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Abstract. We propose a new method for classification of photometric
factors, such as diffuse reflection, specular reflection, attached shadow,
and cast shadow. For analyzing real images, we utilize the photometric
linearization method which was originally proposed for image synthesis.
First, we show that each pixel can be photometrically classified by the
simple comparison of the pixel intensity. Our classification algorithm
requires neither 3D shape information nor color information of the scene.
Then, we show that the accuracy of the photometric linearization can
be improved by introducing a new classification-based criterion to the
linearization process. Experimental results show that photometric factors
can be correctly classified without any special device.

1 Introduction

The appearance of an object changes due to lighting direction and surface re-
flectance. Since real images include complex factors such as specular reflections
and shadows, it is difficult to directly apply various computer vision algorithms,
such as photometric stereo[1], to real images. Therefore, it is important to ana-
lyze the photometric factors included in real images.

A lot of methods have already been proposed for separating photometric
factors. The dichromatic reflection model [2] is often used for separating diffuse
reflections and specular reflections [3–5]. Wolff et al.[6] proposed a method to
separate specular reflections by analysis of reflected polarization, Nayar et al.[7]
combined color and polarization to separate specular reflections. Ikeuchi et al.[8]
proposed a method to classify photometric factors based on range and brightness
images. These methods, however, have a common restriction in that shadows
cannot be analyzed.

On the other hand, there are some methods which express real images in a
linear subspace. Shashua[9] showed that an image lighted from any direction can
be expressed by a linear combination of three base images taken under different
lighting directions under the assumption of a Lambertian surface and a parallel
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Fig. 1. Photometric factors included in an image.

ray. That is, an image can be perfectly expressed in a 3-D subspace. Belhumeur
and Kriegman[10] showed that an image can be expressed by the illumination
cone model even if the image includes attached shadows. In the illumination cone,
images are expressed by a linear combination of extreme rays. Georghiades et
al.[11] developed the illumination cone so that cast shadows can be also expressed
by the shape reconstruction. Although any photometric factors can be ideally
expressed by the illumination cone, a large number of images corresponding to
extreme rays are necessary.

We have proposed the photometric linearization method[12], which converts
real images into ideal images that include only diffuse factor. After the photo-
metric linearization, all images are expressed as a linear combination of three
base images. The method was originally proposed for image synthesis. In this
paper, we show that the method can also be used for classifying photometric
factors. It can classify not only diffuse reflections and specular reflections, but
also attached shadows and cast shadows. We present a new criterion for clas-
sification of photometric factors based on the photometric linearization. The
classification algorithm requires neither 3D shape information nor color infor-
mation of the scene. The classification is accomplished by the simple comparison
of pixel intensities.

Moreover, we show that the accuracy of the original photometric lineariza-
tion can be improved by introducing a new classification-based criterion to the
linearization process. The original photometric linearization method does not
work stably when pixels are not illuminated in a number of input images. Our
physics-based analysis can solve this problem.

2 Classification

2.1 Photometric Factors

Photometric factors are classified into reflections and shadows (Fig.1). The re-
flections are classified into diffuse reflections and specular reflections. According
to the Lambert model, the intensity of the diffuse reflection is expressed by

i = nT s. (1)

Here, n denotes the surface property vector which is a product of the unit
normal vector and the diffuse reflectance, and s denotes the lighting property
vector which is a product of the unit vector along the lighting direction and the
lighting power. The specular reflections are observed as the sum of diffuse factors
and specular factors.



Shadows are classified into attached shadows and cast shadows. Attached
shadows depend on the angle between the surface normal and the lighting di-
rection and are observed where the surface does not face the light source. Cast
shadows depend on the overall 3-D shape of the scene, and are observed where
light is occluded by other objects. If there is no ambient light and interreflec-
tion, the intensity in shadows becomes zero. However, Eq.(1) indicates that the
intensity in attached shadow is negative, while that in cast shadow is positive.

2.2 Photometric Linearization

We have proposed the photometric linearization method[12] which converts real
images including various photometric factors into ideal images including only
diffuse reflection factor. After the photometric linearization, all pixels in images
fully satisfy Eq.(1). Hence, any image can be expressed by a linear combination
of three base images[9].

For the photometric linearization, multiple images are taken under various
lighting directions. The camera and target objects are fixed. It is important that
the lighting direction, the 3-D shape of the target objects, and the reflectance
of the surface are unknown.

