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Abstract. A movie captured by a wearable camera affixed to an actor’s body 
gives audiences the sense of “immerse in the movie”. The raw movie captured 
by wearable camera needs stabilization with jitters due to ego-motion. 
However, conventional approaches often fail in accurate ego-motion estimation 
when there are moving objects in the image and no sufficient feature pairs 
provided by background region. To address this problem, we proposed a new 
approach that utilizes an additional synchronized video captured by the camera 
attached on the foreground object (another actor). Formally we configure above 
sensor system as two face-to-face moving cameras. Then we derived the 
relations between four views including two consecutive views from each 
camera. The proposed solution has two steps. Firstly we calibrate the extrinsic 
relationship of two cameras with an AX=XB formulation, and secondly 
estimate the motion using calibration matrix. Experiments verify that this 
approach can recover from failures of conventional approach and provide 
acceptable stabilization results for real data.  

Keywords: Wearable camera, synchronized ego-motion estimation, stabilization, 
two face-to-face cameras, extrinsic calibration. 

1   Introduction 

The goal of this work is to recover ego-motion of two face-to-face moving cameras 
simultaneously. This work aims at some situations where ego-motion with only one 
camera may fail and use another camera to provide additional information.  

Ego-motion estimation of a moving camera is the task of recovering camera 
motion trajectory given a set of 2D image frames. It has many applications like 
stabilization in our application. Most existing methods take one of the following two 
cases. For the case of static scenes, the problem of fitting a 3D scene compatible with 
the images is well understood and essentially solved [1, 2]. The second case deals 
with dynamic scenes, where the segmentation into independently moving objects and 
the motion estimation for each object have to be solved simultaneously [3-4]. Above 
methods may fail in camera ego-motion estimation if: (1) the foreground occupies 
too much space in the image, (2) there are insufficient features in the background  
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Fig. 1. Two image pairs captured by one wearable camera with a moving foreground. Left 
image pair: Camera motion can be computed using background region with enough feature 
point matches.Right image pair: There are very few feature matches in background region. It’s 
impossible to estimate ego-motion without additional information. And motion of the 
foreground point matches is related with both camera motion and person’s motion. If we know 
foreground person’s motion, camera ego-motion can be estimated.  

 

Fig. 2. Two face-to-face cameras in our application of “Dive into Movie”. One camera is 
attached to the body of each person.  

region of image pair, or (3) there is too much repeated structure for features to get a 
good match.  

Fig. 1 showed the situation that almost the whole image is covered by moving 
foreground. It’s impossible to estimate ego-motion in this case. Additional 
information can be utilized, such as inertial data [6] or synchronized image frames 
from another camera. In the case of using another camera, there can be two cases.  

One is that the additional camera is fixed somewhere watching person1 or person2. 
In the case of watching person1, the motion of camera is directly estimated by pose 
estimation. In the case of watching person2, first the motion of person 2 is estimated, 
and then camera motion is estimated by eliminating the person’s motion from the 
foreground motion of the camera. In both cases, it’s necessary to make the fixed 
camera always watching the moving person. The other one is that the additional 
camera is just the one attached on the foreground object (i.e. another person’s body). 
This configuration is very natural in our application (see Fig. 2).  

Motivation for the above work is from a new application of computer vision 
technology in entertainment, so called “Dive into Movie”. In this application, a movie 
captured by a wearable camera attached to the actor’s body can give audiences the 
sense of “immerse in the movie”. The raw movie captured by wearable camera needs 
to be stabilized due to jitters and ego-motion of the actor. And accurate ego-motion 
estimation of a moving camera is not easy when there are moving objects in the  
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Fig. 3. Overview of the proposed approach at time k 

image. In this application, there are at least two face-to-face interacting actors in a 
scene. The audience can choose anyone of the actors to see the movie from different 
views. One camera is attached to each actor. For simplicity, in this paper, we only 
consider the case of two actors in the scene. Then our goal is to recover ego-motion of 
two face-to-face cameras using information from both cameras. 

