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Abstract—In this paper, we describe feature-based non-
rigid registration of histological serial section images. Our
method represents non-rigid deformation by blending the
rigid transformations estimated in the local region around
a control point. This approach can efficiently represent non-
rigid deformation with a smaller number of control points
than conventional methods that interpolate displacement, such
as free-form deformation (FFD). A feature-based approach is
adopted to extract the control points and robustly estimate the
local rigid transformation at each control point. By blending
the rigid transformations, the displacement at each pixel is
computed as a transformation field. The experimental results
demonstrate that the proposed method is effective for achieving
non-rigid registration efficiently and robustly for histological
serial section images.

Keywords-Image registration; Non-rigid deformation; Blend-
ing of transformation;

I. INTRODUCTION

Understanding the three-dimensional (3D) structure of
biological tissue is crucial for gaining structural insights
for physiology and pathology. Histological section images
have a much higher resolution compared with MR and
CT images. Therefore, a 3D model reconstructed from
histological section images provides more detailed structural
information. However, histological section images have a
non-rigid deformation, such as stretching, bending, folding,
and tearing caused by sectioning operations.

For non-rigid registration, free-form deformation (FFD),
which is an area-based approach, is popular. Several regis-
tration methods for histological images [2], [13] are based
on FFD with B-spline interpolation. FFD estimates the dis-
placement at control points and calculates the displacement
at every point using interpolation. However, the descriptive
power of the deformation highly depends on the resolution
of the grid of the control points [10]. A large number of
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Figure 1. Representation of deformation: (a) displacement in each pixel,
(b) displacement field of FFD, where the arrows indicate displacement, (c)
transformation field of the proposed method, where the dots indicate the
control points and the arrows indicate rigid transformation.

control points are required to represent complex non-rigid
deformation.

The feature-based approach is also popular for the global
registration technique, such as the rigid or affine transfor-
mation of the entire image. The feature-based approach uses
invariant local image features for robust matching, and there
have been many studies of it in the image processing field
[6], [12]. Some feature descriptors have been proposed to
be invariant to rotation, translation, and brightness variance,
which also occur in histological section images. Although
using the local image feature is one of the standard ap-
proaches to performing global rigid and affine registration,
there is still no standard approach for non-rigid registration.
For example, it is not directly applied to FFD because it
does not provide the control points on a regular grid.

In histological images, deformations are globally non-
rigid, but several studies [4], [3] have been based on the
observation that they can be considered to be locally rigid;
we also consider this assumption. The contribution of this
paper is twofold. First, we present a method that uses a
feature-based approach to estimate such local rigid trans-
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Figure 2. Overview of non-rigid registration for the proposed method: Using source and target images as input, the method (1) extracts feature keypoints,
(2) matches them, (3) conducts clustering of the matching (the case for k = 2 is shown), and (4) estimates the rigid transformation Mi in each cluster.
The transformation field is computed by (5) blending the transformations Mi with weight wi to represent non-rigid deformation.

(a) Source (b) Target
Figure 3. Visualization of clustered keypoints: (a) the transformed source
image and (b) the target image. Keypoints in the same cluster have the same
color (cluster number k = 4). Section images are shown in gray-scale.

formations and integrate them into global non-rigid defor-
mation. To represent a globally non-rigid deformation, we
adopt a blending method for rigid transformations. Second,
we show that the proposed method efficiently represents
non-rigid deformation with a small number of control points
as accurately as the FFD approach with a large number of
control points.

The proposed method can be considered to extend the
FFD approach in two main aspects. First, the control points
are defined not on a grid, but on several local regions
according to the pattern on the image. We propose an ap-
proach to estimate the local regions by clustering the feature
points. Second, each control point has a rigid transformation
(translation and rotation) where a control point of FFD has
a displacement (translation). We call these transformations
at every point the ‘transformation field’. Because each point
has an individual rigid transformation, the transformation
field can describe non-rigid deformation on the entire image.
For example, if an image has a rotational transformation,
as shown in Fig. 1(a), it forms a complex displacement
field. FFD represents the deformation using control points

defined on a grid that have a displacement (translation), as
shown in Fig. 1(b). The estimated transformation becomes
coarse without using a high-resolution grid of the control
points. Thus, dense control points are required to represent
rotation more accurately. By contrast, the control points
of our method have a rigid transformation (translation and
rotation), as shown in Fig. 1(c). Therefore, the proposed
method can describe complex non-rigid deformation using
a smaller number of control points than FFD.

