent Media", *IPSJ Transactions on Computer Vision and Applications*, Vol. 3, pp.122-133, Dec. 2011.
- [10] 松田康志,飛澤直哉,浪田健,加藤祐次,清水孝一,"血 管透視像の分光解析による動静脈判別の試み(II) - 判別 原理の実験的検証 - ", Proc. OPJ 2011, 2011
- [11] 西田浩平, 浪田健, 加藤祐次, 清水孝一, "多波長光源 を用いた静脈透視画像の改善(II) 複数被験者における 有効性の検証 ", Proc. OPJ 2011, 2011
- [12] 宗宮功、岸本直之、小野芳朗、西方聡、"散乱スペクト ル分析による水質測定"、水環境学会誌、18, pp. 191-198、 1995
- [13] 小川誠二,上野照剛他,"非侵襲・可視化技術ハンドブックナノ・バイオ・医療から情報システムまで", ISBN 978-4-86043-133-4, NTS, 2007