To address this problem, we first configure the sensor system as two face-to-face 
moving cameras. And then we derived the relationship between four views that 
consist of two consecutive views of each camera. In estimation stage, two cameras are 
calibrated first, and then ego-motion is estimated using calibration result. The 
calibration problem is formed as AX=XB and refer to the solutions in traditional 
robotics hand-eye calibration [6-9]. Compared with the consistent motion of hand/eye 
in traditional hand-eye calibration, we deal with two independently moving cameras. 
To our knowledge, there is no other work reported on this problem. In [10], a similar 
configuration of stereo camera is proposed, which used two face-to-face static 
cameras. The epipolar geometry for these mutual cameras is studied and used to 
improve the performance of structure from motion approach. In contrast to [10], our 
approach tries to estimate the ego-motion of two moving face-to-face cameras. 

The flowchart of the proposed system is showed in Fig. 3. Firstly input videos are 
pre-processed to segment out the background region and object region which moves 
consistently with the opposing camera. SIFT features are extracted and matched 
within consecutive two image pairs for background region and object respectively. If 
there are enough reliable point matches in background region, ego-motion is 
estimated and output stabilized frame. Above steps are processed for both cameras. 
Secondly, if estimation fails with background region, go to the synchronized 
estimation step, which includes two stages. Extrinsic parameters are calibrated in first 
stage for two cameras. Here, it’s necessary to get at least three consecutive images 
from each camera. And then, ego-motions are estimated with calibration result. 

The following section provides the two-camera geometry. Section III describes 
estimation procedure. Finally, the evaluation of the experiments is given in Section IV. 
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2   Two-Camera Geometry  

Our application of the ego-motion estimation is stabilization for “Dive into Movie”. 
Cameras are affixed to the actors’ body and move consistently with person (see  
Fig. 2). First of all, it is convenient to assign frames of reference.  

W : a fixed frame of reference;  

1C (k): the camera1 frame located at the optical center of camera1 with positive z axis 

along the optical axis at time k, attached on person 1, watching camera2, varying with 
camera1’s motion; 

2C (k): the camera2 frame located at the optical center of camera2 with positive z axis 

along the optical axis at time k, attached on person 2, watching camera1, varying with 
camera2 motion. 

The relation between any two coordinates is represented by the rotation matrix 
(3)a bR SO−> ∈  and a translation vector 3

a bt −> ∈ℜ . [ ]3 3; 0 1a b a b a bT R t−> −> −> ×= is  
 

the transformation from coordinates a to coordinates b. We express a point aX with 

respect to the reference a, then b a b aX T X−>= . 

We assume that the internal parameters of cameras are initialized as known. Given 
enough correct feature matches in two views (with static scenes) captured by the same 
camera, camera ego-motion can be computed easily.  

In the following, we first recall two-view geometry of conventional static scene. 
And then foreground motion is taken into account. Finally, four-view (two from each 
camera) geometry is derived by 3D motion analysis on two moving cameras.  

2.1   Two-View Geometry: Epipolar Constraint and Essential Matrix  

As well known, the Essential matrix constrains the motion of points between two 
views from one camera. It encodes the epipolar constraint and motion matrix. The set 
of homogeneous image points { }x , 1,...,i i n= in the first image is related to the set 

{ }x , 1,...,i i n′ = in the second image by Essential matrix with the following equation: 

[ ]3 2 3 1 2 1
ˆ ˆ0, , 0 ; 0 ; 0i ix Ex E TR T t t t t t t′ = = = − − −             (1) 

From above equation, given feature matches in two-view, Essential matrix can be 
determined, and then rotation matrix and translation vector can be computed up to a 
universal scale. We used RANSAC [1] for transformation matrix estimation.  

