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Abstract. This paper proposes a method for phase registration of a sin-
gle non-parametric quasi-periodic signal. After a short-term period has
been detected for each sample by normalized autocorrelation, Self Dy-
namic Time Warping (Self DTW) between a quasi-periodic signal and
that with multiple-period shifts is applied to obtain corresponding sam-
ples of the same phase. A phase sequence is finally estimated by the
optimization framework including the data term derived from the corre-
spondences, the regularization term derived from short-term periods, and
a monotonic increasing constraint of the phase. Experiments on quasi-
periodic signals from both simulated and real data show the effectiveness
of the proposed method.

1 Introduction

Periodic signal analysis has been widely studied in the computer vision field as well
as signal processing field, as the periodic signal plays quite an important role in many
applications ranging from transmitting information via a radio carrier wave [1] [2] in the
electronic communication field to periodic motion detection from video, periodic action
recognition (e.g., walking and running), person identification from periodic motion
(e.g., gait-based person identification [3]).

Such a periodic signal is often modulated in terms of amplitude, frequency, and
phase by design or by chance, and is converted into a quasi-periodic signal. Typical
examples of intentional modulation are Amplitude Modulation (AM) and Frequency
Modulation (FM) [1] used in radio broadcasts, and Phase Modulation (PM) [2] used
in radio control, where a carrier wave with known parameters is given as reference and
the modulation is estimated based on the carrier wave.

On the other hand, accidental modulation is induced by a fluctuation in the sam-
pling interval (network camera with limited communication band width) or that of the
periodic signal source itself (e.g., fluctuations in human walking patterns). Estimating
phases from such phase-modulated quasi-periodic signals is quite an important task in
many applications. For example, temporal interpolation of a video with constant phase
evolution needs the correct phase information for each key frame. Moreover, temporal
super resolution of a periodic image sequence needs accurate phase registration data
with sub-sampling order displacement of phase, in the same way that spatial super
resolution needs image registration data with sub-pixel order displacement [4]. Phase
registration data is also essential to reconstruct a manifold parameterized by phase in
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periodic action analysis and recognition and accurate period segmentation for periodic
signal matching. In cases where a reference periodic signal is available, Dynamic Time
Warping (DTW) [5] (more specifically, continuous DP [6] in the periodic signal case) is
a powerful tool for matching two sequences with non-linear time warping, in the sense
that matching results give phase registration data. The reference signal is, however,
usually not available in the above applications.

This paper tackles the challenging problem of phase registration from a single
quasi-periodic signal. After a short-term period has been detected for each sample,
Self DTW between the quasi-periodic signal and that with multiple-period shifts is
applied to obtain corresponding samples with the same phase. A phase sequence is
finally estimated in a sub-sampling order by the optimization framework where an
objective function is composed of the data term derived from the correspondences,
the regularization term derived from short-term periods, and a monotonic increasing
constraint of the phase.

2 Related work

Parametric representation: A periodic signal is usually represented by a periodic
function parameterized by amplitude, frequency, and phase, and it is often observed
together with additive noise. Such parametric expression is widely used in the con-
text of periodic signal reconstruction [7] and detection [8], enhancement of a specific
frequency [9], estimation of amplitude [10], and decomposition of multiple periodic
signals [11] [12] [13]. The common key technique in these approaches is parameter es-
timation and hence, non-parametric periodic signals are out of scope.
Linear time warping: Linear time warping is conventionally used in periodic action
recognition such as gait recognition [14] [15] [16]. Periods are usually first detected as an
interval of signal peaks [3] by maximum entropy spectrum estimation [17] or by max-
imum normalized autocorrelation [18]. The signals are then linearly stretched/shrunk
so that the periods of two signals match. Naturally, these methods cannot deal with
non-linear time warping within a period.
Non-linear time warping: Dynamic Time Warping (DTW) [5] has been widely used
for elastic matching of two sequences in the field of action recognition [19] and gait
recognition [20]. The Hidden Markov Model (HMM) is a probabilistic framework ver-
sion of the DTW, which is also used in phase state estimation in walker motion extrac-
tion [21], gait silhouette refinement [22] [23], and gait recognition [24] [25]. An HMM
needs sufficient training sequences and hence, cannot be applied directly to phase reg-
istration from a single sequence. Moreover, the number of states should be sufficiently
large to realize a sub-sampling order phase estimation and this leads to an explosive
increase in the number of training samples required.

