# 物体の位置ずれを考慮したレーザスペックル認証のための 位相回復を用いた参照データの拡張

仲 純平<sup>1,a)</sup> 北野 和哉<sup>1</sup> 石山 塁<sup>1</sup> 舩冨 卓哉<sup>1</sup> 向川 康博<sup>1</sup>

概要:レーザスペックル認証はレーザ照射面の移動にセンシティブであり,認証する物体の位置ずれに よって認証精度が著しく低下する.幅の広いレーザ光が照射面の並進移動に対するロバスト性を向上させ ることが既に明らかとなっているが,光軸方向の移動に対する対策は依然として課題である.本研究では スペックルの3次元コヒーレンス特性から,幅の広いレーザ光が光軸方向の移動に対するロバスト性を低 下させるために,並進移動と光軸方向の移動に対するロバスト性はトレードオフの関係にあることを明ら かにした.また,位相回復を用いた参照データの拡張によってトレードオフが解消できることを示した.

## 1. はじめに

物体の材質や表面の微細な凹凸形状などの物理的特徴に 基づいた人工物メトリクス [1] と呼ばれる個体識別手法が 提案されている. この手法では物体の物理的特徴を「参照 データ」として記録し,これを個体識別のための特徴とし て用いる.物理的特徴に基づく特徴は,改ざんや複製が困 難であるため,工業製品の偽造品対策や,個体識別管理な どの用途で活用されている.その手法の一つにレーザス ペックル認証があり,粗面を持つ物体の表面にレーザ光を 照射したときに観察されるスペックルパターンを用いて個 体識別を行う [2].この手法は,物体表面の微細な凹凸を 利用するため,高精度な個体識別が可能であるが,物体の 位置ずれによってスペックルパターンが大きく変化するた め,位置ずれに対するロバスト性の向上が課題である.

北野ら [3] はスペックルサイズに関する従来研究に基づ いて最適な光学系の構成を理論的に考察した.最適な光学 系では,従来手法に比べて光軸方向に垂直な面の並進移動 に対するロバスト性向上を達成し,最大 4mm 程度の許容 移動量を実現した.

物体の並進移動の他に光軸方向の移動も識別のロバスト 性に影響を与えるが、こちらの対処方法についてはこれま でほとんど議論されてこなかった. Gatti ら [4] は、スペッ クルの3次元コヒーレンス特性の理論を示し、ある位置で 観測されたスペックルパターンの3次元的な変形を明らか にした. この理論によると、物体から撮像素子までの距離 が一定の場合、レーザビームの直径が大きいほど物体が光

| レーザビーム径              | × | <br>2]x<br>● |
|----------------------|---|--------------|
| 光軸方向の移動に対する<br>ロバスト性 | 低 | <br>高        |
| 並進移動に対する<br>ロバスト性    | 高 | <br>低        |

図1 レーザビーム径と2方向のロバスト性のトレードオフ

軸方向に移動したときのスペックルパターンの変化も大き くなる.レーザスペックル認証では、ある距離におけるス ペックルパターンを参照データとして記録するため、観測 のときに少しでも位置ずれが生じると参照データと一致し なくなる.したがって、レーザビームの直径が大きいほど 光軸方向の移動に対するロバスト性は低下する.一方で、 レーザビームの直径が小さくなると光軸方向のスペックル パターンが変化しにくくなるため、光軸方向の移動に対す るロバスト性は向上するが、レーザの照射範囲が狭くなる ために並進方向のロバスト性が低下する.つまり、光軸方 向の移動に対するロバスト性と並進移動に対するロバスト 性は図1に示すようなトレードオフの関係にあるため、双 方のロバスト性を同時に向上させる事が困難である.

そこで,我々は並進移動に対するロバスト性を維持した まま光軸方向のロバスト性を向上させるために,少数の参 照データを拡張することによってロバスト性を向上させる 手法を提案する.我々の手法は,異なる位置でスペックル パターンを複数回撮影し,位相回復によって参照データを 密に内挿・外挿する.本手法では,疎な参照データの計測 と拡張によって光軸方向のロバスト性を向上させる.

