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Abstract these two methods does not works well when view differ-
ence is large. Spencer et @all] proposed reconstruction of
Gait identification is a promising method of individual articulated motion under the canonical (side) view. How-
identification at a distance from a camera and identifica- ever, model-based identification methods sometimes suffer
tion of those who observed from various views or those whofrom mis-correspondence of feature points. Shakhnarovich
going to various directions is required in particular for ac- et al. [L0] proposed a visual hull-based method, the meth-
tual use. In this paper, we discuss a selection of referenceods, however, needs multiple-view synchronized images for
views for the various-view gait identification using a view all subjects.
transformation model (VTM). In the gait identification pro- Makihara et al. ] extended a view transformation
cess, we first extract frequency-domain gait features frommodel (VTM) [14] to the frequency domain and showed
gait silhouette sequences, and then obtain the various-viewthat various-view gait identification was achieved using a
gait features by transforming a few reference features with few reference views. However, they did not discuss which
the VTM. We made experiments using 736 sequences fromeference view is effective on gait identification perfor-
20 subjects of 24 view directions. We evaluate the perfor- mance.
mance for each single reference and for each combination Therefore, we discuss the selection of reference views
of two references. In addition, we inspect the relation be- for the various-view gait identification using the VTM. Con-
tween the performance and the number of references. cretely speaking, we discuss the following three issues.
1. Which reference view is effective when a single refer-
ence is used?

1. Introduction 2. Which combination is effective when two references

?
Gait identification has recently gained considerable at- are used-

tention because gait is a promising cue for surveillance 3. How many references are necessary to obtain enough
systems to ascertain identity at a distance from a cam- performance?
era. Many approaches of gait recognition are proposed The outline of this paper is as follows. First, we de-
as model-based onesq|[13][12][1] and appearance-based scribe extraction and matching of gait feature in the fre-
onesP|[2][5][8], however, most of these approaches are quency domain in secticE. Next, adaptation to view di-
view-dependent and limited to near fronto-parallel views. rection changes is addressed with the formulation of the
Yu et al. [L6] discussed the effects of view angle vari- VTM in section3. Finally, we present experimental results
ation on gait identification and reported the performance and analyses of reference views for gait identification using
drop when view difference was large. However, they eval- the VTM in sectiord, and give our conclusions and future
uate the performance without view transformation, that is, works in sectiorb.
they directly match a gallery (training) set and a probe (test)
set from different views. 2. Extraction and matching of gait feature
To cope with the view changes, Han et &} {ised over-
lapped range of walking views for two different-view se-
guences of straight-walk. Kale et 4l [proposed a method The first step is constructing a gait silhouette volume
with perspective projection of a sagittal plane. However, (GSV). First, gait silhouettes are simply extracted by back-

2.1. Construction of gait silhouette volume
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Figure 1.An example of GSV 75

ground subtraction of temperature images captured by a 90 u
infrared-ray camera. Second, we obtain the height and the frq. 0
center of a silhouette region for each frame. Third, we scale

the S||houette e} that the he|ght can be ]ust 30 p|xe|S, andFlgUre 2.Gait feature for each Subject from each view direction
so that the aspect ratio of each region can be kept. Forth(€very 15 deg)

we register the silhouettes so that its center can correspond Wi
to the image center. Finally, we produce a spatio-temporal ~ Image plane g 2na persen
silhouette volume, that is, GSV by piling up the silhouette optical axis e
) . .
Images on the temporal axis. . ) camera | view direction: 8 virt'uall-camera
We show an example of a constructed GSV in Fig. at opposite side
walking direction

as time slice £-y plane), horizontal slicet{z plane), and
vertical slice {-y plane) images. We can confirm existence ) o ) o )
of gait periodicity from Fig/i(b), (c). Figure 3.Definition of view directiord (top view)

