
Which Reference View is Effective for Gait Identification Using a View
Transformation Model?

Yasushi Makihara Ryusuke Sagawa Yasuhiro Mukaigawa Tomio Echigo
Yasushi Yagi

Department of Intelligent Media, The Institute of Scientific and Industrial Research, Osaka University
567-0047, 8-1 Mihogaoka, Ibaraki, Osaka, JAPAN

{makihara, sagawa, mukaigaw, echigo, yagi }@am.sanken.osaka-u.ac.jp

Abstract

Gait identification is a promising method of individual
identification at a distance from a camera and identifica-
tion of those who observed from various views or those who
going to various directions is required in particular for ac-
tual use. In this paper, we discuss a selection of reference
views for the various-view gait identification using a view
transformation model (VTM). In the gait identification pro-
cess, we first extract frequency-domain gait features from
gait silhouette sequences, and then obtain the various-view
gait features by transforming a few reference features with
the VTM. We made experiments using 736 sequences from
20 subjects of 24 view directions. We evaluate the perfor-
mance for each single reference and for each combination
of two references. In addition, we inspect the relation be-
tween the performance and the number of references.

1. Introduction

Gait identification has recently gained considerable at-
tention because gait is a promising cue for surveillance
systems to ascertain identity at a distance from a cam-
era. Many approaches of gait recognition are proposed
as model-based ones [15][13][12][1] and appearance-based
ones[9][2][5][8], however, most of these approaches are
view-dependent and limited to near fronto-parallel views.

Yu et al. [16] discussed the effects of view angle vari-
ation on gait identification and reported the performance
drop when view difference was large. However, they eval-
uate the performance without view transformation, that is,
they directly match a gallery (training) set and a probe (test)
set from different views.

To cope with the view changes, Han et al. [3] used over-
lapped range of walking views for two different-view se-
quences of straight-walk. Kale et al.[4] proposed a method
with perspective projection of a sagittal plane. However,

these two methods does not works well when view differ-
ence is large. Spencer et al.[11] proposed reconstruction of
articulated motion under the canonical (side) view. How-
ever, model-based identification methods sometimes suffer
from mis-correspondence of feature points. Shakhnarovich
et al. [10] proposed a visual hull-based method, the meth-
ods, however, needs multiple-view synchronized images for
all subjects.

Makihara et al. [6] extended a view transformation
model (VTM) [14] to the frequency domain and showed
that various-view gait identification was achieved using a
few reference views. However, they did not discuss which
reference view is effective on gait identification perfor-
mance.

Therefore, we discuss the selection of reference views
for the various-view gait identification using the VTM. Con-
cretely speaking, we discuss the following three issues.

1. Which reference view is effective when a single refer-
ence is used?

2. Which combination is effective when two references
are used?

3. How many references are necessary to obtain enough
performance?

The outline of this paper is as follows. First, we de-
scribe extraction and matching of gait feature in the fre-
quency domain in section2. Next, adaptation to view di-
rection changes is addressed with the formulation of the
VTM in section3. Finally, we present experimental results
and analyses of reference views for gait identification using
the VTM in section4, and give our conclusions and future
works in section5.

2. Extraction and matching of gait feature

2.1. Construction of gait silhouette volume

The first step is constructing a gait silhouette volume
(GSV). First, gait silhouettes are simply extracted by back-
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(a) time slice images (x-y plane, every 3 frames)

(b) horizontal slice image (t-x plane aty = 27)

(c) vertical slice image (t-y plane atx = 6)
Figure 1.An example of GSV

ground subtraction of temperature images captured by a
infrared-ray camera. Second, we obtain the height and the
center of a silhouette region for each frame. Third, we scale
the silhouette so that the height can be just 30 pixels, and
so that the aspect ratio of each region can be kept. Forth,
we register the silhouettes so that its center can correspond
to the image center. Finally, we produce a spatio-temporal
silhouette volume, that is, GSV by piling up the silhouette
images on the temporal axis.