<sup>1</sup> 奈良先端科学技術大学院大学

 $<sup>^{</sup>a)}$  naka.jumpei.ni8@is.naist.jp

# 2. 手法

## 2.1 スペックルの3次元コヒーレンス特性

物体の光軸方向の移動に伴うスペックルパターンの変化 の程度は、レーザビームの波長やレーザビームの直径、物 体表面から撮像素子までの距離などで決まる.

ここでは物体表面に並行な方向に対するスペックルの直 径をスペックルの横サイズ,物体表面と撮像素子を結ぶ光 軸方向のスペックルの長さを縦サイズと呼ぶ.縦サイズは レーザスペックル認証における光軸方向のロバスト性に関 係する.縦サイズが大きいほど,物体の光軸方向の移動に 対して,スペックルパターンは変化しにくくなる.

スペックルが観察される物体表面上の空間は図 2 に示 すようにディープフレネル領域,フレネル領域,フラウン ホーファー領域の 3 つの領域に分けることができ [4],領域 ごとにスペックルのサイズは異なる数式で表される.物体 表面 (z = 0)から VCZ 距離 ( $z_{VCZ} = \delta x_0 D/\lambda$ )までの領 域はディープフレネル領域と呼ばれる. D はレーザビーム の直径を表し,  $\lambda$  はレーザビームの波長を表す. この領域 では,スペックルの横サイズ  $\delta x$  は伝搬距離によって変化 せず,常に一定であり,次式で表される.

$$\delta x = \delta x_0 \tag{1}$$

ここで, $x_0$ は物体表面におけるスペックルのサイズを表す.スペックルの縦サイズ  $\delta z$ は  $\delta x$ を用いて次式で表される.

$$\delta z \propto \frac{\delta x^2}{\lambda} \tag{2}$$

VCZ 距離以降では、スペックルの横サイズは次式で表される.

$$\delta x = \frac{z\lambda}{D} \tag{3}$$

VCZ 距離からフラウンホーファー距離  $(z_{\rm Fr} = D^2/\lambda)$ までの空間はフレネル領域と呼ばれる. ここではスペックルの縦サイズは次式で表される.

$$\delta z = \frac{\delta x^2}{\lambda} \frac{1}{1 - \frac{z}{z_{\rm Fr}}} \tag{4}$$

この式から,  $z = z_{VCZ}$  で豆粒状だったスペックルが $z = z_{Fr}$ にかけて針金状に伸びていくことがわかる.図3にレー ザビーム径が 1mm と 10mm のときの物体表面から距離 z = 200mmまで光が伝搬する様子を示す.レーザビーム 径が 1mm のとき,スペックルが z方向に伸びる様子が顕 著に表れている.

フラウンホーファー距離以降の空間はフラウンホーファー 領域と呼ばれ,この領域ではスペックルの縦サイズは無限 大になる.つまり,フラウンホーファー領域では伝搬距離 が変化してもスペックルパターンは変化しない.

光軸方向のロバスト性だけに着目すれば、撮像素子をフ



図2 物体表面からの距離によって定められる3つの領域

ラウンホーファー領域に配置するのが最も良い.フラウン ホーファー領域は物体表面から最も遠方の領域であるが, レーザビームの直径を小さくすることで現実的に撮像素子 を配置可能な距離までフラウンホーファー領域を近づける ことが可能である.しかし,レーザビームの直径を小さく すると物体のわずかな並進移動も許容されなくなるため, 単純にレーザビームの直径を小さくすることはできない.

そこで,ある程度小さなスペックルの縦サイズを前提として,ロバスト性の向上方法を検討する必要がある.

#### 2.2 スペックルパターンを用いた個体識別手法

レーザスペックル認証では他の人工物メトリクス [1] と 同様に図4に示すような2段階の処理で個体識別を行う. 登録処理は,物体から参照データを作成し,データベース に保存する処理である.この処理は以下に示す4つの手順 に分けられる.

- (1) スペックルパターンの撮影.物体を規定の位置に配置 してレーザビームを物体表面に照射し、撮像素子でス ペックルパターンを撮影する.
- (2)参照データ作成.撮影したスペックルパターンを適切 なサイズに加工して、これを参照データとする.
- (3) ID 生成. 物体に対応する ID を生成する.
- (4) 格納. データベースに ID と参照データを紐づけて保存する.