3 Phase registration

3.1 Problem statement

Given a periodic function of the multi-dimensional signal f(t) with period P that
satisfies f(t+ jP ) = f(t) ∀j ∈ Z, a time normalized by period P , is introduced as an
absolute phase s and a relative phase s̃ as
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s = sP (t) =
1

P
t (1)

s̃ = s− bsc, (2)

where sP (t) is a phase function, and bsc is a floor function. A normalized periodic
function is subsequently introduced as

h(s) = f(s−1
P (s)), (3)

which satisfies h(s) = h(s̃) ∀s.
Next, it is assumed that the phase function sP (t) is distorted by fluctuation into

sQ(t) and that the periodic signal f(t) is converted to a quasi-periodic signal g(t),
which is subject to

g(t) = h(sQ(t)) = f(sQ(s−1
P (s))). (4)

Given the quasi-periodic signal g(t) and its phase function sQ(t), the periodic function
is reconstructed as

h(s) = g(s−1
Q (s)). (5)

In addition, since the signal is usually quantized in observation, we redefine the
above variables at quantized time ti (i = 0, . . . , N) with subscription i (e.g., gi = g(ti)).
Therefore, our objective is to estimate a phase sequence SQ = {sQ,i} from a given quasi
periodic sequence G = {gi}. This is referred to as the phase registration problem in
this paper.

On the other hand, the following ambiguity of the phase function and normalized
periodic function remains. Given another phase function s′Q(t) and another normal-
ized periodic function h′(s) = h(s′Q(s−1

Q (s))) that satisfies h′(s) = h′(s̃) ∀s, another
quasi-periodic function g′(t) is defined in two ways as g′(t) = h(s′Q(t)) = h′(sQ(t)).
Therefore, given the quasi-periodic function g(t), the ambiguity of combinations of the
phase function sQ(t) and the normalized periodic function h(s) remains. In this paper,
we estimate one of the phase functions.

3.2 Pseudo period estimation

First, we define a differential of the phase function

dsQ(t)

dt
=

1

PQ(t)
, (6)

where PQ(t) is called the pseudo period in this paper. Note that the pseudo period
PQ(t) is equivalent to the period P for the periodic signal, which is obvious from Eq.
(2). The equation in quantized domain is also defined as

sQ,i+1 − sQ,i =
1

PQ,i
. (7)

Then, the pseudo period is estimated by maximizing a short-term normalized autocor-
relation as
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P̂Q,i = arg max
PQ∈[Pmin,Pmax]

Ci(PQ) (8)

Ci(PQ) =

P
τ∈Ii g

T
τ gτ+PQqP

τ∈Ii ||gτ ||
2
qP

τ∈Ii ||gτ+PQ ||
2

(9)

Ii = {τ | i− αPmax ≤ τ ≤ i+ αPmax, τ ∈ Z}, (10)

where [Pmin, Pmax] is a domain of the pseudo period which is obtained by existing
methods of period detection or given by prior knowledge, and α is a coefficient to
control the size of the window function for the short-term mask.

3.3 Self Dynamic Time Warping

Given a correspondence of two samples i and uji with j periods difference (call this the
jth period correspondence and denote it as x = [i, u]), they are ideally subject to

s
Q,u

j
i
− sQ,i = j (11)

g
u
j
i

= gi., (12)

where the equations denote the phase constraint and signal consistency, respectively.
Hence, Eq. (11) is exploited as a constraint for phase registration, and we try to find the
correspondences based on the signal consistency of Eq. (12) by applying Self Dynamic
Time Warping (Self DTW) to the quasi periodic sequence G.