We show an example of a constructed GSV in Fig.1
as time slice (x-y plane), horizontal slice (t-x plane), and
vertical slice (t-y plane) images. We can confirm existence
of gait periodicity from Fig.1(b), (c).

2.2. Frequency-domain feature extraction

The second step is frequency-domain feature extraction
from the constructed GSV. First, we detect gait periodNgait

by maximizing the normalized autocorrelation of the GSV
for the temporal axis. Here, we set the domain of gait period
to be [20, 40] empirically for the natural gait period.

Next, we pick up the subsequences{S i}(i =
1, 2, ..., Nsub) for everyNgait frames from a total sequence
S . Note that the frame range of theith subsequenceS i is
[iNgait, (i+1)Ngait−1]. Then the Discrete Fourier Trans-
formation (DFT) for the temporal axis is applied for each
subsequence, and amplitude spectra are subsequently cal-
culated as

Gi(x, y, k) =
(i+1)Ngait−1∑

n=iNgait

g(x, y, n)e−jω0kn (1)

Ai(x, y, k) =
1

Ngait
|Gi(x, y, k)|. (2)

whereggsv(x, y, n) is the silhouette value at position(x, y)
at thenth frame,ω0 is a base angular frequency for the
gait periodNgait, Gi(x, y, k) is the DFT of GSV fork-
times the base frequency, andAi(x, y, k) is an amplitude
spectrum forGi(x, y, k). In this paper, we choose direct-
current elements (k = 0) (averaged silhouette) and low-

Figure 2.Gait feature for each subject from each view direction
(every 15 deg)
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Figure 3.Definition of view directionθ (top view)

frequency elements (k = 1, 2) as gait features experimen-
tally. As a result, the dimensionNA of amplitude spectra
Ai(x, y, k)(k = 0, 1, 2) sums up to20× 30× 3 = 1800.

Figure2 shows extracted amplitude spectra of multiple
subjects from various view directions. The view direction is
defined as the angle formed by an optical axis and a walking
direction, as shown in Fig.3, and in this paper the unit of the
view direction is a degree. Amplitude spectra vary widely
among view directions for each subject, and to some extent
they also have individual variations for each view direction.
Moreover, we can see that all the subjects have similar com-
mon tendencies for amplitude spectra variations across view
direction changes. This fact indicates a real possibility that
the variations across view direction changes are expressed
with the VTM independently of individual variations.

2.3. Matching measure

We first define a matching measure between two sub-
sequences. Leta(S i) be NA dimensional feature vector
composed of elements of the amplitude spectraAi(x, y, k)
for subsequenceS i. The matching measured(S i,S j) is
simply chosen as the Euclidean distance:

d(S i,S j) = ||a(S i)− a(S j)||. (3)

Next, we define a matching measure between two total



sequences. LetSP andSG be total sequences for probe
and gallery, respectively, and let{SP i}(i = 1, 2, . . .) and
{SG j}(j = 1, 2, . . .) be their subsequences, respectively.
Gallery subsequences{SG j} have variations in general and
probe subsequences{SP i} may contain outliers. A mea-
sure candidateD(SP ,SG) to cope with them is the median
value of the minimum distances of each probe subsequence
SP i and gallery subsequences{SG j}(j = 1, 2, . . .):

D(SP ,SG) = Mediani [min
j
{d(SP i ,SG j )}. (4)

3. View transformation model

3.1. Formulation of VTM

We briefly describe the formulation of a VTM in a way
similar to that in [14]. Note that we apply the model to the
frequency-domain feature extracted from GSV while that in
[14] directly applied it to a static image.

We first quantize view directions intoK directions. Let
am

θk
be aNA dimensional feature vector for thekth view

direction of themth subject. Supposing that the feature
vectors forK view directions ofM subjects are obtained
as a training set, we can construct a matrix whose row in-
dicates view direction changes and whose column indicates
each subject; and so can decompose it by Singular Value
Decomposition (SVD) as



a1

θ1
· · · aM

θ1
...