2.2. Frequency-domain feature extraction frequency elementsi(= 1, 2) as gait features experimen-

The second step is frequency-domain feature extractiont@lly: As a result, the dimensiofv, of amplitude spectra
from the constructed GSV. First, we detect gait pegg;, ~ Ai(%: ¢, k)(k = 0,1,2) sums up t@0 x 30 x 3 = 1800.
by maximizing the normalized autocorrelation of the GSV  Figurei2 shows extracted amplitude spectra of multiple
for the temporal axis. Here, we set the domain of gait period subjects from various view directions. The view direction is
to be [20, 40] empirically for the natural gait period. defined as the angle formed by an optical axis and a walking

Next, we pick up the subsequencesS;}(i = direction, as shown in Fig, and in this paper the unit of the
1,2, ..., Now) for everyN,,;; frames from a total sequence view direction is a degree. Amplitude spectra vary widely
S. Note that the frame range of tlith subsequencs; is among view directions for each subject, and to some extent
[iNgqit, (i + 1) Nyair — 1]. Then the Discrete Fourier Trans- they also have individual variations for each view direction.

formation (DFT) for the temporal axis is applied for each Moreover, we can see that all the subjects have similar com-

subsequence, and amplitude spectra are subsequently callon tendencies for amplitude spectra variations across view
direction changes. This fact indicates a real possibility that

culated as s : TS
the variations across view direction changes are expressed
(i+1)Ngaiz—1 ' with the VTM independently of individual variations.
Gi(-ryyvk) = Z g(x’y)n)e—]wokn (1)
n=iNgqis 2.3. Matching measure
1 . ) .
Ai(z,y k) = TlGi($7y7k)\. 2) We first define a matching measure between two sub-
gait sequences. Let(S;) be N4 dimensional feature vector

composed of elements of the amplitude spedirér, y, k)
for subsequencé;. The matching measuré(S;, S;) is
simply chosen as the Euclidean distance:

whereg,, (z, y, n) is the silhouette value at positidn, y)

at thenth frame,w, is a base angular frequency for the
gait period Nyqit, Gi(z,y, k) is the DFT of GSV fork-
times the base frequency, atd(z,y, k) is an amplitude d(8:,8;) = |la(S;) — a(8;)|]. (3)
spectrum forG;(z, y, k). In this paper, we choose direct-

current elementsk( = 0) (averaged silhouette) and low- Next, we define a matching measure between two total



sequences. Lefp and S¢ be total sequences for probe plane are degenerated in the silhouette image. For exam-
and gallery, respectively, and I€Sp;}(i = 1,2,...) and ple, it is difficult for even us humans to estimate a fea-
{S¢;}(j = 1,2,...) be their subsequences, respectively. ture ag, from aj* (see Fig. 2 for example). Therefore,
Gallery subsequencgs; } have variations in general and when features for more than one view direction (let them be
probe subsequencgsSp;} may contain outliers. A mea- 0,.¢(1),...,60,.5(k)) are obtained, we can more precisely
sure candidat®(Sp, S¢) to cope with them is the median  transform a feature for the view directiépas

value of the minimum distances of each probe subsequence

Sp; and gallery subsequencgSe;}(j = 1,2,...): Py,.;1) i ap (1)
D(Sp, S¢) = Median;[min{d(Sp;, S¢;)}. (4) -
J B,k g, .5 (k)
3. View transformation model In the above formulation, there are no constraints for

. view transformation, but each body point such as head,
3.1. Formulation of VTM hands, and knees appears at the same height, respectively,
We briefly describe the formulation of a VTM in a way for all view directions because of the height scaling as de-
similar to that in[[.4]. Note that we apply the model to the ~ scribed ir2.1. Therefore, we constrain transformation from

frequency-domain feature extracted from GSV while that in @ heighty; to another heighy; (# v;) and define the above
[14] directly applied it to a static image. transformation separately at each height

We first quantize view directions intd” directions. Let - ] )
a'gz be aNA dimensional feature vector for thgh view 32 Reference addltlon Wlth geometl‘lca| m0de|
direction of themth subject. Supposing that the feature  pgare we describe addition of virtual reference based on

vectors _fqu view directions ofM subject§ are obtamed_ the geometrical modellf] to make view transformation
as a training set, we can construct a matrix whose row in- . precise.