First, an initial estimate of the jth period correspondence x̂ji = [i, ûji ] is obtained
from the estimated pseudo period P̂Q,i in a recursive manner as

ûji = ûj−1
i + P̂

Q,û
j−1
i

, û0
i = i (13)

Second, lower and upper bounds of the jth period correspondence are set to

ujlow,i = max{ûji − βP̂Q,ûji , 0} (14)

ujup,i = min{ûji + βP̂
Q,û

j
i
, N}. (15)

Thus, a Self DTW path search region is defined as Rj = {x = [i, u]| ûjlow,i ≤ u ≤
ûup,i ∀i ∈ [0, N ]}, and subsequently the source and terminal regions are set to RjS =
{x = [0, u]| x ∈ Rj} and RjT = {x = [i,N ]| x ∈ Rj}, respectively, as illustrated in Fig.
1. Now, the correspondence problem is decoded as continuous dynamic programming [6]
in the search region Rj .

The formulation is given as follows. A cumulative cost c(x) and a counter n(x) are
introduced and these are initialized for x ∈ RjS as

c(x) = cI(x), n(x) = 1, (16)

where cI(x) is a cost function for the signal intensity difference given as cI(x) =
||gi − gu||.

Next, a transition process is considered. We limit the previous state xp to the
current state x to T j(x) = {[i − 1, u − 1], [i − 2, u − 1], [i − 1, u − 2]} ∩ Rj and define
the optimal previous state to the current state as xjp

∗
(x), which is given as

xjp
∗
(x) = arg min

xp∈T j(x)


c(xp)

n(xp)
+ cT (x,xp)

ff
, (17)
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Fig. 1: Overview of Self DTW

where the first and second terms on the right side are, respectively, the counter-
normalized previous cumulative cost and the transition cost function, given as cT (x,xp) =
||x− xp||L1 . Then, the cumulative cost and the counter are updated as

c(x) = c(xjp(x)
∗
) + cI(x) + cT (x,xjp

∗
(x)) (18)

n(x) = n(xjp
∗
(x)) + 1 (19)

After the cost propagation of all the states in Rj , the optimal state at the terminal
is

xjT
∗

= arg min
x∈Rj

T

c(x)

n(x)
. (20)

Subsequently, the terminal counter and the optimal terminal state are redefined, re-
spectively, as nj = n(xjT

∗
) and xjnj

∗
= xjT

∗
for convenience, and the optimal path is

back tracked as xji
∗

= xjp
∗
(xji+1

∗
) for i = nj − 1, . . . , 1. In the following sections, the

optimal correspondence sequence is denoted as Xj = {xji | i = 1, . . . , nj}.

3.4 Phase sequence optimization

Phase sequence SQ is estimated by taking the following three points into consideration:
(1) the obtained optimal correspondence sequence Xj , (2) the smoothness of the phase
sequence SQ, and (3) monotonically increasing the phase sequence SQ as

S∗Q = arg min
SQ

D(SQ) (21)

D(SQ) =
X
j

X
[i,u]∈Xj

(sQ,u − sQ,i − j)2

+λ

N−1X
i=0

 
sQ,i+1 − sQ,i −

1

P̂Q,i

!2

(22)

subject to sQ,i+1 − sQ,i ≥ 0 ∀i = 0, . . . , N − 1, (23)

where the first and second terms on the right side of Eq. (22) are the data term derived
from the correspondences and the regularization term derived from Eqs. (7) and (8),
respectively, and λ is the regularization term coefficient.
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As described before, the ambiguity of the phase function remains. First, a constant
shift ∆s in s′Q(t) = sQ(t)+∆s does not change the value of the objective functions and
the constraints at all, because all the sQ,i are used in the subtraction form. Therefore,
the following constraint is added without loss of generality

sQ,0 = 0. (24)