識別処理は、物体から作成した判定対象データが、登録 されたどの物体の参照データと合致するのか(または合致 する参照データが存在しないか)を検証する処理である. 識別処理は5つの手順に分けられる.

- (1) スペックルパターンの撮影.登録処理と同様の手順で 物体のスペックルパターンを撮影する.
- (2) 判定対象データ作成.撮影したスペックルパターンを 適切なサイズに加工して、これを判定対象データと する.
- (3)参照データ候補リストの取得.判定対象データと一致 する可能性のある参照データ候補リストをデータベー スから取得する.
- (4)照合スコア算出.リストにある参照データ群と判定対象データの照合スコアを算出する.照合スコアとして 正規化相互相関を用いる.スコアは「全く一致しない」 を意味する0から「完全に一致する」を意味する1ま での範囲の値となる.



図 3 物体表面(z = 0mm)から z = 200mm まで伝搬するスペックル.シミュレーション時の画像平面の幅をレーザビーム径 1mm のとき 10.24mm,レーザビーム径 10mm のき20.48mm とした.



図 4 個体識別のための 2 段階の処理

(5) 識別判定. 規定のしきい値と照合スコアを比較し,判 定対象データに合致する参照データに対応する0個ま たは1個以上のID 候補を選定し,相関値より識別順 位を付けて識別結果として出力する.

ここで,登録処理と識別処理で物体の位置が変化すると, 同じ物体を観察しているにも関わらず,参照データと判定 対象データが一致しなくなる問題が生じる.

## 2.3 登録処理における複数撮影

物体の位置ずれによって生じるスペックルパターンの変 化に対応する方法として,登録処理で複数のスペックルパ ターンを撮影する方法が考えられる.登録処理で複数回撮 影する方法は次の通りである.

- (1)複数の距離におけるスペックルパターンの撮影.個体 を規定の位置に配置して撮像素子でスペックルパター ンを撮影したあと、個体を光軸方向に一定間隔移動さ せ、再度撮影する.ここで、物体の移動が想定される 範囲をすべてカバーするように移動と撮影を繰り返す.
- (2) 参照データの作成.
- (3) ID 生成.
- (4) 格納. データベースに ID と撮影したすべての参照デー タを紐づけて保存する.





図5 本手法で想定する光学系



図6 位相回復を用いたスペックルパターンの推定

スペックルパターンを撮影することで,個体の識別が可能 な範囲を広げることができる.ただし,一個体に対して数 多くの撮影が必要になることは留意しなければならない.

## 2.4 位相回復を用いた参照データの拡張

個体の識別が可能な範囲を広げるためには,一個体に対 して数多くのスペックルパターンが必要であるため,撮影 回数が増えることが問題である.この問題に対処するため に,本研究では,撮影した少数のスペックルパターンから

#### 情報処理学会研究報告

IPSJ SIG Technical Report

Vol.2024-CG-196 No.16 Vol.2024-DCC-38 No.16 Vol.2024-CVIM-239 No.16 2024/11/29



図7 シミュレーション実験で生成した異なる距離のスペックル画像

なる参照データに対して物理的な波面の伝播を考慮した内 挿と外挿を行うことで、参照データを拡張する.

本手法で想定する光学系を図5に示す.この光学系で は、レーザビームがビームスプリッタを介して物体表面に 垂直に照射される.撮像素子と物体表面の距離 z はステー ジで変更可能である.