2.3 Criterion for Classification

In this section, we show that each pixel can be easily classified into diffuse re-
flection, specular reflection, attached shadow, and cast shadow based on the
photometric linearization. The classification is accomplished by the simple com-
parison of the pixel intensity.

Let i(k,p) be the intensity of the pixel p in the image k, and let iL(k,p) be the
linearized intensity. The relationship between i(k,p) and iL(k,p) is as follows. In
the diffuse reflection region, iL(k,p) is equal to i(k,p), because the intensity is not
changed by the linearization. In the specular reflection region, iL(k,p) is smaller
than i(k,p), because the specular factor is eliminated. In the attached shadow
region, iL(k,p) becomes negative, which satisfies Eq.(1). In the cast shadow region,
iL(k,p) is larger than i(k,p), because iL(k,p) has a diffuse reflection factor while i(k,p)

is near zero. Hence, each pixel can be classified by the following criterion:

Region(k, p) =



D : if (|i(k,p) − iL(k,p)| ≤ T × i(k,p)) ∩ (i(k,p) ≥ Ts)
S : if (i(k,p) − iL(k,p) > T × i(k,p)) ∩ (iL(k,p) ≥ 0) ∩ (i(k,p) ≥ Ts)
A : if (iL(k,p) < 0) ∩ (i(k,p) < Ts)
C : if (iL(k,p) ≥ 0) ∩ (i(k,p) < Ts)
U : otherwise

(2)

Here, D,S,A,C, and U denote diffuse reflection, specular reflection, attached
shadow, cast shadow, and undefined factor, respectively. The threshold T is
used to check the equality of i(k,p) and iL(k,p), and empirically determined. Since
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Fig. 2. Criterion for classification of
photometric factors.
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Fig. 3. Flow of the linearization process.

T is normalized to be relative to i(k,p), the check becomes independent of the
brightness. In real images, the intensities of shadows are not zero. The threshold
Ts is used to distinguish shadows, and can be determined by manually sampling
some pixels in shadow regions.

In this criterion, the shadow regions are classified just by using threshold Ts.
Although the classification is very simple, attached shadows and cast shadows
can be distinguished by the sign of iL(k,p). It is one of the significant advantages
of the criterion because two types of shadows can be distinguished without any
3D shape information. Figure 2 illustrates Eq.(2) as a 2-D plane spanned by
i(k,p) and iL(k,p). The photometric factors are easily classified if the photometric
linearization is accomplished.

3 Improvement of Photometric Linearization

3.1 Key Idea

In the previous section, we showed that photometric factors are correctly clas-
sified if the photometric linearization is perfectly accomplished. That is, any
pixel is never classified into the undefined factor. This fact suggests that the
photometric linearization becomes more accurate by introducing the criterion
for classification to the linearization process. We can use the criterion to verify
the accuracy of the photometric linearization.

3.2 Flow of the Process

First, we summarize the photometric linearization. Shashua[9] showed that if a
parallel ray is assumed, an image Ik under any lighting direction can be ex-
pressed by a linear combination of three base images (I1, I2, and I3) taken
under different lighting directions,

Ik = c1
kI1 + c2

kI2 + c3
kI3. (3)



Here, let ck = [ c1
k c2

k c3
k ]T be a set of coefficients of the image Ik. Real images,

however, do not satisfy Eq.(3), because shadows and specular reflections are
observed. The photometric linearization can convert real images to ideal images
which perfectly satisfy Eq.(3). The process of the photometric linearization is
divided into the following three steps (Fig.3).

1. Calculation of a set of coefficients
First, three base images I1, I2, and I3 are selected from among the input
images. A set of coefficients ck of the k-th input image Ik is calculated from
the intensities in I1, I2, I3, and Ik.

2. Photometric linearization of base images
Next, the base images are linearized for every pixel based on the input images
and the coefficients. Let iL

p = [ iL(1,p) iL(2,p) iL(3,p)]
T be a set of intensities in

the linearized base images at pixel p. This process is performed for all pixels,
and three base images I1, I2, and I3 are converted into the linearized base
images IL

1 , IL
2 , and IL

3 .
3. Photometric linearization of all images

Finally, all input images are linearized. The k-th input image Ik is linearized
by the linear combination of the linearized base images IL

1 , IL
2 , and IL

3 using
ck. We denote the linearized Ik as IL

k .