.. .
...

a1
θK
· · ·aM

θK


=USV T =




Pθ1

...
PθK




[
v1 · · · vM

]
. (5)

whereU is theKNA×M orthogonal matrix,V is theM ×
M orthogonal matrix,S is the M × M diagonal matrix
composed of singular values,Pθk

is theNA×M submatrix
of US, andvm is theM dimensional column vector.

The vectorvm is an intrinsic feature vector of themth
subject and is independent of view directions. The subma-
trix Pθk

is a projection matrix from the intrinsic vectorv to
the feature vector for view directionθk, and is common for
all subjects, that is, it is independent of the subject. Thus,
the feature vectoram

θi
for the view directionθi of themth

subject is represented as

am
θi

= Pθiv
m. (6)

Then, feature vector transformation from reference view
directionθref to θi is easily obtained as

âm
θi

= PθiP
+
θref

am
θref

. (7)

where P+
θref

is the pseudo inverse matrix ofPθref
. In

practical use, transformation from one view direction may
be insufficient because motions orthogonal to the image

plane are degenerated in the silhouette image. For exam-
ple, it is difficult for even us humans to estimate a fea-
ture am

90 from am
0 (see Fig. 2 for example). Therefore,

when features for more than one view direction (let them be
θref (1), . . . , θref (k)) are obtained, we can more precisely
transform a feature for the view directionθi as

âm
θi

= Pθi




Pθref (1)

...
Pθref (k)




+ 


am
θref (1)

...
am

θref (k)


 . (8)

In the above formulation, there are no constraints for
view transformation, but each body point such as head,
hands, and knees appears at the same height, respectively,
for all view directions because of the height scaling as de-
scribed in2.1. Therefore, we constrain transformation from
a heightyi to another heightyj(6= yi) and define the above
transformation separately at each heightyi.

3.2. Reference addition with geometrical model

Here, we describe addition of virtual reference based on
the geometrical model [16] to make view transformation
more precise.

When a target subject is observed at a distance from a
camera and weak perspective projection is assumed, the sil-
houette image observed with a virtual camera at the oppo-
site side from the view direction1 θ as shown in Fig.3 (let
the image beIopp(θ)), becomes a mirror image of the orig-
inal silhouette image from view directionθ (let it beI(θ)).
In addition, it is clear thatIopp(θ) is the same asI(θ+180).
Hence,I(θ + 180) becomes a mirror image ofI(θ).

Moreover, when a left-right symmetry of gait motion is
assumed,I(360−θ) becomes a mirror image ofI(θ). When
both of the weak perspective projection and the symmetry
are assumed,I(180− θ) becomes the same image ofI(θ).

Hence, once a gait feature for reference directionθref is
obtained, we can virtually add the same feature for direction
(180−θref ) and a mirror feature for direction(θref +180)
and(360 − θref ). Because the addition of the virtual ref-
erences is based on the assumptions, the actually observed
feature is prior to the virtually added features when features
for multiple reference directions are observed and an addi-
tional reference direction is the same as another observed
reference direction.

4. Experimental results and analyses

4.1. Dataset and evaluation method

We use a total of 736 gait sequences from 20 subjects for
the experiments. The sequences include 24 view directions

1Note that the view directionθ is defined for the actual camera and that
it is used in common for both the actual and the virtual cameras.



at every 15 degrees. Each sequence consists of from 10 to
20 steps of straight walks. The training set for the VTM is
composed of 240 sequences of 10 subjects from 24 view di-
rections. Then, we prepare reference sets of20k sequences
from 20 subjects ofk view directions (let them beθref for
a single reference and beθref (1), · · · , θref (k) for multiple
references). Here, to reduce the number of combination of
multiple references for simplicity, we use 8 reference direc-
tions at every 45 deg, that is, directions 0, 45, 90, 135, 180,
225, 270, and 315 deg. A gallery set for each view direction
is obtained by view transformation with eq. (7) for a single
reference or eq. (8) for multiple references. A probe (test)
set is composed of the other sequences except for those of
subjects included in the training set for the VTM, and each
sequence is indexed in advance with the view direction as
θprobe because view direction estimation is easily done us-
ing a walking person’s velocity in the image or by view di-
rection classification with averaged features for each view
direction.

