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Reliable planar object pose estimation in light-fields
from best sub-aperture camera pairs

Nathan Crombez1, Guillaume Caron2, Takuya Funatomi3 and Yasuhiro Mukaigawa3

Abstract—A light-field camera can obtain richer information
about a scene than a usual camera. This property offers a lot
of potential for robot vision. In this paper, we present a method
for pose estimation of a planar object with a light-field camera.

The light-field camera can be regarded as a set of sub-aperture
cameras. Although any combination of them can theoretically
be used for the pose estimation, the accuracy depends on the
combination. We show that the estimated pose error can be
reduced by selecting the best pair of sub-aperture cameras.
We have evaluated the accuracy of our approach with real
experiments using a light-field camera in front of planar targets
held by an industrial manipulator for ground truth comparison.

Index Terms—Visual Tracking, Computer Vision for Other
Robotic Applications.

I. INTRODUCTION

A. Motivation

THe pose estimation of an object is a fundamental task
for a variety of purposes in the robotics field such as

3-D tracking [1], visual servoing [2], and motion estima-
tion [3]. When the target is a known planar object such as
a checkerboard, a single camera can be used for this purpose,
and a lot of geometric algorithms have been proposed. The
Zhang’s algorithm [4] is a standard algorithm of intrinsic
parameters estimation, based on corner feature points, and it
also provides the poses of the checkerboard for each input
views. A binocular stereo pair might also be considered for
increasing the accuracy [5] and relaxing all the knowledge
about the object dimensions, except it is planar.

However, Hartley and Zisserman [5] highlight that some
feature points locations with respect to the pair of images
leads to poor estimates of the plane parameters and pose,
usually combined as a homography. More precisely, “image
points [...] close to collinear with the epipole [leads to] poorly
conditioned estimate” [5, Sec. 13.2.1, p. 330]. The latter issue
is jointly raised by the points configuration and the cameras
configuration, i.e. their relative pose. The problem of points
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configuration for the robust pose estimation of a planar object
has very recently been studied in the literature in order to
consider configurations that ensure a precise estimation [6].

In this work, we propose a complementary approach in
which we aim at selecting the best pair of cameras to ensure
a precise estimation of the planar object pose. The selection
of a pair of cameras among many is done in this work thanks
to light-field (LF) imaging, contrary to the classical use of a
stereo rig.

B. Related works

Recently, a LF camera can be used to obtain richer in-
formation of a scene, such as 3-D reconstruction [7], [8],
instead of usual 2-D cameras. The information obtained by
the LF camera is inherently equivalent to a set of images
captured from different viewpoints, so-called sub-aperture
images (SAI). SAIs, made from the transformation of the
image taken by the LF camera or made from several actual
camera arrays are full of interest in robotics [9], [10]. This
is due to the high redundancy and strong constraints brought
by the configuration of sub-aperture cameras (SAC) in a LF
camera, different from general multi-view settings.

The constraints inherent to SAIs have been considered in
general Structure-From-Motion [11] with the point feature.
Zhang et al. [12] recently extended the research to the line
feature. The latter work also introduces the modeling of planar
constraint on feature point manifolds. However, that theoret-
ical modeling is not considered in any motion or structure
estimation.

C. Contributions

In this paper, we propose the detailed modeling of relation-
ships between feature points belonging to a planar area of the
scene, observed by one and two LF cameras. Then, linear
and non-linear estimation algorithms of planar object pose
are proposed, exploiting the minimum number of SAIs. To
reach precise planar object pose estimation, we propose a new
algorithm to select the best pair of SAIs. This selection avoids
poor conditioning in the estimation and saves processing time,
with respect to a greedy estimation that would consider every
available SAI.

The contributions of the article are summed up below:
• The expression of the homography between correspond-

ing rays of a LF.
• The exploitation of the LF camera geometry to simplify

the homography content between two SAIs of a LF, used
for plane parameters estimation.
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• The proposition of a method to select which pair of SAIs
is the best for plane estimation.

• The exploitation of the best pairs of SAIs in two different
LFs to estimate the planar object motion.

• The efficiency of the approach with a low processing time
while being precise.

Combining the latter contributions leads to the reliable esti-
mation of planar object poses over time in LF sequences.

Theoretical and methodological contributions are deeply
evaluated on real LF images with respect to the robotic arm-
based acquired ground truth. Comparisons are also done with
respect to the extrinsic parameters estimation of a LF camera
calibration toolbox [13], when considering a checkerboard as
planar object, and with respect to the standard binocular stereo
pair (e.g.: two horizontally aligned side-by-side cameras),
when considering a textured planar object.