3.3 Calculation of Candidates by Random Sampling

The coefficients of the linear combination and the base images have to be deter-
mined to satisfy Eq.(3). If we calculate them by minimizing root mean square
errors, input images are not converted to ideal images that include only diffuse
factor because of shadows and specular reflections.

The photometric linearization solves this problem by the RANSAC-based
approach. A lot of candidates are iteratively calculated by random sampling,
and the correct value calculated from only diffuse reflections is selected from
among the candidates. If all pixels are sampled from the diffuse reflection region,
the correct value, which is not affected by specular reflections and shadows, is
calculated. That is, we can regard the photometric linearization as a problem to
find one correct value calculated by only diffuse reflection factors from among a
lot of candidates.

In order to calculate a candidate of the coefficients, three pixels are randomly
selected from base images I1, I2, I3, and each input image Ik. Note that same
pixels are selected from every image. A set of coefficients ĉk is calculated from
the intensities of the pixels. By the iteration of this process, a lot of candidate
coefficients are obtained.

On the other hand, in order to calculate a candidate of the linearized intensi-
ties, three images are randomly selected from the input images. If the coefficients
ck have already been correctly calculated, the intensities î

L

p in the linearized base
images at pixel p can be easily calculated. By the iteration of this process, a lot
of candidate intensities of the linearized base images are obtained.



3.4 Introducing the Criterion for Classification

In order to find a correct value from the numerous candidates calculated by
iteration of random sampling, the previous method[12] iterates the estimation
of the center of gravity and outlier elimination. However, the algorithm based
on a principle of majority has weaknesses. Since the center of gravity may be
affected by outliers, an incorrect candidate may be selected because of shadows.
So the process tends to be unstable.

Now we propose a new algorithm which can accurately determine the correct
value from the numerous candidates. Let’s consider the reason why candidates
become isolated outliers. That is, we have to check the photometric factors of
inliers and outliers. Therefore, we introduce the criterion for classification into
the photometric linearization process.

If a candidate is correct, each pixel is classified into the defined factors (D, S,
A, and C) by Eq.(2). Any pixel is never classified into the undefined factor (U).
Each candidate is evaluated based on the number of pixels which are classified
into the defined factors. The candidate which has the maximum number of pixels
can be regarded as the correct value.

Basically, the evaluation is based on the defined factors. The specular reflec-
tions are, however, excepted from the defined factors. The specular reflection
occupies a large area in Fig.(2). If we regard S as the defined factor, incorrect
candidates may be accepted. Since the size of the specular region is relatively
small in images, we can ignore specular factors in this evaluation. Hence, we
evaluate pixels that are classified into diffuse reflection, attached shadow, and
cast shadow by

Classifiable(k, p) =
{

1 if (Region(k, p) = D ∪ A ∪ C)
0 if (Region(k, p) = S ∪ U) (4)

3.5 Evaluation of Candidates

In this section, we present the detailed algorithm to evaluate candidates. For
each candidate ĉk of a set of coefficients, the k-th input image Ik is linearized
to IL

k by the linear combination of the three base images I1, I2, and I3. If ĉk

is correct, Eq.(4) becomes 1 for almost all pixels. Hence, we define the following
function to evaluate candidates of the coefficients ĉk.

SupportC(k) =
∑

p

Classifiable(k, p) (5)

On the other hand, the linearized intensities iL(k,p) are calculated by the linear

combination using coefficients ck for each candidate î
L

p . If î
L

p is correct, Eq.(4)
becomes 1 for almost all input images. Hence, we define the following function
to evaluate candidates of the linearized intensities.

SupportL(p) =
∑

k

Classifiable(k, p) (6)



The SupportC(k) and SupportL(p) are used to calculate the number of pixels
which are classified into valid factors. We can regard the candidates for which
the function SupportC(k) or SupportL(p) returns the maximum as the correct
value. By using the estimated coefficients ck and intensities iL

p in the linearized
base images, the accuracy of the photometric linearization can be improved.

3.6 Comparison with the previous method [12]

It is noted that the proposed method takes the physical photometric phenomena
into account, and considers the photometric factors of outliers, while the previous
method [12] is based on only the statistical framework. Therefore, the accuracy
can be improved especially in shadow regions.