We also prepare for a gallery set with no transformation
(let it be NT) for comparison. In this method, a gallery
feature for each view direction is replaced with a reference
feature minimizing an angle formed by the gallery view
direction (let it beθgallery) and the reference view direc-
tion. For example, when reference features forθref (1) = 0
andθref (2) = 90 are obtained, gallery features for45 ≤
θgallery ≤ 135 or 225 ≤ θgallery ≤ 315 are replaced with
the reference feature forθref (2), and the others are replaced
with that forθref (1).

We constructed a matching test using the dataset. A
probe is assigned verification when eq. (4) is above a certain
threshold value, and a Receiver Operating Characteristics
(ROC) [7] curve is obtained by plotting pairs of verification
rate and false alarm rate for various threshold values. The
tests are repeated for different 20 training sets for the VTM
and the averaged performance is evaluated by verification
rate at 10% false alarm for the ROC curve.

4.2. Single reference

We first show transformed features with the VTM using
a single reference in Fig.4. We can see the transformed
features are similar to the original feature (Fig.4(a)) for
each direction as a whole. For 0-deg reference (Fig.4(b)),
a front-back swing motion of arm and leg is orthogonal to
the image plane and degenerated, then transformed features
near side view (θ = 90, 270) are degraded compared with
those from the other references. For 90-deg reference (Fig.
4(d)), although the front-back swing motion is observed the
best, the width of body is orthogonal to the image plane
and degenerated. Therefore transformed features near front
view (θ = 0, 180) are degraded compared with the others.
On the other hand, for 45-deg reference (Fig.4(c)), fea-
tures for orthogonal views (θ = 135, 315) are added by the

(a): Original feature, (b)-(d): Transformed feature from 0,
45, 90, and 135 deg by the VTM respectively.

Figure 4.Transformed feature from a single reference

assumption of left-right gait symmetry. Hence, transformed
features are relative fine compared with the others. For 135-



(a)θref = 0 (b) θref = 45 (c) θref = 90

(d) θref = 135 (e)θref = 180 (f) θref = 225

(g) θref = 270 (h) θref = 315 (i) average on prove view direction

Figure 5.Verification rate at 10% false alarm for single reference

Figure 6. Verification rate for all combinations of probe view
θprobe and reference viewθref

deg reference (Fig.4(e)), the tendency is the same as the
45-deg reference.

Next, we show verification rates for each reference view
directionθref in Fig. 5(a)-(h). It is clear that the probes
with the same view direction as the reference have very high
performances for all references (for example,θprobe = 0
in Fig. 5(a) andθprobe = 90 in Fig. 5(c)). In addition,
the probe with the same view direction as the added refer-
ences have also relatively high performance (for example,

θprobe = 180 in Fig. 5(a) andθprobe = 270 in Fig. 5(c)).
On the other hand, the probes with the orthogonal view

direction to the reference have poor performance (for exam-
ple, θprobe = 90 in Fig. 5(a) andθprobe = 0 in Fig. 5(c)).
As an exception, for angled view such asθprobe = 45, 135,
references of orthogonal view are added, therefore the per-
formance to the orthogonal probe are also relatively high.

Figure6 shows the performance summary by VTM for
all combinations of probe viewθprobe and reference view
θref included in Fig.5(a)-(h). We can see that the perfor-
mance is high on the following lines.

• θprobe = θref : the same view direction.

• θprobe = θref + 180: the added feature by the weak
perspective assumption.

• θprobe = 360−θref : the added feature by the left-right
symmetry assumption.

• θprobe = 180 − θref : the added feature by the weak
perspective and the left-right symmetry assumption.

Figure5(i) shows averaged performance on probe view
direction. The performance of NT for each reference is sim-
ilar to each other and is inferior to that of VTM. On the other
hand, the performance of VTM for angled view reference
(θ = 45, 135, 225, 315) is relatively high.



(a): Original feature, (b)-(d): Transformed feature from
{0,90}, {45,135}, {0,180}, and{90,270} by the VTM re-
spectively.

