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Abstract
In spatial transcriptomics, which allows the analysis of gene

expression while preserving its location in tissues, RNA molecules
are hybridized with a fluorescent-labeled DNA probe for detec-
tion. In this study, we aim to improve the efficiency of spatial
transcriptomics by simultaneously using multiple fluorescent dyes
with overlapping spectra. We propose a method to quantify each
fluorescent dyes using a liquid crystal variable retarder as a spec-
tral modulator, which can control the spectral transmittance by
changing the voltage. The spectrum of light passing through the
modulator is integrated by the image sensor and observed as in-
tensity. We quantify the fluorescent dyes at each pixel using inten-
sities of various spectral transmittances as a spectral code and
applying sparse modeling using a dictionary created by simulat-
ing observations for the fluorescent dyes used in hybridization. We
verified the principle of the proposed method and demonstrated its
feasibility through simulation experiments.

Introduction
RNA sequencing (RNA-seq) has greatly advanced biology

by providing gene expression data for entire tissues and cell pop-
ulations. In contrast, spatial transcriptomics is a new approach
that maps gene expression while preserving its location in tis-
sues, which provides spatially richer information than previous
RNA-seq (Fig. 1). This enables a more detailed understand-
ing of cellular behavior in vivo and is being applied in fields
such as developmental biology and drug discovery. To perform
high-resolution spatial transcriptomics and detect numerous RNA
molecular species, previous methods such as seqFISH [1] require
multiple cycles of hybridization and reprobing of fluorescent-
labeled DNA probes to target RNA molecules. It generally uses
three different fluorescent channels, and for each channel, it re-
peats 20 rounds of DNA probe hybridization, fluorescence detec-
tion by microscopy, and four rounds of reprobing. By using one
round for error correction, the method can detect up to 24,000 dif-
ferent RNA molecular species. However, the procedure requires
a total of 80 rounds of hybridization and image acquisition, with
each round taking approximately an hour. Notably, after every
set of ten hybridizations, manual experimental manipulations are
necessary. Therefore, this repetitive process is time-consuming
and labor-intensive.

If many fluorescent dyes can be used simultaneously, the
number of hybridizations and reprobing can be reduced, thereby
improving the efficiency of the analysis. However, due to the lim-
itation of overlapping fluorescence spectra, general fluorescence
microscopes can use only a few types of fluorescent dyes at most.

The objective of this study is to develop a method that can
stably detect multiple fluorescent dyes without being affected by

the overlapping spectra of fluorescent dyes. This is expected to
enable high-throughput seqFISH analysis of a larger number of
RNA molecular species with fewer rounds than the existing se-
qFISH [1]. Looking back at the progress of genome analysis, it
has greatly stimulated biological research by achieving speed and
cost reduction. Based on this, spatial transcriptomics will become
easier if seqFISH is made high-throughput in this study. As a re-
sult, it is expected that the whole research field will be further
stimulated.

Related work
Fluorescence detection methods

Fluorescence is a phenomenon in which fluorescent dyes are
excited by light of shorter wavelengths and then emit it as light of
longer wavelengths.

A fluorescence microscope is an instrument that uses this flu-
orescence phenomenon to illuminate the sample with light of a
specific wavelength that passes through an excitation filter and
observes the emission wavelength selected by a barrier filter [2].
Instead of an excitation filter, lasers are also often used. These
filters are bandpass filters that allow only light in a specific wave-
length range to pass through. When using multiple fluorescent
dyes, the fluorescence from a specific dye can be clearly obtained
by selecting and switching the excitation and barrier filters that
match each dye. However, crosstalk due to overlapping spectra
between fluorescent dyes makes it difficult to detect multiple fluo-
rescent dyes simultaneously. Therefore, the fluorescent dyes used
simultaneously should be chosen so that their spectra do not over-
lap. SeqFISH [1] described above uses this method to detect three
different fluorescent dyes.

The most naı̈ve method to detect more fluorescent dyes is
to observe fluorescence using hyperspectral imaging, which can
capture spectra in detail. Hyperspectral imaging measures spec-
tral cubes, which are three-dimensional data consisting of two-
dimensional intensity images at different wavelengths.