II. LIGHT-FIELD CAMERA MODEL

This section recalls how the image data acquired by a LF
camera is transformed to the 4-D structure that parameterizes
the acquisition. Throughout this paper, we use x ∈ Rnd , a
vector of Euclidean coordinates in the nd-dimensions (nd-D)
space and x̃ ∈ Pnd , its homogeneous equivalent. Transfor-
mations from Euclidean to homogeneous and vice versa are
omitted since they are very common.

In this paper, we consider the model of a LF camera
introduced by Dansereau et al. [13]. The latter model is also
considered in several computer vision applications [11], [9],
[14]. This LF camera model describes how light rays emitted
by a 3-D point P = [X,Y, Z]>are observed by the camera.
The local two-plane parameterization (L2PP) describes a light
ray as its intersections with two parallel planes, i.e. the focal
plane Π and the image plane. The latter is considered the
closest to the 3D point and the focal plane the farthest.

The LF camera coordinates frame F0 is attached to the focal
plane. Then, o = [m,w]> are the coordinates, expressed in the
global frame F0, of the intersection between the ray and the
focal plane. The intersection of the light ray with the image
plane gives two more coordinates, p = [x, y]>, but expressed
relatively to o. Stacking both coordinates leads to the ray:

φ̃ = [m,w, x, y, 1]>, (1)

which fully describes both spatial (o) and angular (p) infor-
mation about the incident light ray.

However, physically, the LF camera has a unique photosen-
sitive matrix. So, the four parameters of (1) are acquired in
the same raw real image plane. Figure 1 shows a subpart of
such a raw image on which one can see that it contains a set
of small lenslet images.

Hence, a transformation is needed to get the 4-D φ̃ from
pixels of the raw acquired image. To do so, two main stages
are required. First, omitting image processing of the raw image
to segment lenslets [13], the initial common 2-D raw pixels
structure is transformed to a 4-D structure (Fig. 2a). The latter
organizes raw image pixel coordinates in order to build subsets
containing one pixel, of coordinates i = [i, j]>, of each lenslet
of central coordinates k = [k, l]>, with respect to which i is

(a) (b)

Fig. 1: LF camera acquisition: a complete raw LF image (a)
and a zoomed subpart of this LF (b).

expressed. Stacking i and k leads to the decoded LF image
“pixel” coordinates:

r̃ = [i, j, k, l, 1]>. (2)

Then, the 4-D structure is easily re-organized from r̃ coordi-
nates in order to build SAIs, as shown in Figure 2b.

As, in the rest of the article, we focus on considering φ̃’s
and not r̃’s, r̃ is transformed to φ̃ thanks to the LF camera
intrinsic parameters matrix K such that:

m
w
x
y
1

 =


K1,1 0 K1,3 0 K1,5

0 K2,2 0 K2,4 K2,5

K3,1 0 K3,3 0 K3,5

0 K4,2 0 K4,4 K4,5

0 0 0 0 1



i
j
k
l
1

 . (3)

The twelve non-zero elements of the intrinsic matrix K
are estimated thanks to the LF camera calibration toolbox1

implementing [13].
Finally, since a LF camera captures several light rays

emitted by a unique 3-D point P, there are as much φ̃’s
corresponding to P as there are SACs seeing P. Hence,
we indicate the SAC which, virtually, acquires the ray as
superscript left to φ̃, i.e. caφ̃, for SAC ca of frame Fca , cbφ̃,
for SAC cb of frame Fcb , and so on. More precisely, we have:

caφ = [0m
ca
, 0w

ca
, cax, cay, 1]>, (4)

1http://dgd.vision/Tools/LFToolbox

(a) (b)

Fig. 2: (a) Decoded data structure (4-D). (b) SAIs (each bloc
of figures from 0 to 24 is a SAI) generated from the decoded
4-D data structure. This figure is a rewriting of Fig. 6 in [8].
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considering the coordinates of SAC optical centers are ex-
pressed in the global frame F0 (e.g. 0oca = [0mca ,0 wca ],
regarding camera ca). In (4), cap = [cax, cay]>, is nothing but
a precision, since coordinates x and y are expressed relatively
to 0oca (1).

Remark 1 (Coplanarity of SACs): By construction from the
L2PP parameterization, optical centers of SACs belong to the
same plane Π (the focal plane). That is why these optical
centers coordinates are expressed in 2-D in F0.

III. MULTIPLE VIEW GEOMETRIC RELATIONSHIPS IN A
LIGHT-FIELD UNDER PLANAR CONSTRAINT

A LF camera captures several projections of the same
3-D point in one shot. Thus, we propose to consider an
observed planar object and to study how its parameters are
involved in SAIs relationships. First, we describe how feature
correspondences in LF structures are expressed. Then, we
introduce for the first time, to our knowledge, the homography
matrix related to light rays.