2.2   Two-View Geometry with Moving Foreground  

Let a set of homogeneous 3D space points { }, ( ) , 1,...,F iX k i n= be positions of 

foreground points at time k in the view of camera1 with a rigid motion independently 
from camera1’s motion. Then, motion of these points in 1C (k) can be represented as 
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1 1 1 1 1 1

1 1 1 1 1 1

, , ,

1
, ,

( ) ( ) ( 1)

( ) ( 1) ( ) ( 1) ( 1)

F C F C F C

C C W F W W C F C

X k T k X k

T k T k T k T k X k−
<− <−

= −

= − − −
                 (2) 

where
1, ( )F CT k represents 3D foreground motion in 1C ’s coordinates from time k-1 to 

k. 
1
( )CT k is 1C ’s motion and 

1 , ( )F WT k is foreground motion in world coordinates. 

1, ( )F CT k and
1
( )CT k can be computed with two-view geometry described in Section 2.1 

using feature matches in foreground region and background region respectively. If 
there is no enough background feature matches for

1
( )CT k , and if 

1 , ( )F WT k is given by 

some other way, 
1
( )CT k can be computed using Equation (2).  

2.3   Four-View Geometry of Two Face-to-Face Cameras  

In this case (see Fig.2), motion of camera1’s foreground points 1F in 

2 ( )C k coordinates is the same as 2C ’s motion
2
( )CT k , i.e.

1 2 2, ( ) ( )F C CT k T k= . Then 

1 2 1 2 2 2 2 2, ,( ) ( 1) ( ) ( 1) ( ) ( 1)F W W C F C C W W C C C WT k T k T k T T k T k T k<− <− <− <−= − = − −         (3) 

Now, let’s derive relations among four 3D motion transformation matrices: 

1 1, ( )F CT k ,
2
( )CT k ,

1
( )CT k and 

2 2, ( )F CT k . With the relations, given any three matrices of 

these four, remaining unknown matrix can be computed. 
2
( )CT k and

1
( )CT k are the 

target matrices in this paper. From Equation (2) and (3), we have 

1 1 1 1 2 2 1 2

1 1 2 2 1 2

1
,

1 1

( ) ( ) ( 1) ( 1) ( ) ( 1) ( 1)

( ) ( 1) ( ) ( 1)

F C C C W W C C W C C W

C C C C C C

T k T k T k T k T k T k T k

T k T k T k T k

−
<− <− <− <−

− −
<− <−

= − − − −

= − −
 

If we let
2 1 2 1C C CT T<− −= for simplicity, then we have  

1 1 1 2

1 1
, 1 2 1 2( ) ( ) ( 1) ( ) ( 1)F C C C C CT k T k T k T k T k− −

− −= − −                       (4) 

Similarly, considering foreground points of Camera2, we can obtain:  

 
2 2 2 1

1 1
, 2 1 2 1( ) ( ) ( 1) ( ) ( 1)F C C C C CT k T k T k T k T k− −

− −= − −                        (5) 

Now let check relations between above matrices and image observations.  

a)
1 1, ( )F CT k : motion of foreground points (belong to person2) in camera1;  

b)
2 2, ( )F CT k : motion of foreground points (belong to person1) in camera2, 

c)
2
( )CT k : computed from motion of background points in camera2  

d)
1
( )CT k : computed from motion of background points in camera1; 

e) 2 1( 1)CT k− − : Extrinsic calibration matrix between camera1 and camera2. 

a)-d) can be computed using two-view relations described in Section 2.1. e) can not 
be directly computed, and to be determined in Section 3.1.  
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3   Synchronized Estimation  

Recall the overview of the algorithm in Fig. 3. Synchronized estimation stage is 
divided into two steps: extrinsic calibration using frames at time k-3, k-2 and k-1 and 
motion estimation using frames at time k-1 and k. 

3.1   Extrinsic Calibration of Two Face-to-Face Cameras  

First we present an outline of our calibration procedure, and then the details of each 
step will be presented. The extrinsic calibration of two cameras is broken down into 
the following steps:  

a) for time k-3, k-2 and k-1, compute
1 1,F CT ,

2 2,F CT ,
2CT and

1CT with steps in Section 2.3 ;  

b) compute 2 1( 1)CT k− −  using Equation (6) in the following soon. 