One may think that if we simply modify [12] so that pixels below the threshold
Ts are excluded as outliers, the accuracy can be improved. By ignoring dark
regions, similar results may be acquired. However, the new method can analyze
the reason of shadows and classify the outliers into two types of shadow.

4 Experimental Results

For the experiments, we used three kinds of materials that have different reflec-
tion properties. A ceramic cup (Fig.4) is an example of rough glossy objects, a
pot (Fig.7) is an example of very shiny objects, and a marble sphere (Fig.8) is
an example of complex reflections such as sub-surface scattering.

4.1 Photometric Classification

We took twenty-four images under various lighting directions in a darkroom
keeping a halogen light away from the ceramic cup as shown in Fig.4. Since this
cup has a concave surface, some pixels are not illuminated in a number of the
input images.

Figure 5 shows three base images selected from input images. (a) shows orig-
inal base images. (b) and (c) show the results of the photometric linearization.
Since the linearized images have negative values, a zero level is expressed as a
gray intensity. (b) shows the results of the previous method. Many pixels are
incorrectly linearized to be zero, because the previous method is strongly af-
fected by cast shadows. (c) shows the results of the new method based on the
classification criterion. We can see that the base images are correctly linearized
even if some pixels are not illuminated in a number of the input images.

Figure 6 shows the results of the photometric classification. (a) is an input
image, and (b) is the linearized image. Comparing (a) and (b), each pixel was
classified into (c) diffuse reflections, (d) specular reflections, (e) attached shad-
ows, and (f) cast shadows. Although attached shadows and cast shadows cannot
be classified by a simple threshold, the proposed method can distinguish them.

Next, we applied our method to a glossy object having complex shape. Figure
7(a) shows an example of twenty-four images. (b) is the result of the photometric



Fig. 4. Input images taken under various lighting directions (cup: twenty-four images).

(a) three base images (b) linearization by previous method

(c) linearization by proposed method

Fig. 5. Linearized base images.

(a) (b) (c) (d) (e) (f)

Fig. 6. Classification results of the photometric factors (cup). (a): an input image, (b):
linearized image, (c): diffuse reflections, (d): specular reflections, (e): attached shadows,
(f): cast shadows.

linearization. (c), (d), (e), and (f) show the results of classification as diffuse re-
flections, specular reflections, attached shadows, and cast shadows, respectively.
Each pixel can be classified into a suitable photometric factor even if the target
object has a complex shape.



(a) input image (b) linearized image (c) diffuse reflection

(d) specular reflection (e) attached shadow (f) cast shadow

Fig. 7. Classification results of a glossy pot.

Fig. 8. Input images taken under various lighting directions (sphere).

(a) true shape (b) previous method (c) proposed method

Fig. 9. Reconstructed 3-D shapes.

4.2 Photometric Stereo

Next, we show that the photometric linearization can be used for the preprocess
of the photometric stereo[1]. We took twenty-four images of a marble sphere un-
der various lighting directions (Fig.8). A part of the surface is not illuminated by
obstacles, and complex reflections including subsurface scattering are observed.

After the photometric linearization, the 3-D shape was reconstructed by pho-
tometric stereo. Because the lighting directions are unknown, the surface normals
cannot be uniquely determined[13]. Therefore, the surface normals are adjusted
by the affine transformation to be symmetric around the center of the sphere.
Fig.9(a) is a true shape obtained by manual measurement, (b) and (c) are the
reconstructed shapes by the previous method and the proposed method, respec-
tively. The previous method failed in the reconstruction due to shadows. On the
other hand, new method can correctly linearize and reconstruct at the entire
sphere. This result indicates that the photometric linearization method can be
applied to objects which have complex BRDFs.



5 Conclusions

In this paper, we proposed a new photometric classification method based on
the photometric linearization. While the photometric linearization was originally
proposed for generating images under the arbitrary lighting direction, we showed
that the method can also be used for the classification of photometric factors.
We have improved the accuracy of the photometric linearization method by
introducing the classification criterion into the linearization process.

The photometric linearization has an important role as a fundamental tech-
nique of computer vision such as photometric stereo and shape-from-shading.
We confirmed that our method can be applied for a variety of materials, and
that the photometric stereo becomes robust to shadows by applying the photo-
metric classification as a preprocessing. In the future, we intend to analyze more
complex factors such as interreflection.

This research was supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for Young Scientists (A), 17680018.
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