A. Light ray correspondences

In an image captured with a regular camera, a single
3-D point caP = [caX, caY , caZ]>, expressed in the ca
camera frame Fca , is projected onto a unique 2D point
cap = [cax, cay]> in the sensor frame (cak = [cak, ca l]> in
the 4-D structure, see (2), adding superscript ca to show to
which SAC it belongs to). The usual input to many computer
vision algorithms, for object pose estimation, is a set of 2D
points correspondences cak and cbk (from a second camera
cb) between two (or more) images.

In a calibrated LF camera, correspondences between
two SACs ca and cb images are rays, parameterized as
4-D (Sec. II), below written in the L2PP modeling and as
homogeneous coordinates:

caφ̃ ↔ cbφ̃ . (5)

As in classical multiple view computer vision, many cor-
respondences are usually available, i.e. caφ̃1 ↔ cbφ̃1,
caφ̃2 ↔ cbφ̃2, and so on. Indices are not used in every
equation of the paper to limit heavy mathematical writings.

B. Rays homography

Corresponding φ̃’s are issued from the same 3-D point P.
When P is lying on a planar object, its rays captured by the
LF camera follows a homography projective transformation.
Considering the common multiple view computer vision, we
have, for two camera frames Fca and Fcb , the projective
homography matrix cbHca (3×3) transforming caP to cbP, up
to a scale factor, is:

cbP ∝ cbHca (3×3)
caP . (6)

Then, as a 3D point caP is projected in the sensor frame of
camera ca following the perspective projection:

ca p̃ = λca caP ⇐⇒

cax
cay
1

 = λca

caX
caY
caZ

 , (7)

where λca = 1
caZ , and similarly done for cbP, corresponding

p̃’s are related by the same cbHca :

cb p̃ ∝ cbHca
ca p̃cbx

cby
1

 ∝
H1 H2 H3

H4 H5 H6

H7 H8 1

cax
cay
1

 . (8)

The analytical expression of cbHca is known to
involve the rotation matrix cbRca , belonging to the
SO(3) group of the Lie algebra, the translation vector
cbtca(3×1)

= [cbtXca ,
cb tYca ,

cb tZca ]>, belonging to R3 between the
frame Fca and the frame Fcb . It also involves the parameters
of the planar surface on which the 3-D point belongs to [5]:

cbHca = cbRca −
1

cad
cbtca

can> , (9)

where can = [canX ,ca nY ,ca nZ ]> is the normal vector of
the planar surface expressed in Fca and cad is the orthogonal
distance between the planar surface and the origin of the
camera ca. Taking (8) and (9) together leads to the general
analytical expression of each H{1,...,8}.

Whereas homographies above are, as often considered, 2-D,
φ̃’s are 4-D. Thus, as caφ̃ and cbφ̃ are rays captured by SACs,
crossing at P, we extend (8) to rays as:

cbφ̃ ∝ cbHca
caφ̃

0mcb

0wcb

cbx
cby
1

 ∝

H1 H2 H3 H4 H5

H6 H7 H8 H9 H10

H11 H12 H13 H14 H15

H16 H17 H18 H19 H20

H21 H22 H23 H24 H25



0mca

0wca

cax
cay
1

 . (10)

We can identify in (10) the presence of the (8) which gives
the following nine elements of cbHca :

H13 = H1 H14 = H2 H15 = H3

H18 = H4 H19 = H5 H20 = H6

H23 = H7 H24 = H8 H25 = 1

The latter elements of cbHca only relate the third to fifth
coordinates of φ̃’s. Their first and second coordinates, 0o

ca

and 0o
cb , correspond to optical centers coordinates of SACs

in the LF camera frame F0. Since, optical centers of SACs
belong to the same plane (Remark 1), and assuming optical
axes of SACs are parallel (assumption discussed in Remark 2,
below), the transformation between two SACs is a translation
of length cbtXca and cbtYca along the two axes of the focal
plane.