Second, considering another phase function s′Q(t) = sQ(t) + r(t) with a quasi-
periodic shift r(t) that satisfies

r(t) = r(t′) ∀[t, t′] ∈ {[t, t′]| s̃Q(t′) = s̃Q(t)} (25)

dr(t)

dt
≥ −dsQ(t)

dt
, (26)

the quasi-periodic shift r(t) does not change the data term of the objective functions
assuming no correspondence error. In other words, the quasi-periodic shift r(t) depends
on a tradeoff between the correspondence errors in the data term and residuals between
inverses of the correct pseudo period PQ,i and its estimate P̂Q,i in the regularization
term.

Finally, because the objective function D(SQ) is a quadratic form and the con-
straints of Eqs. (23) and (24) are a linear form, the above optimization problem is
solved by convex quadratic programming using the active set method.

4 Experiments

4.1 Simulation data

We carried out experiments on simulation data to confirm the effectiveness of the
proposed phase registration. First, we generated three normalized periodic functions
with a single dimension as a non-parametric function, with the second order differential
(d2h/ds2) randomly drawn from a uniform distribution in the domain [-500,500] and
with boundary conditions h(1) = h(0) = 0. The phase function sQ(t) was also generated
by a non-parametric scheme in the same way. Given the pseudo period function PQ(t)
with second order differential (d2PQ/dt

2) drawn from a uniform distribution in the
domain [-0.25, 0.25] with boundary conditions PQ(0) = PQ(T ) = P , where T is the
time at the final frame and P is a predefined period, the phase function sQ(t) is given by
the first order differential equation dsQ/dt = 1/PQ(t) with initial condition sQ(t) = 0.
In this simulation, T and P were set to 10 and 100, respectively.

Third, quasi-periodic sequences were generated by sampling at (1/P ) intervals as
gi = h(sQ(it/P )), i = 0, . . . , N , where N = TP is the sample ID at the final frames.
Fourth, sequences with noise were also generated as g′i = gi + δ, where δ is drawn from
a Gaussian distribution with standard deviation σ = 0.1. The other parameters used in
each process were set experimentally as α = 1.0, β = 0.3, and λ = 10.0. The generated
signals were phase-modulated as shown in Fig. 2(a).

If a reference signal is not given in the problem statement, existing methods such
as continuous cyclic DP and cyclic HMM cannot be applied. Therefore, we regard
the following scheme based on the estimated pseudo period with Short-Term Period
Detection (STPD) as a baseline algorithm for comparison:

sQ,i+1 = sQ,i + P̂Q,i, (27)
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Fig. 3: Phase registration results for simulated data

where we initialize sQ,0 = 0. Note that this is also equivalent to the case in which the
regularization coefficient λ is set to infinity in the proposed framework.

First, we evaluated the errors between the estimated phase and the ground truth
in Fig. 2(b). Because the ambiguity of the phase function is as described previously,
bias components in the errors should be ignored here. As a result, the error variance
in noisy data is larger than that in data without noise in the proposed method. The
error patterns are, however, still similar to a quasi-periodic form; this implies the
possibility of another combination of the phase function s′Q(t) and the normalized
periodic function h′(s). On the other hand, the error variance in the baseline method
(STPD) is larger than that in the proposed method, and furthermore, the error patterns
are not similar to a quasi-periodic form.

Next, phase registration results were evaluated in the domain of the relative phase
s̃∗Q,i and the corresponding signal intensity gi in Fig. 3. Note that their plots form
a certain normalized periodic function h(s) if the phase is correctly registered. As a
result, the plots for the data without noise in the proposed method lie on a single curve
and they form similar curves to the original signals (Fig. 3(a)). Moreover, the plots for
the noisy data seem to lie within the range of additive noise distribution in the quasi-
periodic sequence (Fig. 3(b)). On the other hand, the plots of the baseline method are
widely distributed around the original signals due to incorrect phase registration.