To get a unique solution, at least three views from one camera is necessary [6], with 
avoiding special configurations of view angles. In the following equation, matrices 
with underline denote that they can be calculated as known. Using Equation (4) 

1 1 1 2

1 2

1 1
, 1 2 1 2

1
1 2 1 2

( 1) ( 1) ( 2) ( 1) ( 2)

( 1) ( 1) ( 2) ( 1)

F C C C C C

C C C C

T k T k T k T k T k

T k T k T k T k

− −
− −

−
− −

⎧ − = − − − −⎪ ⇒⎨
− = − − −⎪⎩

 

1 1 2 1

1 1
, 1 2 1 2( 1) ( 1) ( 1) ( 1) ( 1)F C C C C CT k T k T k T k T k− −

− −− = − − − −                    (6) 

1 1 1 2, 1 2 1 2( 1) ( 1) ( 1) ( 1) ( 1)F C C C C CT k T k T k T k T k− −− − − = − −                   (7) 

From Equation (6), 

1 1 2 1

1 2

1 1
, 1 2 1 2

1
1 2 1 2

( 2) ( 2) ( 2) ( 2) ( 2)

( 2) ( 1) ( 1) ( 1)

F C C C C C

C C C C

T k T k T k T k T k

T k T k T k T k

− −
− −

−
− −

⎧ − = − − − −⎪ ⇒⎨
− = − − −⎪⎩

 

1 1

1 2 2 2 1 1

,

1 1 1 1
1 2 1 2

( 2)

( 1) ( 1) ( 1) ( 2) ( 1) ( 1) ( 1) ( 2)

F C

C C C C C C C C

T k

T k T k T k T k T k T k T k T k− − − −
− −

−

= − − − − − − − −
 (8) 

1 1 1 1 1

2 2 2

, 1 2

1
1 2

( 1) ( 2) ( 2) ( 1) ( 1)

( 1) ( 1) ( 2) ( 1)

C F C C C C

C C C C

T k T k T k T k T k

T k T k T k T k

−

−
−

− − − − −

= − − − −
                  (9) 

In estimation of extrinsic motion, we decompose T into R and t. Then problem can 
be simplified as compute X that satisfies AX XB= in Equation (7) and (9) 
for 1 2 ( 1)CX R k−= − . 1 2 ( 1)Ct k− − can be easily obtained from 1 2 ( 1)CR k− − and 

Equation(7), (9). Here, both A and B are known, and X is unknown and has to be 
solved. While solutions to this question have been studied when A and B are general 
n n n× matrices, here we need solutions that belong to Euclidean group. 

In the context of robot sensor calibration, [6] first motivate this equation, and 
provide a closed-form solution. Their approach is based on geometric interpretations 
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of the eigen-values and eigenvectors of a rotation matrix. Both translation and 
orientation values are calculated simultaneously using least-square fitting. [7] used 
this formulation of the problem and developed a non-linear optimization technique to 
solve it. Martin and Park [8] derive a closed form solution as a linear least squares fit . 
[9] formulated the problem using canonical coordinates of the rotation group, which 
enables a particularly simple closed form solution.  

In [6], conditions for uniqueness of solutions are discussed. It is concluded that the 
solution can not be found with only one measurement, and the parameters can be 
uniquely estimated with two camera positions, but the orientations of the camera 
cannot be zero or π value. In this paper, we used the approach described in [8].  

3.2   Ego-Motion Estimation  

Given
1 1, ( )F CT k - motion of foreground point in view of camera1 and

2
( )CT k - motion of 

background points in view of camera2, and 1 2 ( 1)CT k− − obtained in Section 3.2,  

1
( )CT k is computed using Equation (4). 

1 1 1 2

1 1
, 1 2 1 2( ) ( ) ( 1) ( ) ( 1)F C C C C CT k T k T k T k T k− −

− −= − −                  (10) 

4   Evaluations  

Both simulated data and real data are used for evaluations. Using synthesis data, we 
check the accuracy of the approach and the sensitivity to various levels of noise. 
Using real data, the procedure outlined in Fig. 3. is implemented along with the 
proposed calibration and estimation approach. Furthermore, stabilization results using 
estimated ego-motion matrices are shown to prove the feasibility and accuracy of the 
approach.  