That translations between Fca and Fcb can be written w.r.t
the global frame F0:

cbtXca = cbtX0 + 0tXca = 0tXca + 0tXcb = 0mca −0mcb (11)

cbtYca = cbtY0 + 0tYca = 0tYca + 0tYcb = 0wca −0wcb . (12)
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Equations (11) and (12) provide alone the useful miss-
ing relationships to set the remaining sixteen elements of
cbHca (5×5):

cbHca (5×5) =


1 0 0 0 cbtXca
0 1 0 0 cbtYca
0 0 H1 H2 H3

0 0 H4 H5 H6

0 0 H7 H8 1

 . (13)

Furthermore, assumptions considered to establish (11) and (12)
lead to the expressions of cbRca and cbtca :

cbRca=

1 0 0
0 1 0
0 0 1

,cb tca=
cbtXca
cbtYca

0

=
0mca − 0m

cb

0wca − 0w
cb

0

 , (14)

thus simplifying cbHca (9) as:
1−

cb tXca
canX

cad −
cb tXca

canY

cad −
cb tXca

canZ

cad

−
cb tYca

canX

cad 1−
cb tYca

canY

cad −
cb tYca

canZ

cad

0 0 1

 . (15)

Therefore cbHca becomes:

1 0 0 0 cbtXca
0 1 0 0 cbtYca

0 0 1−
cb tXca

canX

cad −
cb tXca

canY

cad −
cb tXca

canZ

cad

0 0 −
cb tYca

canX

cad 1−
cb tYca

canY

cad −
cb tYca

canZ

cad

0 0 0 0 1


. (16)

Remark 2 (Parallelism of SAC optical axes): From (11),
SAC optical axes are considered to be parallel. Although it
allows reaching (16) simple as it is, the assumption reduces
the rest of the modeling and planar object pose estimation
(Sec. IV and V) to the class of LF camera devices following a
design having the same optical properties as the Lytro Photo
LF camera device [15]. In the latter, lenses of the considered
micro-lenses array, to make the camera a LF one, are coplanar
and have their optical axes parallel. The latter design fact
leads to the parallelism of SAC optical axes. Several other
LF acquisition designs, including multi-camera ones [16], can
also benefit from the method we propose.

IV. PLANE PARAMETERS ESTIMATION

A. Linear estimation

Considering the analytical expression of cbHca in (16) and
after some manipulations and rearrangements of (10), we can
collect the plane parameters can and cad on one side:

cbx1 − cax1
cby1 − cay1

...
cbx∗ − cax∗
cby∗ − cay∗

=

cbtXca

cax1
cbtXca

cay1
cbtXca

cbtYca
cax1

cbtYca
cay1

cbtYca
...

...
...

cbtXca
cax∗

cbtXca
cay∗

cbtXca
cbtYca

cax∗
cbtYca

cay∗
cbtYca




canX

cad
canY

cad
canZ

cad


(17)

where cbtXca = ( 0mca −0 mcb), cbtYca = ( 0wca −0 wcb)
as seen in (11) and (12). Therefore, the plane parameters
can be computed directly from a set of at least 3 light rays
correspondences (∗ >= 3) following:

caη=


cbtXca

cax1
cbtXca

cay1
cbtXca

cbtYca
cax1

cbtYca
cay1

cbtYca
...

...
...

cbtXca
cax∗

cbtXca
cay∗

cbtXca
cbtYca

cax∗
cbtYca

cay∗
cbtYca



+ 
cbx1 − cax1
cby1 − cay1

...
cbx∗ − cax∗
cby∗ − cay∗

 (18)

where superscript + denotes the pseudo-inverse and
caη = [

canX

cad

canY

cad

canZ

cad ]>. Then the parameters of the planar
object w.r.t. the camera ca can be obtained from caη following:

cad =
1

‖caη‖
(19)

can = cad caη. (20)

B. Non-linear optimization

To estimate caη more robustly and to allow the method to be
extended to relative pose estimation between two LFs (Sec. V),
we formulate its estimation as a non-linear optimization of
which the initial guess is provided by the linear estimation
(Sec. IV-A).

As cbHca in (15) depends on caη, we rewrite it as
cbHca(caη). Considering Q corresponding points, the opti-
mization problem to solve is:

ca η̂ = min
caη

Q∑
q = 0

||cb p̃∗q 	 cb p̃q||, (21)

where the 	 operator denotes the difference after resetting the
homogenous coordinate at 1 and with:

cb p̃∗q = cbHca(caη)ca p̃q, (22)

c· p̃q being the measured point coordinates in the image of
SAC c· and c· p̃∗q a computed one.

A gradient descent-like algorithm (Gauss-Newton in this
paper) solves (21). It requires to express the Jacobian matrix
of image points with respect to plane parameters, i.e.:

JF1,F2 =
∂ F2p

∗

∂ F1η
, (23)

where the index q is omitted for compactness. F1 and F2

denote generic coordinate systems of the homography rela-
tionship:

F2 p̃∗ ∝ F2HF1

F1 p̃ (24)

similarly to (8).
Thus, the detailed generic expression of JF1,F2

is (with F1

omitted, again for compactness):

JF1,F2
=

1(
(R3 − η>tZ)p̃

)2
[(

(R1t
Z −R3t

X)p̃
)
p̃>(

(R2t
Z −R3t

Y )p̃
)
p̃>

]
, (25)

with R·, the ·-th row of the rotation matrix between F1 and
F2 , and tX , tY and tZ the translation vector components,
between F1 and F2 as well.
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Considering only two SACs ca and cb of the same LF,
JF1,F2 is simplified as Jca, cb :

Jca, cb = −

[
cbtXca

ca p̃>

cbtYca
ca p̃>

]
, (26)

due to the same SACs orientation and the coplanarity of their
optical centers (14).