There are many variations of this technique [3], but the most
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Figure 1. RNA-seq and spatial transcriptomics.
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common method is to use a spectrometer or similar device to split
the light emitted by a dye into narrow wavelength bands and con-
struct a spectral cube. Timo et al. has also proposed a method for
detection and separation of fluorescent dyes by linear separation
based on the obtained spectral cube [4, 5].

However, as the number of spectral channels increases to en-
hance wavelength resolution in hyperspectral imaging, each chan-
nel captures less light, leading to a decrease in signal strength.
This reduced signal strength, in combination with consistent
background noise, results in a lower signal-to-noise ratio. This
phenomenon is particularly challenging when attempting to detect
weak fluorescence signals, a common issue in high-throughput se-
qFISH. For high-throughput seqFISH, high-speed imaging is es-
sential, but this often exacerbates the challenge of accurately de-
tecting weak fluorescence signals. The faster imaging speed, nec-
essary for throughput, can increase the relative impact of noise,
thereby diminishing the precision of fluorescent dye detection.

Spectral Imaging with Liquid Crystal Variable Re-
tarder

There is coded sensing that achieves better sensitivity by in-
direct sensing instead of direct spectral measurement. For exam-
ple, by using a spectral modulator consisting of a liquid crystal
variable retarder and two polarizers, we can retain about 40% of
the fluorescence intensity. This can suppress the effect of noise.
August et al. used a liquid crystal variable retarder in front of
an image sensor and compressed sensing for hyperspectral imag-
ing [6]. Their method is similar to ours in using a liquid crystal
variable retarder as a spectral modulator. In this method, a spectral
cube with about 0.4 nm resolution (1000 channels) in 400 nm to
800 nm bandwidth is reconstructed from 100 observations. In ad-
dition, Yang et al. proposed a method for hyperspectral imaging
by attaching a liquid crystal variable retarder to the illumination
to incorporate this mechanism into a microscope [7]. A spec-
tral cube with 0.6 nm resolution (345 channels) in the 460 nm to
660 nm bandwidth is reconstructed from 50 observations. Since
both methods reconstruct the spectral cube, it is possible to quan-
tify multiple fluorescent dyes with spectral overlap. However,
in reality, the number of fluorescent dyes used simultaneously is
about several dozen at most, and the reconstruction of 345 chan-
nels is excessive; it is expected that the direct quantification of
fluorescent dyes can provide noise-robust quantification from a
small number of observations, rather than quantifying fluorescent
dyes after the reconstruction of the spectral cube.

Method
In this study, we propose a method for directly quantifying

multiple fluorescent dyes without reconstructing the spectral cube
by combining fluorescence observation using a spectral modula-
tor and sparse modeling techniques (Fig. 2). This method con-
sists of two processes: spectral encoding, which encodes the input
through a spectral modulator, and dye decoding, which quantifies
fluorescent dyes based on the obtained code. Since both encoding
and decoding are pixel independent, all the process are executed
in parallel.

Spectral encoding
The spectral modulator consists of a Liquid Crystal Variable

Retarder (LCVR) and two polarizers. The LCVR is oriented at

45◦ to the axis of the polarizers. The spectral transmittance of
the spectral modulator can be modulated according to the voltage
applied to the LCVR as

t(λ ,Vk) ∝
1
2
− 1

2
cos

(
∆n(Vk,λ )d

λ

)
, (1)

where λ is the wavelength, d is the thickness of LCVR,
∆n(Vk,λ )d is the birefringence at LCVR voltage Vk and λ [8].
Also, ∆n(Vk ,λ )d

λ
is the amount of phase difference of LCVR and is

called retardance.
When a spectral modulator is placed in front of the sensor,

the spectral distribution incident on the image sensor becomes
the multiplication of the spectral distribution of the fluorescent-
labeled targets, the spectral sensitivity characteristics of the sen-
sor, and the spectral transmittance of the spectral modulator.
Then, the intensity observed by the sensor is obtained by inte-
grating it over the observable range. Here, the intensity on the
sensor at a given voltage Vk is described by

ik =
∫

f (λ )t(λ ,Vk)s(λ )dλ , (2)

where f (λ ) is the spectral distribution of fluorescent-labeled tar-
gets and s(λ ) is the spectral sensitivity characteristic of the sensor.