Several methods have been proposed to estimate a trans-
formation at each point from the transformations at the
control points. One is the direct average method [11], which
is also known as linear blend skinning (LBS) in the computer
graphics field. LBS represents rigid transformation Mi in
matrix form, takes the weighted sum for each element, and
normalizes the resultant matrix so that it represents a rigid
transformation. LBS is simple and computationally efficient,
but has some artifacts. To reduce the artifacts of LBS,
blending using dual quaternion has been proposed in the 3D
computer graphics field[7]. The other method is the polyrigid
transformation model [4], [3]. The authors used ordinary
differential equations (ODEs) to integrate the velocity vector
at each control point to obtain the transformations. This
method has some mathematically good attributes, such as the
invertibility of the resultant transformations. However, these
studies did not provide quantitative results that demonstrate
the effectiveness of the real-world problem, for example,
the registration of histological section images and artifacts
of the method are not known. The deformation that occurred
in the histological section images would not be limited to



invertible transformations. Therefore, in this study, we use
the direct average method with the improvement of reducing
the artifacts of blending in two-dimensional (2D) images.
This study shows that the transformation field approach is ef-
fective for the registration of histological section images, and
non-rigid deformation can be modeled using our method.

II. PROPOSED METHOD

The proposed method consists of five steps, as shown in
Fig. 2. First, we extract the feature points for the images to
be processed and calculate the matching of these points.
Next, we define local regions, each of which has rigid
deformation, and then estimate a rigid transformation in
each cluster. Finally, we compute a transformation field. The
following sections explain these steps in detail.

A. Keypoint Detection and Feature Matching

The proposed method estimates rigid transformations
based on keypoint detection and feature matching in the
same manner as previous methods of rigid registration.
Although any method can be used for keypoint detection and
feature description, we adopt accelerated-KAZE (AKAZE)
[1]. We use AKAZE in OpenCV with the default parameters.
By applying the method for the source and target images,
two sets of keypoints are acquired (Fig. 2 (1)). Between
them, feature matching is performed by brute-force matching
using the Hamming distance (Fig. 2 (2)).

To prune improper matching in the background region,
the method also extracts the tissue region and removes the
matches outside the region. The tissue region is extracted as
follows: First, the image is converted to a binary image using
the threshold of the UV component in YUV color space.
Then we locate the contour of the binary image. Finally, the
outside of the contour is masked.

B. Global Registration before Non-Rigid Registration

In addition to non-rigid deformation, the images are
affected by the global transformation of rotation and trans-
lation, which occurred in the capturing process. The dif-
ferences caused by such a rigid transformation need to be
preliminary eliminated; thus, the algorithm first estimates the
rigid transformation between the source and target images
using the entire set of matched feature points. The rigid
transformation matrix R is estimated using the Random
Sample Consensus (RANSAC) algorithm [5] in the same
manner as existing methods. Position ps of a pixel on the
source image is transformed into ps′ by

ps′ = Rps. (1)

ps and ps′ are homogeneous coordinates.

C. Keypoint Clustering and Estimating Local Transforma-
tions

As discussed above, even if the deformation is globally
non-rigid, there is a rigid transformation in each local region.
Such a local transformation can be estimated from the
keypoints in a neighborhood. Thus, we perform k-means
clustering for the keypoints on the source image using their
coordinates to determine each local region (Fig. 2 (3)).
We discuss how to determine the number of clusters k
through experiments in Section IV. Using the keypoints in
each cluster, a rigid transformation in each cluster Mi is
estimated using RANSAC, as well as the Section II-B (Fig.
2 (4)). Then, we define a control point vi as the center of
the keypoints used to estimate Mi in the source image.