As much Jca, cb are computed as there are point pairs
between SAIs of ca and cb. These Jacobians are stacked as
matrix J, considered in the plane parameters increment ca η̇
computation of an optimization iteration:

ca η̇ = −J+e, (27)

where e is the error vector stacking every cbp∗q−cbpq , for each
point pair q. Then, ca η̇ updates caη by addition, allowing to
compute a new cbHca and new cb p̃∗q values, for all q, and this
process loops until convergence.

C. The best SACs pair to estimate plane parameters

As introduced in Section I, classical stereo-vision would
have, by definition, only two views at once of the same scene,
or planar object, to be considered in the estimation of plane
parameters. The LF camera, by providing many views of
the scene at once, offers a new possibility: choosing which
pair of SACs to consider in two views-based computer vision
algorithms. Two criteria are considered below to make that
choice.

First, as well known, the widest baseline between SACs,
however allowing feature points matching, should be consid-
ered to solve (18) and (21) in order to reduce uncertainties
due to slight imprecisions of φ̃ values allowing to get reliable
estimates of the plane parameters.

Furthermore, one should also avoid solving (18) and (21)
if φ̃’s are collinear, or close to be, with the epipoles of both
SAIs [5]. The key idea is, then, to choose a pair of SACs for
which the set of φ̃ pairs, to be considered in (18) and (21), is
far from being collinear with SACs epipoles.

Combining both baseline and non-epipolar collinearity con-
straints leads to following best SACs pair selection strategy to
get reliable plane parameters estimations:
• if the center of gravity of the SAIs φ̃ pairs is in the top-

left corner of the LF camera field of view, then choose
top-right and bottom-left SACs to solve (18) and (21)
(similar way for the three other field of view corners)

• if the center of gravity of the SAIs φ̃ pairs is in the
top-center of the LF camera field of view, then choose
bottom-right and bottom-left SACs to solve (18) and (21)
(similar way for the bottom-center, left-middle and right-
middle areas of the LF camera field of view)

The latter selection scheme is experimentally validated in Sec-
tion VI-B1 and estimations compared to the greedy approach
of stacking every available SAC.

V. PLANAR OBJECT POSE ESTIMATION FROM TWO LFS

LF1 and LF2 are two light-fields. A SAC ca of LF1 is
written ca1

and we write similarly for LF2 as well as cb.

The goal is to exploit the planar geometry of the observed
object to compute the frame change between two of its poses
or, equivalently, ca2Mca1

, the rigid transformation matrix
between Fca1

and Fca2
. The constant frame change caM0

from SAC frame Fca to the LF frame F0 easily leads to the
frame change from FLF1 to FLF2 .

We consider ca1
as the reference frame, without loss of

generality since caM0 is constant, so the plane parameters are
estimated as ca1η. Thus, LF1 only contributes to the com-
putation of ca1η whereas LF2 contributes to both ca1η and
ca2Mca1

. This is written by extending (21) and considering
m, a vector representation of ca2Mca1

, to:[
ca1 η̂
m̂

]
= min

ca1 η, m

∑
q

1Cq(ca1η) + 2Cq(ca1η, m), (28)

where

1Cq(ca1η) = ||cb1Hca1
(1η)ca1 p̃∗q 	 cb1 p̃q||, (29)

and
2Cq(ca1η, m)= ||cc2Hca1

(ca1η, m)ca1 p̃∗q 	 ce2 p̃q||
+ ||cd2Hca1

(ca1η, m)ca1 p̃∗q 	 cf2 p̃q||
.

(30)
In (29), cb1Hca1

(ca1η) is computed using (15). In (30),
we introduce SACs ce and cf of LF2 in order to get
enough generality in the mathematical writings to be able
to consider different pairs of SACs between LFs. Indeed,
as choosing the best SACs pair leads to more reliable
results (Sec. IV-C), it is also a key idea in the planar
object pose estimation. Thus, ce2Hca1

(ca1η, m) is com-
puted similarly to cb1Hca1

(ca1η) but by, first, changing the
frame of ca1η to Fca2

, then to Fce2
, using the constant

frame change ceMca , and, second, considering the varying
frame change ca2Mca1

. The latter’s translation and rota-
tion (axis-angle representation) elements are merged together
as m =

[
ca2 tXca1

, ca2 tYca1
, ca2 tZca1

, ca2 θXca1
, ca2 θYca1

, ca2 θZca1

]
.

cf2Hca1
(ca1η, m) follows similarly. Note that if both LFs

have the same best SACs pair at some instant, ce2Hca1
reduces

to ca2Hca1
and cf2Hca1

reduces to cb2Hca1
.