図 6 は、2 つの距離  $z_A$  と  $z_B$  で撮影されたスペックル パターンをもとに,他の距離 z<sub>C</sub> でのスペックルパターン を推定する例を示している.スペックルパターンの推定に は、位相回復と角スペクトル法による伝搬計算を行う. ま ず、距離 z<sub>4</sub> で撮影したスペックルパターンの強度 I<sub>4</sub> か ら、ランダムな位相を用いて波面 U<sub>A</sub> を構成する.次に、 波面  $U_A$  に伝搬計算を行い,距離  $z_B$  上での波面  $U'_B$  を推 定する. その後, 距離 zB で計測したスペックルパターン の強度  $I_B$  と  $U'_B$  の位相  $\phi_B$  を用いて波面  $U_B$  を構成す る. さらに、 $U_B$  に伝搬計算を行い、距離  $z_A$  における波 面  $U'_A$  を推定する. その位相  $\phi_A$  と強度  $I_A$  から再び波面  $U_A$ を構成し、このプロセスを繰り返すことで、位相  $\phi_A$  と  $\phi_B$  はそれぞれ1つの解に収束する. 位相が収束した後, 波面  $U_B$  に伝搬計算を行い,他の距離  $z_C$  での波面  $U_C$  を 推定する(波面 U<sub>A</sub> から計算することも可能である). こ のとき、波面  $U_C$  の強度  $I_C$  が、推定されたスペックルパ ターンである.本手法を用いて,複数の距離でスペックル パターンを推定することで異なる高さにおけるスペック ル画像群を得る.得られた画像群を用いて、識別処理で得 られる画像と正規化相互相関を計算することで、個体識別 を行う.以上の手法により,限られた枚数のスペックルパ ターンから広範囲の位置ずれに対応したスペックルパター ンの推定が実現する.本手法は、撮影回数を抑えつつ、個 体識別における位置ずれの影響を軽減できる点が利点であ り、光軸方向の位置ずれ軽減への効果が期待される.

#### 3. 実験

シミュレーション実験を通じて,物体を光軸方向に移動 させながら少数のスペックルパターンを撮影し,参照デー タを拡張することで,認証精度の評価を行う.はじめに, 図5の光学系をもとにシミュレーション環境を構築した. このときレーザビーム径は10mmに設定した.識別処理



で z = 160 mm から z = 240 mm までの 80 mm の範囲で 位置ずれが起こることを想定し、参照データを拡張せずに 10mmの範囲のスペックルパターンのみで構成された参照 データ群と、拡張して 80mm の範囲のスペックルパターン からなる参照データ群の2タイプを作成した. 拡張なしの 参照データ群は、z=195mm から z=205mm までの 10mm の範囲内で 1mm ごとに撮影された 11 個のパターンから 構成されている. 拡張した参照データ群は、11 パターン に加え、*z* = 160 mm から *z* = 240 mm までの範囲で位相 回復による内挿と外挿を行った.実験では、識別処理にお ける位置ずれの影響を拡張あり・なしの参照データ間で比 較した.位置ずれの影響を評価するために,正規化相互相 関より相関値を計算した. ある距離のスペックルパターン と参照データ群の相関値を計算し、その中で最も一致する パターン間の相関値を認証結果として使用した.図8に実 験結果を示す. 拡張なし参照データを用いた場合の相関値 は、登録処理で撮影した範囲である 10 mm の範囲から離 れると急激に低下する. 10mm の範囲内でも, スペックル 画像群のギャップにおいて相関値の低下がみられる. 拡張 あり参照データを用いた際の相関値は、10mmの範囲を超 えても相関値が緩やかに低下する. 10mm の範囲内での ギャップにおいても相関値はほとんど低下しない. これら の結果より、参照データを拡張する事で光軸方向のずれに 対してロバスト性が向上すると言える.

## 4. 結論

本論文では、位相回復を用いて少数の疎な参照データか ら任意の距離のスペックルパターンを推定する手法を提案 し、シミュレーションに実験を通して光軸に対する位置ず れへのロバスト性が向上することを示した. 今後の課題と して、実環境での検証や最適な参照データの距離間隔の考 察、伝播計算の効率化が挙げられる. IPSJ SIG Technical Report

## 参考文献

- 人工物メトリクスを用いた個体管理技術ガイダンス. CPSEC テクニカルレポート, No. CPSEC-TR-2022001, 2022.
- [2] Buchanan J.D.R., Cowburn R.P., Jausovec A., Petit D., Seem P., Xiong G., Atkinson D., Fenton K., Allwood D.A. and Bryan M.T.: Forgery: 'fingerprinting' documents and packaging, *Nature*, 436, 475 (2005).
- [3] 北野和哉, ビンダーヨハネス, 石山塁, 舩冨卓哉, 向川康 博:レーザスペックルを用いた物体認証のための光学系設 計の指針, 第 29 回画像センシングシンポジウム (2023).
- [4] Gatti A., Magatti D. and Ferri F.: Three-dimensional coherence of light speckles: Theory, *Phys. Rev*, A 78(6), 063806 (2008).