dicates view direction changes and whose column indicates  \yhen a target subject is observed at a distance from a

each subject; and so can decompose it by Singular Valu€.amera and weak perspective projection is assumed, the sil-
Decomposition (SVD) as houette image observed with a virtual camera at the oppo-
site side from the view directicrd as shown in Fig3 (let

Lo . gM
%o, """ %oy . Fo, ) u the image bd,,,,(0)), becomes a mirror image of the orig-
coe s | =USVE= s et 0M] 0 (8)  inal silhouette image from view directigh(let it be I(6)).
al ...aqM P In addition, itis clear thaf,, () is the same a&(6 + 180).
0K Ok Ox PP . .
Hence,I (0 4+ 180) becomes a mirror image df6).
whereU is the K N4 x M orthogonal matrixy” is the M x Moreover, when a left-right symmetry of gait motion is

M orthogonal matrix,S is the M x M diagonal matrix  assumed](360—6) becomes a mirrorimage #{6). When
composed of singular valueB,, isthe N4 x M submatrix both of the weak perspective projection and the symmetry

of US, andv™ is the M dimensional column vector. are assumed,(180 — #) becomes the same imageldP).

The vectorv™ is an intrinsic feature vector of thath Hence, once a gait feature for reference direcfiQn is
subject and is independent of view directions. The subma-obtained, we can virtually add the same feature for direction
trix Py, is a projection matrix from the intrinsic vecterto (180 — 6, s) and a mirror feature for directiof#,..  + 180)

the feature vector for view directiafy, and is common for  and (360 — 6,.). Because the addition of the virtual ref-
all subjects, that is, it is independent of the subject. Thus, erences is based on the assumptions, the actually observed
the feature vectony’ for the view directiory); of the mth feature is prior to the virtually added features when features

subject is represented as for multiple reference directions are observed and an addi-
tional reference direction is the same as another observed
ag = Py, v™. (6) reference direction.

Then, feature vector transformation from reference view
directiond, . to 6; is easily obtained as

- +
ay = Py, PG,«ef ag'ief. @

4. Experimental results and analyses
4.1. Dataset and evaluation method

We use a total of 736 gait sequences from 20 subjects for
where P} is the pseudo inverse matrix df, . In the experiments. The sequences include 24 view directions

pragtical use, tranSformation.from one view direCtion. May  INote that the view directiodl is defined for the actual camera and that
be insufficient because motions orthogonal to the imageitis used in common for both the actual and the virtual cameras.




at every 15 degrees. Each sequence consists of from 10 t Olreference O sym.
20 steps of straight walks. The training set for the VTM is dir.

composed of 240 sequences of 10 subjects from 24 view di- 0 []I. []H.[]ﬂ. []n.
rections. Then, we prepare reference seéfsequences .

from 20 subjects of view directions (let them bé,. s for 15 nm []H. "Ml
a single reference and Be.s(1), - - - , 0,7 (k) for multiple

references). Here, to reduce the number of combination of 3 nlllm.
multiple references for simplicity, we use 8 reference direc- ’

tions at every 45 deg, that is, directions 0, 45, 90, 135, 180, 45 [lmnllml
225,270, and 315 deg. A gallery set for each view direction ¢ [Iml [IHH
is obtained by view transformation with e) for a single

reference or eq.8) for multiple references. A probe (test)

set is composed of the other sequences except for those c [II I'u 'l'“
subjects included in the training set for the VTM, and each [I.H [‘lm [_‘lm l |

sequence is indexed in advance with the view direction as1 05
Oprobe DECAUSE View direction estimation is easily done us-
ing a walking person’s velocity in the image or by view di- 12(]

il [IHI []Il
rection classification with averaged features for each view
decton. 135 ﬂll[llll

We also prepare for a gallery set with no transformation 150 [ .[‘Im.