To optimize simultaneously both ca1η and m, following
the same methodology that leads to (27), one must compute
increments: [

ca1 η̇
ṁ

]
= −J2

+e2, (31)

used for updating ca1η and m in a looping process until
convergence. ca1 η̇ updates ca1η by addition and ṁ updates
m by composition (see the use of the exponential map of
se(3) from the Lie Algebra in [17] for more details). In (31),
e2 is the stacking of differences between computed and
measured corresponding point coordinates, similarly to (27),
but for three pairs of SAC images. Jacobian J2 first three
columns contain the stacking of Jacobians JF1,F2

( see (23)),
computed for SAC pairs (ca1 ; cb1 ) (thus computed exactly
as in (26), i.e. Jca1

, cb1
= Jca, cb , for ca1 p̃ = ca p̃),

(ca1
; ce2 ) and (ca1

; cf2 ), in the general case about pairs
of SACs. Both latter are computed using (25), since, in these
pairs, SACs belong to different LFs so R·-s and t·-s may have
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any values. Juxtaposing the stacking of interaction matrices
Lc·p∗q , relating c· ṗ∗q to ṁ [2], to J2 finishes its building:

J2 =

Jca1
, cb1

0
Jca1

, ce2
Lce2p∗

ceVca

Jca1
, cf2

Lcf2p∗
cfVca

 , (32)

where Lc·p∗ is, itself, the stacking of every Lc·p∗q . ceVca , the
twist transformation matrix, directly computed from ceMca ,
to locally transform Lce2p∗ to Fca2

, so that it contributes to
the ca2Mca1

frame change computation (same for cfVca ).

VI. EXPERIMENTS

The proposed linear and non-linear plane parameters esti-
mations (Section IV) have been validated on simulation data
before being applied on actual LF acquisitions. The estimation
of a planar object pose transformation between two LFs
(Section V) has similarly been evaluated. Due to lack of space,
only real experiments are presented in the following.

First of all, the LF sequences acquisition setup is detailed.
Then, we study the influence of the selected pairs of SACs
on the plane parameters estimation accuracy to validate the
selection criteria proposed in this paper. Finally, the proposed
planar object pose estimation is used for tracking a textured
plane.

A. Data acquisition setup

The LF camera considered in our experiments is a Lytro
Photo (first generation) camera. The LF camera is static and
faces a planar surface moved by the end-effector of a Stäubli
TX-60 6-axis robotic arm (Fig. 3).

First, a checkerboard of 19×19 squares of 3.6mm side is set
on the planar surface of frame FO. Twelve LFs for s = 1...12
are acquired, varying the pose of the checkerboard (Fig. 4).
Each checkerboard pose is measured w.r.t the robot base,
FB , by the TX-60 internal software to precisely know the 12
BMOs

(for s = 1...12) transformations. These 12 LF are set
as the input of the Dansereau’s MATLAB Toolbox [13] to cali-
brate the Lytro camera. As output, the calibration gave us, inter
alia, the 5×5 intrinsics matrix (3), rectification parameters and
the 12 poses of the checkerboard w.r.t. the LF camera: LFMOs

for s = 1...12. We used the 12 BMOs
and the 12 LFMOs

to estimate the fixed pose of the camera w.r.t. the robot
base: BMLF

2. Therefore it is now straightforward to obtain a
ground truth of the pose for any planar object put on the robot

2LF images and robot poses are available in the LFMIS dataset at:
mis.u-picardie.fr/∼g-caron/pub/data/LFMIS dataset.zip

(a) (b)

Fig. 3: Acquisition setup - A Lytro Photo LF camera facing a
planar object that is moved by a Stäubli TX60 robotic arm.

Fig. 4: Central SAI of relevant LF to validate our best SACs
pair selection strategy.

end-effector w.r.t the camera to evaluate the accuracy of our
method.

The calibration toolbox output is also the decoded 4-D LF
data structure (Section II). After re-organization, 9 × 9 SAIs
of size 380 × 380 pixels are obtained from one LF. In other
words, the Lytro camera can be considered as a grid of 9× 9
SACs. However, due to the undistortion, the outer SAIs may
be cropped or blurred. For this reason, during the following
experiments, we are only considering SAIs that belong to the
5× 5 centered SACs of the grid. More precisely, the top-left
usable SAI is noted as SAI(3×3), the top-right usable SAI
is SAI(7×3), the bottom-left is SAI(3×7), the bottom-right is
SAI(7×7) and so on.