D. Calculating the Transformation Field by Blending the
Local Rigid Transformations

The proposed method estimates a transformation field
that has a rigid transformation at each pixel by blending
the rigid transformations {Mi} (Fig. 2 (5)). Blending rigid
transformations has been studied in the computer graphics
field, and LBS is the most simple method. However, several
artifacts occur, such as the candy wrapper effect in LBS.
Regarding blending 3D transformations, dual quaternion
linear blending (DLB) and dual quaternion iterative blending
(DIB) are proposed to overcome the artifact [7]. DIB is
mathematically ideal, but requires an iterative process be-
cause it is not defined in closed form. For the 2D case, the
anti-commutative dual complex and its application to DLB
have been proposed [8]. Because the DIB is mathematically
preferable, we extend it to the 2D case as dual complex
iterative blending (DCIB). The proposed method transforms
pixel ps′ in the source image into ps′′ using the following:

ps′′ = F(w(ps′),M)ps′ , (2)

w(ps′
) = [w1(p

s′), ..., wk(p
s′)]>, (3)

M = [M1, ...,Mk]
>, (4)

where k is the number of clusters, wi ∈ [1, k] are the
blending weights, Mi ∈ [1, k] are the rigid transformations
of the local regions, and F is a function of blending the
transformations using DCIB.

We empirically set weight wi at pixel p according to the
Euclidean distance from p to control point vi as follows:

ti(p) =
1

‖p− vi‖22
, (5)

wi(p) =
ti(p)∑
j

tj(p)
. (6)

Because the weights need to be convex (wi ≥ 0,
∑

i wi = 1),
we normalize the weights to meet the conditions to guaran-
tee the convergence of DCIB. Each pixel has a different
rigid transformation because each pixel has an individual
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Figure 4. Registration of histological section images: (a) source image, (b) target image, (c) rigid registration, (d) non-rigid registration using bUnwarpJ
(deformation grid = 8× 8), (e) proposed non-rigid registration (cluster number k = 8). We show the images with low staining variation (in the first and
second rows) and high staining variation (in the third and fourth rows). The first and third rows show the registration images. The second and fourth rows
show the target image in blue and each registration result in red.

weight. Thus, the transformation field represents non-rigid
deformation in the entire image, as shown in Fig. 2 (5).

III. EXPERIMENT

We experimentally demonstrated that the proposed
method is applicable to the non-rigid registration of a histo-
logical section image. For this purpose, we used part of the
Kyoto Collection of Human Embryos images maintained in
the Congenital Anomaly Research Center, Kyoto University
[14]. This study was approved by the Ethics Committee of
the Graduate School of Medicine and Faculty of Medicine,
Kyoto University (approval nos. R0316 and R0347). The
serial sections were approximately 10 micrometers thick,
and microscopy was used to capture the images with ap-
proximately 5 micrometers resolution. For the evaluation, we
selected four specimens from the collection and randomly
selected 20 pairs of two neighboring images from each
specimen.

We compared our method with one of the existing non-
rigid registration methods, bUnwarpJ (elastic registration us-
ing B-spline) [2]. Fig. 4 shows the source image (Fig. 4(a)),
target image (Fig. 4(b)), and results of registration (Fig.
4(c)–(e)). Because the histological sections were stained
chemically, a variation in staining could occur. We show
the results of samples with low (the first row) and high (the
third row) variations of staining. The second and fourth rows
show the overlay of the registration result and target image.
The number of the control points for bUnwarpJ was set to
8 × 8 and the cluster number (k) was 8 for the proposed
method. Even though the number of control points used in
our method was much fewer than those in bUnwarpJ, the
proposed method achieved better performance for samples
with high staining variation where bUnwarpJ had a large
deformation error, as shown in the bottom row of Fig. 4.

Next, we compared the registration methods in various
settings to investigate the effect of the number of control
points. We evaluated the registration accuracy using the
Jaccard Index (JI) [9]. JI represents the overlap ratio of tissue
regions, which was extracted using the method described in
Section II-A in two corresponding images as follows:

JA,B =
|A ∩B|
|A ∪B|

, (7)

where A and B are the same pixels in the source and target
images. The accuracy with various settings is presented
in Fig. 5. bUnwarpJ achieved better accuracy with many
control points (8× 8), and the performance varied together
with the number of control points. The proposed method
achieved almost the same accuracy with a much smaller
number of control points, and performance was relatively
stable for the number of control points.