(let it be NT) for comparison. In this method, a gallery
feature for each view direction is replaced with a reference 155

feature minimizing an angle formed by the gallery view [lm L ml

direction (let it bef,q;.-,) and the reference view direc- 150 []H.[]m.n . nll
tion. For example, when reference featuresffQy (1) = 0

andf,.;(2) = 90 are obtained, gallery features f¢5 < 1393 []H.[]M.[] []m.
Ogattery < 135 0r 225 < G411y < 315 are replaced with & {4
the reference feature féf.;(2), and the others are replaced 0|
with that ford, . ; (1). 005 nmu ]

We constructed a matching test using the dataset. A
probe is assigned verification when ed) i6 above a certain 240 Jm! l]ﬂ![ ]E!
threshold value, and a Receiver Operating Characteristic< 055 l]'“l]ln[]'m[].m
(ROC) [7] curve is obtained by plotting pairs of verification
rate and false alarm rate for various threshold values. The7/[) ]
tests are repeated for different 20 training sets for the VTM
and the averaged performance is evaluated by verification259 I]IH ’]'H []IH [].H l]

rate at 10% false alarm for the ROC curve.

4.2. Single reference 315 l].lllml '| \

We first show transformed features with the VTM using 330 ‘ m.
a single reference in Figd. We can see the transformed “
features are similar to the original feature (Fid(a)) for 345 []erlmlnml“m
each direction as a whole. For 0-deg reference (E{b)), 0 1 50 1
a front-back swing motion of arm and leg is orthogonal to (a (b} {C (d) (e)
the image plane and degenerated, then transformed features
near side viewd = 90, 270) are degraded compared with
those from the other references. For 90-deg reference (Fig.
4(d)), although the front-back swing motion is observed the
best, the width of body is orthogonal to the image plane
and degenerated. Therefore transformed features near front
view (# = 0,180) are degraded compared with the others.
On the other hand, for 45-deg reference (Fi(c)), fea- assumption of left-right gait symmetry. Hence, transformed
tures for orthogonal viewg)(= 135, 315) are added by the  features are relative fine compared with the others. For 135-

2

(a): Original feature, (b)-(d): Transformed feature from O,
45, 90, and 135 deg by the VTM respectively.
Figure 4. Transformed feature from a single reference
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Figure 6. Verification rate for all combinations of probe view
Oprove @nd reference view, . s

deg reference (Fig4(e)), the tendency is the same as the
45-deg reference.

Next, we show verification rates for each reference view
direction6,..¢ in Fig. [5(a)-(h). It is clear that the probes
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Figure 5.Verification rate at 10% false alarm for single reference
360 Oprobe = 180 in Fig.5(a) andd,,op. = 270 in Fig.5(c)).
2315 On the other hand, the probes with the orthogonal view
S5 70 direction to the reference have poor performance (for exam-
& ple, Oprove = 90 in Fig. 5(a) andf,,.,e = 0 in Fig. 5(c)).
5 225 As an exception, for angled view such@s,,. = 45,135,
5180 references of orthogonal view are added, therefore the per-
% \ formance to the orthogonal probe are also relatively high.
8135 8'3 Figurel6 shows the performance summary by VTM for
@ 08 all combinations of probe view,,.,. and reference view
2 07 6,5 included in Fig.5(a)-(h). We can see that the perfor-
= - 06 mance is high on the following lines.
454590 135 180 220 2/0 315 560 02

o Oprobe = Urcy: the same view direction.

® Oprove = Orey + 180: the added feature by the weak
perspective assumption.

o Oprobe = 360—0,.: the added feature by the left-right
symmetry assumption.