B. Best pairs of SACs study

1) Selection strategy evaluation: The purpose of this study
is to experimentally validate the best SACs pair selection
strategy introduced in Section IV-C.

For this experiment, we consider the 4 LFs shown in Fig. 4.
We note these LFs: LF1,LF2,LF3 and LF4. As it can be
seen on these 4 SAIs, the visual features (the checkerboard
corners) are located in a specific part of the field of view in
each LF, respectively in the top-left, top-right, bottom-right
and bottom-left. These 4 LFs are then interesting candidates
to validate our best SACs pair selection strategy that combines
baseline and epipolar non-collinearity constraints.

We estimate the plane parameters of the 4 checkerboards
following the approach described in Section IV and us-
ing different pairs of SACs: {SAC(7×3), SAC(3×7)} and
{SAC(3×3), SAC(7×7)}. Recall that these two pairs of SACs
correspond to the two widest baselines of the usable SACs.
TABLE I contains the results of this experimentation. We
would like to remind that the maximum baseline between
usable SACs is equal to 3mm. The best pairs of SAC for
LF1, LF2, LF3 and LF4 are highlighted in TABLE I. To
quantitatively evaluate the estimation we compute the mean
distance between the ground truth plane and the estimated
one. More precisely, this metric corresponds to the average
distance between a grid of corresponding points equally dis-
tributed on the two planes. We can see that there is a link
between the pair of SACs used in the estimation of the plane

SAC(7×3)

SAC(3×7)

SAC(3×7)

SAC(7×3)

SAC(3×3)

SAC(7×7)

SAC(7×7)

SAC(3×3)

LF1 3.78 3.64 6.30 6.18
LF2 5.32 5.36 3.21 3.17
LF3 2.03 2.04 4.58 4.38
LF4 4.07 4.38 1.50 1.42

TABLE I: Plane estimation errors [mean distance in mm] for
various LFs using the four pairs of SACs of widest baselines.
Bold SAC is the reference one.
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parameters and the position of the visual features in the LF.
The best pairs of SACs for LF1, LF2, LF3, and LF4 are re-
spectively {SAC(7×3), SAC(3×7)}, {SAC(3×3), SAC(7×7)},
{SAC(7×3), SAC(3×7)}, and {SAC(3×3), SAC(7×7)}. These
best SACs pairs correspond to the misalignment of the
checkerboard center of gravity in the LF camera field of view
w.r.t. both SACs, as awaited. Thus, these results validate the
best SACs pair selection strategy proposed in Section IV-C.

2) The best SACs pair versus 25 SACs: As previously
mentioned (Section IV), more than two SACs may be used
in our plane parameters estimation scheme. Indeed, using the
25 available SACs seems, intuitively, interesting. Any SAC
may be used as a reference, thus there are 25 combinations.
We have performed the same experiment as before on the same
4 LFs (Fig. 4) but using these 25 combinations of 25 SACs.
TABLE II contains for each LF, the best estimation among the
25 and the SAC that has been used as a reference to obtain
this result.

First, it is interesting to note that, apart from the LF2,
the SAC used as a reference that provides the best result is
the same (or is very close, as for LF1) to the SAC selected
following our proposed best SACs pair selection strategy
(TABLE I). Considering the 25 SACs in LF2 not only led
to a different reference SAC than for our proposed selection
scheme but also to a lower estimation precision. Thus, it shows
that using every available SAC does not always provide a
better estimation result than using a pair, i.e. the best pair
under the criteria proposed in this paper.

For the other considered LFs, thanks to the redundancy
of information the estimations are more accurate than using
the best pairs of SACs (TABLE I). However, the computation
using 25 SACs is very time-consuming. An estimation using
25 SACs is performed in approximatively 9.0s when it takes
0.7s using a single pair (MATLAB implementation running
on a laptop with an Intel i7-4900MQ CPU with 16GB RAM).
So, our SAC pair selection strategy shows being an interesting
tradeoff between precision and computation time.

C. Evaluation on textured planar object acquisitions

For the following experiments, we changed the planar object
held by the robot (Fig. 3b) and acquired several LF sequences.
The Lytro camera is not able to record a video. To overcome
this issue, we capture LF sequences by taking a series of LF,
slightly moving the planar object between each shots using the
robotic arm. Fig. 5 shows some central SAIs of LFs extracted
from two acquired sequences.