Fig. 6 shows the direct comparison of bUnwarpJ and our
method using the same number of control points. Each point
represents the JIs for bUnwaprJ and our method for the same
pair of sections. If the accuracy was the same, the point was
plotted on the diagonal line. The points in the upper left side
indicate that the proposed method achieved a better JI than
bUnwarpJ. We observe that our method achieved similar or
much better accuracy than bUnwarpJ in most samples.

IV. DISCUSSION ON THE NUMBER OF CLUSTERS

Although the proposed method achieved relatively stable
performance for the number of clusters, the appropriate
number of clusters depends on the deformation that occurred
in an image pair. In this section, we present two methods to
determine the number of clusters automatically, and compare
them to discuss performance.

The first method uses keypoint matches as a criterion
to evaluate the number of clusters For a given number of
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Figure 5. Accuracy of registration using JI: JI of the registration images in
each method, rigid registration (Rigid), bUnwarpJ and our method (Ours) in
various settings. In bUnwarpJ, (n×n) represents the number of deformation
grids. In our method, (k) represents the number of control points. Auto
(KPs) represents the method for determining number of clusters k using
keypoints. Red dots represent the mean.
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Figure 6. Accuracy comparison of bUnwarpJ and our method with the same
number of control points for the same image pair. The x-axis shows that
the JI of bUnwarpJ with deformation grid intervals was 2 × 2 = 4 or
4 × 4 = 16. The y-axis shows that the JI of our method with control
points was 4 or 16.

clusters k, a transformation field was computed using the
proposed method. We evaluated it using error ek defined on
keypoint matches calculated as follows:

ek =
∑

(ps′ ,pt)

(
pt −F(w(ps′),M)ps′

)
, (8)

where pt is a keypoint in the target image that corresponds to
ps′ , which is a keypoint in the source image. F(w(ps′),M)
is the transformation computed at ps′ using (2), where the
cluster number is k. We only evaluated the top 60% of
keypoint matches that had a small error to reduce the effect
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Figure 7. Histogram of the selected cluster number using keypoints (auto
(KPs)) and the JI (auto (JI)).

of mismatched keypoints. For each image pair, we increased
k while error ek decreased, then determined the appropriate
number of clusters for it.

We applied the algorithm to a part (Fig. 7 and Fig. 8) or
all (Fig. 5) of the dataset used in Section III. Fig. 7 shows
the histogram of the selected cluster number. We evaluated
the registration performance of the cluster number selection
methods, as shown in (auto (KPs)) of Fig. 5. We observe that
it achieved the best performance among the other methods.

The second method uses the JI of the entire tissue that
was extracted in Section II-A as a criterion to evaluate the
number of clusters. We evaluated the JI for k = [1, 16] using
the brute-force approach, and selected the best JI for each
image pair. Fig. 7 shows the histogram of the cluster number
with the best JI, in addition to the above.

To compare the performance of these methods, we use
two criteria: the JI of the entire tissue and JI of the manually
annotated region of the central nervous system. Because the
second method maximizes the JI of the entire tissue using the
brute-force approach, it must be the best result under the first
criterion. The second criterion is blind for both two methods;
thus, it provides a fair and solid comparison because the
manually annotated region is considered to be correct. As
a result, the method using keypoints is comparable to the
best JI method in both the entire and annotated regions
(Fig. 8). Note that the method using keypoints has much
less computational cost than that using the JI because these
methods require the blending of the transformations only
at keypoints and at all pixels, respectively. These results
support the fact that the method using keypoint matches is
efficient and sufficiently appropriate to tune the number of
clusters.
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Figure 8. Accuracy comparison of the cluster number selecting method
using the keypoints and JI for the same image pair. The x-axis shows the
JI of the method using keypoints. The y-axis shows the JI of the method
using the JI in each sample. The JIs for the normal and annotated images
are shown.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel feature-based non-rigid
registration method that established the transformation field.
The proposed method estimated the rigid transformation in
local regions and blended them to interpolate the transforma-
tions at every pixel. Our method can describe a very complex
deformation with a smaller number of control points. We
also presented a method to determine the number of local
regions automatically. The experiments showed that our
method is more robust to staining variation compared with
an existing method. However, as a limitation of the feature-
based approach, the proposed method could not perform
registration in the image without a sufficient number of
feature points. This method may have applications other
than the registration of histological serial section images.
The investigation of other applications of the method will
be interesting for future study.
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