® Oprove = 180 — 0,y the added feature by the weak
perspective and the left-right symmetry assumption.

with the same view direction as the reference have very high  Figurel5(i) shows averaged performance on probe view

performances for all references (for exam@lg,o,e = 0
in Fig. 5(a) andfprore = 90 in Fig. 5(c)). In addition,

direction. The performance of NT for each reference is sim-
ilar to each other and is inferior to that of VTM. On the other

the probe with the same view direction as the added refer-hand, the performance of VTM for angled view reference

ences have also relatively high performance (for example,

(6 = 45,135,225, 315) is relatively high.
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(a): Original feature, (b)-(d): Transformed feature from
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spectively.

Figure 7.Transformed feature from two references

4.3. Combination of two references

We first show transformed features with the VTM using
some combinations of two references in Flg. We de-
note a combination of two reference #&..¢(1), 6,c¢(2)}
in this section. For orthogonal combinations (Frifb)(c)),
degenerated information for orthogonal direction to the im-
age plane such as front-back motion for 0-deg feature and
width of body for 90-deg feature is compensated with each
other. Therefore we can see the transformed features are
more similar to the original feature (FigZ(a)) for each
direction than those for a single view direction (Fid).

On the other hand, for 180-deg opposite combinations (Fig.
7(d)(e)), the transformed features are little improved com-
pared with those in case of the single reference. This is
because the degenerated information for orthogonal plane
is not compensated and because one of the two references
has been already added by the weak perspective assumption
even in case of the single reference.

Next, we show verification rates for some combinations
of two reference view directions in Fi@(a)-(d). As a re-
sult, we can see the performance for orthogonal combina-
tion (Fig. [8(b)) is high and that for intermediate combina-
tions between orthogonal and parallel (F&fa)(c)) is also
relatively high. On the other hand, that for 180-deg oppo-
site combination (Fig8(d)) is little improved as compared
with single reference.

Figure8(e) shows averaged performance on probe view
direction. In this figure, repeated reference (for example,
Orer(1) = 0,.4(2) = 0 indicates the same meaning of sin-
gle referencd,.; = 0). In case of,.;(1) = 45, the per-
formance of single reference is enough high, then the per-
formance difference by combination is not outstanding. On
the other hand, in case 6f.;(1) = 0 and90, the perfor-
mance difference is outstanding, that is, the performance is
high for orthogonal combination and is little improved for
parallel combination.

To confirm this tendency, we show the averaged per-
formance on probe for combinations of two references
by VTM in Fig. 9. We can see high performance line
Oref(2) — Opep(1) = 90 + 180n,n = —2,—1,0,1) cor-
responding to the orthogonal combination, and low per-
formance line ,.¢(2) — 6,.5(1) = 180n,n = —1,0,1)
corresponding to the parallel combination. Therefore, the
orthogonal combination is suitable for two references for
VTM.

4.4. The number of references

Here, we discuss the effect of the number of references
(letitbeN,.) for VTM. We show the averaged verification
rate for N,..s in Fig. [10. In this figure, "best” and "worst”
indicates the performance using the best and the worst com-
bination of reference views respectively and "average” in-
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Figure 8.Verification rate at 10% false alarm rate for two references

dicates the averaged performance on all the combinationsa few references are enough to transform features precisely
In case of the best, we obtain more than 90% verification and to achieve high verification rate for various-directions
rate if N,..s is more than or equal to 2. In addition, even in walks.

case of the worst, we obtain more than 80% verification rate

if N, is more than or equal to 3. As a result, we can see



Figure 9.Averaged performance on probes for combinations of
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Figure 10 Averaged verification rate for the number of references [10]

5.

vie

Conclusion

[11]

In this paper, we discussed the selection of reference

ws for various-view gait identification using a view

transformation model (VTM). As a result of experiments, it [12]
was cleared that angled reference view such as 45 deg and
135 deg are effective for a single reference, and that combi-
nations of orthogonal references such as a combination of 0
deg and 90 deg are effective for two references. In addition, [13]
we confirmed that a few references are enough to achieve

hig

h performance on various-view gait identification.

Future works are as follows.

[14]

e Experiments for a general database, such as the Hu-

manlID Gait Challenge Problem Datasé&ig [

e Adaptation to camera tilt changes
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