As for the first experiment, we need to build a set of light
ray correspondences between two pairs of SAIs extracted from
two consecutive LFs to estimate the displacement of the planar

25 SACs Reference
LF1 1.84mm SAC(3×6)

LF2 3.35mm SAC(3×7)

LF3 1.41mm SAC(3×7)

LF4 0.62mm SAC(7×7)

TABLE II: Plane estimation errors using the 25 SACs and the
reference SAC. Best result among the 25 combinations.

object. However, the visual features detection and matching
are more difficult in the case of a textured planar scene rather
than a checkerboard. In other words, we must be able to find
visual features that each of the four SAIs (two SAIs in the
first LF and two others in the second) have in common.

To perform this, we detect and match SURF features [18]
in the four SAIs. The matching is done by setting an experi-
mentally found hard threshold to avoid outliers while keeping
enough matches (5 minimum and well balanced on the object
surface) to simultaneously compute the plane parameters and
its pose. The data provided by this matching has just the
purpose to provide feature points with realistic noise and
location uncertainties to look forward for robotics applications.
True, more optimal methods of features matching or tracking
could be used but the current experiment focuses on multi-LF
geometry estimation, not about image processing.

The first pose of the acquired planar object is supposed
to be known. Then, our method estimates its displacement,
shot after shot, incrementally, and is compared to the ground
truth. This experiment evaluates the accuracy of this planar
object incremental pose computation depending on the pairs of
SACs considered for each LF. More precisely, we compare the
estimated poses under the five following SACs configurations:

• D1 - the same pair of SACs for every LF:
{SAC(3×3), SAC(7×7)} (first diagonal baseline)

• D2 - the same pair of SACs for every LF:
{SAC(7×3), SAC(3×7)} (second diagonal baseline)

• H - the same pair of SACs for every LF:
{SAC(3×3), SAC(7×3)} (horizontal baseline)

• V - the same pair of SACs for every LF:
{SAC(7×3), SAC(7×7)} (vertical baseline)

• DHV - the best pair of SACs for each LF following the
strategy selection proposed in Section IV-C.

For more generality of results, we consider two LF se-
quences (Fig. 5) on which the latter five settings are consid-
ered for the planar object incremental pose estimation. The
two sequences are composed of nine LFs each. During the
acquisition of both sequences the plane has been displaced
on approximatively 20cm. In the first sequence, the plane
follows pure translations. In the second sequence, translations
and rotations are applied.

To take into account the estimation drift, inherent to any
incremental estimation, the last planar object estimated pose
of each path is compared with the ground truth (TABLE III).

Estimation results of both experiments clearly show that the
pose estimation of the planar object is highly more accurate
when taking advantage of the LF camera acquisition structure,
as we proposed, than considering a constant horizontal pair of
cameras as in classical stereo-vision: precision improvement

Sequence 1 Sequence 2
D1 4.48mm ; 19.05◦ 7.96mm ; 5.44◦

D2 5.21mm ; 23.74◦ 19.68mm ; 47.20◦

H 4.86mm ; 22.96◦ 56.43mm ; 34.51◦

V 10.13mm ; 35.31◦ 5.41mm ; 3.68◦

DHV 5.33mm ; 3.50◦ 2.38mm ; 0.34◦

TABLE III: Estimation errors in position and orientation at the
end of the plane tracking.
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(a)

(b)

Fig. 5: Some central SAIs that compose two LF sequences.

of up to an order of 14 for the first angle of DHV, w.r.t. the
first angle of H, in sequence 2, for instance. The comparisons
between the estimated paths and the ground truth (Fig. 6) also
highlight these observations.

To compare with a LF-based approach from the state-of-
the-art, Figure 6 also shows an additional estimate of the
planar object path (path “J”) using [11]’s Matlab scripts3.
The latter Structure-From-Motion approach, while producing
precise results in non-planar scenes, produces poor results
when considering a planar one due to its essential matrix-based
modeling [5, Sec. 11.9.2, p. 296]. Our approach outperforms
the latter, thanks to its consideration of the fact that the
observed scene is planar.

VII. CONCLUSION

In this paper, we have proposed a planar object pose esti-
mation from light rays captured by a LF camera. To develop
this method, we have first expressed the 5 × 5 homography
between corresponding rays of a LF. The LF camera geometry
and the 5×5 homography have been considered to implement
a plane parameters estimation from one LF. A linear and a
more robust estimation based on non-linear optimization have
been proposed, considering the best pair of SACs. Based on
all of this, we have introduced a method to estimate the rigid
transformation of a planar object between two LFs. Results
show that the combination of these contributions leads to the
reliable planar object tracking over time from multiple LF
acquisitions.
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