Figure 7.Transformed feature from two references

4.3. Combination of two references

We first show transformed features with the VTM using
some combinations of two references in Fig.7. We de-
note a combination of two reference as{θref (1), θref (2)}
in this section. For orthogonal combinations (Fig.7(b)(c)),
degenerated information for orthogonal direction to the im-
age plane such as front-back motion for 0-deg feature and
width of body for 90-deg feature is compensated with each
other. Therefore we can see the transformed features are
more similar to the original feature (Fig.7(a)) for each
direction than those for a single view direction (Fig.4).
On the other hand, for 180-deg opposite combinations (Fig.
7(d)(e)), the transformed features are little improved com-
pared with those in case of the single reference. This is
because the degenerated information for orthogonal plane
is not compensated and because one of the two references
has been already added by the weak perspective assumption
even in case of the single reference.

Next, we show verification rates for some combinations
of two reference view directions in Fig.8(a)-(d). As a re-
sult, we can see the performance for orthogonal combina-
tion (Fig. 8(b)) is high and that for intermediate combina-
tions between orthogonal and parallel (Fig.8(a)(c)) is also
relatively high. On the other hand, that for 180-deg oppo-
site combination (Fig.8(d)) is little improved as compared
with single reference.

Figure8(e) shows averaged performance on probe view
direction. In this figure, repeated reference (for example,
θref (1) = θref (2) = 0 indicates the same meaning of sin-
gle referenceθref = 0). In case ofθref (1) = 45, the per-
formance of single reference is enough high, then the per-
formance difference by combination is not outstanding. On
the other hand, in case ofθref (1) = 0 and90, the perfor-
mance difference is outstanding, that is, the performance is
high for orthogonal combination and is little improved for
parallel combination.

To confirm this tendency, we show the averaged per-
formance on probe for combinations of two references
by VTM in Fig. 9. We can see high performance line
θref (2) − θref (1) = 90 + 180n, n = −2,−1, 0, 1) cor-
responding to the orthogonal combination, and low per-
formance line (θref (2) − θref (1) = 180n, n = −1, 0, 1)
corresponding to the parallel combination. Therefore, the
orthogonal combination is suitable for two references for
VTM.

4.4. The number of references

Here, we discuss the effect of the number of references
(let it beNref ) for VTM. We show the averaged verification
rate forNref in Fig. 10. In this figure, ”best” and ”worst”
indicates the performance using the best and the worst com-
bination of reference views respectively and ”average” in-



{0, 45} {45, 90} {90, 135}
(a) combination underθref (2)− θref (1) = 45

{0, 90} {45, 135} {90, 180}
(b) combination underθref (2)− θref (1) = 90

{0, 135} {45, 180} {90, 225}
(c) combination underθref (2)− θref (1) = 135

{0, 180} {45, 225} {90, 270}
(d) combination underθref (2)− θref (1) = 180

θref (1) = 0 θref (1) = 45 θref (1) = 90
(e) average on probe view direction

Figure 8.Verification rate at 10% false alarm rate for two references

dicates the averaged performance on all the combinations.
In case of the best, we obtain more than 90% verification
rate if Nref is more than or equal to 2. In addition, even in
case of the worst, we obtain more than 80% verification rate
if Nref is more than or equal to 3. As a result, we can see

a few references are enough to transform features precisely
and to achieve high verification rate for various-directions
walks.



Figure 9.Averaged performance on probes for combinations of
two references

Figure 10.Averaged verification rate for the number of references

5. Conclusion

In this paper, we discussed the selection of reference
views for various-view gait identification using a view
transformation model (VTM). As a result of experiments, it
was cleared that angled reference view such as 45 deg and
135 deg are effective for a single reference, and that combi-
nations of orthogonal references such as a combination of 0
deg and 90 deg are effective for two references. In addition,
we confirmed that a few references are enough to achieve
high performance on various-view gait identification.

Future works are as follows.

• Experiments for a general database, such as the Hu-
manID Gait Challenge Problem Datasets [9].

• Adaptation to camera tilt changes
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