This intensity ik varies with voltage, and by changing
the voltage N times, we can obtain an N-dimensional spectral
code that is unique to the input spectral distribution. The N-
dimensional spectral code is described by

i =
[

i1 · · · ik · · · iN
]⊤

. (3)

Dye decoding
The spectral distribution of fluorescent-labeled targets can be

expressed as a linear combination of the contributing fluorescent
dyes [9] and described by

f (λ ) =
P

∑
j=1

c jr j(λ ), (4)

where P is the number of different fluorescent dyes present in the
whole sample, j = 1,2, · · · ,P represents the index of the fluores-
cent dye, c j and r j(λ ) represents the concentration and the emis-
sion spectra of j-th fluorescent dyes, respectively. From Eq. (2),
the intensity on the sensor is described by

ik =
P

∑
j=1

c j

∫
r j(λ )t(λ ,Vk)s(λ )dλ . (5)

From Eq. (3), the N-dimensional spectral code is described
by

i =

 d1,1 · · · d1,P
...

. . .
...

dN,1 · · · dk, j


 c1

...
cP


= Dc, (6)

where dk, j =
∫

r j(λ )t(λ ,Vk)s(λ )dλ . D can be computed if r j(λ )
is known. Since the spectral distribution of fluorescent dyes is
generally known, D can be composed as

D =
[

d1 · · · d j · · · dP
]
, (7)
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Figure 2. Outline of the proposed method.

where d j is i when only the j-th dye is present at unit concen-
tration and no other dyes are present. This is the N-dimensional
spectral code of a single dye. In this paper, d j is called a dye code.
Equation (6) shows that the N-dimensional spectral code i can be
expressed as a linear combination of the weights c j and the dye
codes d j.

Figure 3 shows that different dye codes can be obtained even
for the dyes with close peaks or the dyes with identical peak val-
ues but different spectral widths in their fluorescence spectra (see
the next section for the details on voltage settings).

Figure 3. Different dye codes are generated depending on the spectral

distribution.

Since we can naturally assume that the number of fluores-
cent dyes observed simultaneously is small, sparse modeling is
an appropriate method to quantify their concentrations. There-
fore, we can use D as a dictionary for sparse modeling using Lasso
Lars [10] and obtain the following formulation:

argmin
c

(
1
2
∥i−Dc∥2

2 +α|c|1
)
, (8)

where α is the regularization parameter. The optimization as-
sumes that the sparsity of c is larger as α increases.

Verification of the principle by simulation
We performed a simulation of observation based on fluores-

cence images obtained by seqFISH to verify the principle.

The spectral transmittance of the spectral modulator t(λ ,Vk)
is expressed by Eq. (1), but it cannot be calculated because the
birefringence coefficient ∆n(Vk,λ )d is unknown. Therefore, we
measured the spectral transmittance experimentally. We used
Thorlabs LCC1115-A as the LCVR and Thorlabs WP25M-VIS
visible wire grid polarizer as the polarizer, and measured the
transmittance using a spectrometer (Ocean Optics Maya2000
Pro). The voltage Vk applied to the LCVR affects the change
in spectral transmittance. Considering this change, we selected
331 voltage values. By referring the retardance data of LCC1115-
A at 633 nm and 25 ◦C published by Thorlabs, we selected the
voltage so that the change in retardance was constant within the
voltage resolution of the function generator (Rigol DG4162). We
expected that this method would provide a more varied spectral
transmittances than simply selecting equally spaced voltage val-
ues. In fact, as shown in the spectral response maps (Fig. 4),
the variation in spectral transmittance was almost constant. In
the spectral measurement, the spectral transmittance t(λ ,Vk) was
multiplied by the spectral sensitivity characteristics of the sensor
of Maya2000 Pro. For the sake of simplicity, we assumed that
the spectral sensitivity characteristics of the camera s(λ ) were the
same as those of Maya2000 Pro. We performed the simulation
under this assumption.