4.2 Real data

We also conducted an experiment on a gait silhouette sequence with gradual speed
variations ranging from 6 km/h to 10 km/h as shown in Fig. 4. An image sequence
of a walking person on a speed-controllable treadmill was captured at 60 fps and a
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Fig. 4: Subsequences of input gait silhouettes (every 4 frames). Top to bottom rows
correspond to 6, 7, 8, 9, and 10 km/h, respectively. Note that the phases among different
walking speeds are not synchronized.

size-normalized silhouette sequence (88 by 128 pixels) extracted by graph cut-based
segmentation in conjunction with background subtraction [26]. PCA was then applied
to the silhouette images and subsequently, the proposed method was applied to the
dimension-reduced data.

Figure 5 shows gait silhouette images aligned at the estimated relative phase. De-
spite the significant variation in gait style due to large speed variations from walking
(6 km/h) to running (10 km/h), all the gait phases, such as double-support phase
and single-support phase, are well registered for the different speeds. Note that non-
uniform alignment intervals of the gait silhouette images in Fig. 5 represent non-linear
time distortion due to the gait fluctuation obtained by the proposed Self DTW.

From an application viewpoint, phase-registered image sequences are quite useful.
For example, given just a single walking sequence with speed variation, a gait manifold
parameterized by both phase and walking speed can be constructed by re-sampling the
phase-registered speed-varied gait image sequence as shown in Fig. 6. The gait manifold
enables us to analyze the gait pose transition by walking speed for the same phase
as well as that by phase for the same walking speed. Moreover, in the context of gait
recognition with speed variations, the 2D gait manifold is provided as an efficient gallery
expression, unlike the existing 1D gait manifold parameterized only by phase [16]. A set
of 1D gait manifolds with different speeds depicted as colored loops in Fig. 6 cannot
deal with variations in walking speed within a period, particularly as they do not
provide phase registration information for different walking speeds depicted as gray
lines in Fig. 6. On the other hand, since a 2D gait manifold has such phase registration
information for different walking speeds, it can appropriately match a sequence with
walking speed variations within a period in the framework of 1D-2D (input to gallery)
dynamic programming. Note that the proposed method is applicable not only to gait
with speed variation, but also to general quasi-periodic signals undergoing transition



Phase Registration of a Single Quasi-Periodic Signal Using Self DTW 1973

Relative phase0.0 0.5

Fig. 5: Gait silhouette images aligned at the estimated phases (every 2 frames, a half
gait period). The horizontal axis indicates the relative phase s̃ and each silhouette image
is aligned at the estimated relative phase. The vertical axis indicates the number of
periods (every 5 periods). Changes in the rows from top to bottom represent a gradual
speed increase from 6 km/h to 10 km/h.

by factors other than phase, such as periodic action recognition with gradual view
changes or periodic signal analysis with gradual attenuation4.

5 Conclusion

This paper proposed a method for phase registration of a single non-parametric quasi-
periodic signal. Having detected a short-term period for each sample by normalized
autocorrelation, correspondences of multiple-period shifts are obtained by Self Dy-
namic Time Warping (Self DTW), which are used in the subsequent phase optimization
framework.

Future works include eliminating ambiguity between the phase function and nor-
malized period function based on the periodicity of the estimated phase sequence,
extension of the proposed method for a quasi-periodic signal with both phase and
amplitude modulation, and application to matching and time super-resolution of the
quasi-periodic signals.

Acknowledgement. This work was supported by Grant-in-Aid for Scientific Re-
search(S) 21220003.

4 In these cases, the manifold is parameterized by phase and view or degree of atten-
uation.
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Fig. 6: A 2D gait manifold parameterized by phase and walking speed. While each
color loop depicts a manifold for each walking speed parameterized by phase, gray
lines represent phase synchronization among the walking speeds.
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