4.1   Evaluations with Simulated Data  

The simulated data was created using a set of known 3D points and transformations. 
Transformations between two cameras and ego-motions of both cameras are 
constructed with random rotation axis, angle and translation vector.  

Additionally, in order to analysis the influence of noise, the data sets were defined 
by the radius of the Gaussian noise in the 2D pixel points. We create data sets with 
three different levels of noise. The resulting error in the calibration transformation is 
plotted in Fig.4. The error in the final estimation of transformation matrix, or residual 
error, is defined as true estimated F

T T− , where 
F

⋅ is the Frobenious norm of the matrix.  

Referring to the results (Fig.4 and 5), some interesting observations are made. The 
proposed approach produces results with low error. In Fig.5, we also showed the 
residual error resulted from noise in calibration matrix. We can find that the noise in 
calibration matrix doesn’t impact the final estimation result much. This is because the 
error in calibration stage might be eliminated by an inverse computation. 
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Fig. 4. Residual error of calibration result with different level of noise added to 2d image pixels  
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Fig. 5. Residual error of estimated matrices with different level of noise on calibration matrix 

 

4.2   Experimental Results with Real Data  

For real experiments, recall the overview of the algorithm in Fig. 3. We used a real 
video data with cameras affixed on the body. Before estimation, synchronized input 
videos from both cameras are pre-processed to segment out the background region 
and object region. In this step, color distribution based mean-shift region tracking [11] 
is implemented for object region. SIFT features [12] are extracted and matched within 
consecutive two image pairs for background region and object respectively. In Fig.6, 
we showed the result of feature matches with SIFT features. 

The synchronized estimation step has two stages. Extrinsic parameters are 
calibrated in first stage for two cameras with totally four image pairs (two for each 
camera using data at three time steps) using method in Section 3.1. Two-view 
transformation matrices for foreground and background region are computed using 
RANSAC [1]. Calibration matrix is computed using the approach described in [8]. 
Ego-motion is estimated using method in Section 3.2.  
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Fig. 6. One set of data for transformation computation (A and B) in calibration stage. Left column: 
Up) Point matches in background region of video2; Middle) Point matches in foreground region 
of video2; Down) Point matches in background region of video1. Right column: Up) stabilization 
result using background region in video2. Middle) stabilization result using foreground region in 
video2. Down) Stabilization result using background region in video1.  

 

Fig. 7. Stabilization results. Left-top: point matches 
in background region of video2. No enough features 
and the conventional approach failed in this case. 
Right-top: original image before motion. Down: 
stabilization result using the proposed approach. 
Compared with original image on the right-top, we 
can see our approach can provide acceptable 
stabilization result. 
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Finally, a 2D affine transformation is derived from motion matrix for stabilization 
only considering effect of rotation： x sRx′ = ，where we set 331s R= for simplicity. 

x and x′ are homogeneous image points before and after motion. Since the main 
purpose of this paper is ego-motion recovery, stabilization has not been carefully 
considered, which can be our future work. 

In Fig. 7, we showed the stabilization result on background region and foreground 
region, they all failed. Stabilization result with the proposed approach is given. 
Compared with original image, we can see it provides acceptable result. 

5   Conclusion  

Accurate estimation of ego-motion is not easy when there is moving foreground. 
Especially in some special situations it’s almost impossible. To address the problem, 
we proposed a new approach that utilizes additional video captured by the camera 
attached on the foreground object (i.e. another actor in our application).  

We first configure the sensor system as two face-to-face moving cameras. And 
then we derived the relationship between four views from two cameras. In estimation 
stage, two cameras are calibrated firstly, and then ego-motion is estimated. We 
calibrate the extrinsic relationship of two cameras with an AX=XB formulation. 
Experiments with simulated data and real data verify that this approach can provide 
acceptable ego-motion estimation and stabilization results.  
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