Figure 4. (a): Spectral response map with voltage on the vertical axis.

Each column shows the spectral transmittance at a given voltage. This map

represents that the spectral transmittance varies little at high voltages. (b):

Spectral response map with index as the vertical axis. Each column shows

the spectral transmittance at a given index. The variation in spectral trans-

mittance was almost constant among the voltage values.

In real fluorescence observation, the fluorescence signal con-
sists not only of fluorescent spots from RNA molecules, but also
of autofluorescence. To simulate this situation, we took the fol-
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lowing steps. First, we prepared seven types of fluorescence im-
ages for different RNA molecule species and used them as ground
truth. We chose the Alexa647 fluorescent dye image because it
had less autofluorescence interference. However, since there was
still some autofluorescence in this image, we removed it by apply-
ing a threshold determined by the Elbow method [11]. Next, we
added different fluorescent dyes to each RNA molecule fluores-
cence image and calculated the intensity values observed through
the spectral modulator using Eq. (2). The fluorescent dyes we
used were Alexa 488, Alexa 594, Alexa 565, Alexa 647, Alexa
700, and ATTO 490. We also added Gaussian noise with a mean
of 0 and a standard deviation of 1% of the intensity values to sim-
ulate the noise in the fluorescence observation. We used the pro-
posed method to quantify the fluorescent dyes from the simulated
images.

Figure 5 shows the reconstruction results using all 331 obser-
vations. Due to the nature of the dye codes (Fig. 3), the PSNR of
the quantification results obtained by the proposed method were
sufficiently high compared to the ground truth, demonstrating that
the proposed method can effectively quantify the fluorescent dyes.
We also varied the value of α in Eq. (8) and selected the one that
maximized the mean of the PSNR for the seven fluorescent dyes.
We found that the reconstruction accuracy was improved by im-
posing an appropriate sparsity constraint (Fig. 6).

Figure 5. Results of fluorescence quantification simulation. (all 331 obser-

vations)
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Figure 6. Mean of PSNR for seven fluorescent dyes. Varying α changes

the reconstruction accuracy. α = 100 is optimal.

To further improve efficiency and examine how the recon-
struction quality changes with different numbers of observations,

we performed a simulation in which we randomly selected a fixed
number of observations from the original 331. As a result, we
observed a trade-off between the number of observations and re-
construction quality (Fig. 7).
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Figure 7. A trade-off between the number of observations and reconstruc-

tion quality.
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Figure 8. Results of fluorescence quantification simulation (25 observation

points equally spaced from the original 331 points

Figure 8 shows the reconstruction results when we used 25
observation points equally spaced from the original 331 points.

Conclusion
In this study, we proposed a method for quantifying multiple

fluorescent dyes by combining fluorescence observation with a
spectral modulator and sparse modeling techniques. This method
assumes that the spectral distribution of the fluorescent dyes is
known, and quantifies the concentration of each dye by model-
ing the observed values as a linear combination of dye codes that
are unique to each dye. We performed a simulation experiment
based on the fluorescence images obtained by seqFISH. As a re-
sult, seven fluorescent dyes were quantified using the proposed
method. We also examined the trade-off between the number of
observations and the reconstruction quality by reducing the num-
ber of observations. We found that the reconstruction quality was
still high when the number of observations was reduced from 331
to 25. This number of observations is smaller than the number
of observations of 50 in the previous study [7], which used an
LCVR to reconstruct the spectral cube, demonstrating the advan-
tage of the proposed method. However, the proposed method still
has room for improvement in the selection of spectral transmit-
tance and fluorescent dyes. Therefore, as a future direction, we
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aim to optimize the selection of spectral transmittance and flu-
orescent dyes, and to develop a method that can reliably detect
RNA molecules with fewer observations and computations. An-
other future challenge is to validate the proposed method on real
devices. We expect that the proposed method will enable fast and
accurate analysis of a large number of RNA molecular species in
the field of spatial transcriptomics.
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