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Abstract

In this paper, we describe a supervised four-dimensional

(4D) light field segmentation method that uses a graph-cut

algorithm. Since 4D light field data has implicit depth in-

formation and contains redundancy, it differs from simple

4D hyper-volume. In order to preserve redundancy, we

define two neighboring ray types (spatial and angular) in

light field data. To obtain higher segmentation accuracy, we

also design a learning-based likelihood, called objectness,

which utilizes appearance and disparity cues. We show the

effectiveness of our method via numerical evaluation and

some light field editing applications using both synthetic

and real-world light fields.

1. Introduction

Light field imaging is spreading as a result of recent de-

velopments in light field acquisition systems [3, 20, 22] and

light field cameras are expected to take the place of con-

ventional digital cameras in the near future. As light field

photography has increased in popularity, demands for light

field editing methods and tools have increased as well, in the

same manner as products such as Photoshop R© have become

very popular editing tools for pictures. For example, Horn

and Chen [13] have proposed a system that allows users

to interactively manipulate, composite, and render multiple

light fields.

However, Jarabo et al. [14] shows that light field edit-

ing remains a challenging task for the following reasons:

1) a light field is a four-dimensional (4D) data structure,

while the majority of displays and input devices today are

designed for two-dimensional (2D) content. 2) A light field

is redundant, which implies that any local edit on a light

field needs to be propagated coherently to preserve this re-

dundancy, and 3) while a light field provides a vivid sense

of depth, this depth information is not encoded explicitly.

While an effective light field editing tool should have

many of the same functions as Photoshop R©, one of the most

Figure 1: Our method assigns label to each ray considering

the geometrical structure of a light field.

fundamental functions is region selection. As a method of

achieving efficient region selection in a 4D light field, we

propose a multi-label segmentation framework that is capa-

ble of coping with the difficulties mentioned above.

Our framework assumes that the user will select a por-

tion of the regions contained in the 4D light field data via

a 2D input device. Although functional user interface (UI)

for this purpose is proposed by Jarabo et al. [14], it remains

difficult for users to manually select an entire region in 4D

space. In our method, the user needs to provide the cues to

specify a region of interest by inputting a label on a portion

of the region. For example, the user can use brush strokes

to input a label on the center viewpoint image, which is a

subspace of the light field data, in order to specify the target

object to be edited. Based on those user inputs, our algo-

rithm identifies the appropriate regions in the 4D light field.

One may consider that segmentation results for a 4D

light field can be obtained by applying a 2D image segmen-

tation method to each viewpoint image, there is no guaran-

tee that the redundancy of the 4D light field is preserved.

This is because, even though the light field data has a 4D

structure, neighboring relationships are not as simple as



those of a regular three-dimensional (3D) volume grid, pri-

marily due to redundancy complications. To compensate

for this redundancy, we utilize disparities in 4D light field

to define appropriate neighboring relationships in order to

preserve redundancies. Additionally, we define neighbor-

ing relationships among the rays in the 4D light field data in

order to estimate the regions of interest coherently.

Although light field data does not have explicit depth in-

formation, some methods such as [26] have been proposed

to exploit its disparities. Our framework utilizes color as

well as disparity information to estimate regions appropri-

ately. Because color and disparity information are inher-

ently dissimilar, integrating them to determine the regions

of interest is a difficult task. To integrate color and dispar-

ity cues, we employ a learning based approach in order to

evaluate whether each ray is included in a selected region or

not.

2. Related Work

Segmentation is one of the most important tasks in

the computer vision field and has been studied for many

years. One of the most famous image segmentation

methods is GrabCut [25], which is a supervised fore-

ground/background segmentation method for 2D image and

has already been implemented in many image editing soft-

ware applications. GrabCut is built upon graph-cut algo-

rithms [4, 5, 6]. Graph-cuts can be applied to any type of

dimensional data including imagery, video footage, and 3D

structures [4], and can also be extended to multi-label seg-

mentation [6].

In graph-cut approaches, the data are treated as a graph

structure with vertices and edges. A vertex represents each

pixel, and neighboring pixels are connected by an weighted

edge based on their similarity. In cases involving multi-

label image segmentation, each label also has a special ver-

tex, which is called a terminal. Pixels’ vertices are con-

nected to all terminals, where their edge weights determine

the likelihood of label assignment. The solution to finding

the cut on the graph at minimum cost lies in obtaining the

segmentation at minimum amount of energy, and this prob-

lem can be solved by min-cut/max-flow algorithm [12, 5].

After cutting, each vertex is connected to a single termi-

nal, which means the corresponding label is assigned to the

corresponding pixel. Our method also employs a graph-cut

segmentation approach. These segmentation methods are

categorized as supervised methods since they require user

inputs in the form of clues.

Although some graph-cut methods [4, 6] can process

any-dimensional data, they are not always suitable for high-

dimensional data, such as video footage. Unlike 3D volume

data, video data have an irregular structure along the time

axis. Hence, segmentation methods can be improved by ap-

propriately considering the irregular neighbor relationships

of the data. For example, Nagahashi et al. [21] improve

the accuracy of video segmentation by defining temporal

neighbor relationships, which are corresponding pixels of

neighboring frames. One problem with 4D light field data

that is similar to video data is that the redundancy in a light

field is complex. Our method is the first method that is ca-

pable of focusing on the 4D light field segmentation using

a graph-cut approach.

Meanwhile, there are some unsupervised methods that

can be used for multi-view images or 4D light field seg-

mentation. Berent et al. [2] propose a 4D light field seg-

mentation method based on a level set method [23], in

which an active contour method is applied to segment a 4D

hyper-volume. Kolmogorov and Zabih [15] propose a depth

labeling method for multi-view images based on the fact

that foreground object cannot be occluded by deeper ob-

jects. Kowdle et al. [16] propose a method of automatic ob-

ject extraction from multi-view images using disparity cue.

Their method uses appearance and disparity cues in multi-

view images to determine the likelihood of foreground ob-

jects. Xu et al. [29] propose an unsupervised approach to

localize transparent object regions in a light field image.

Their method uses a light field distortion feature [19], which

represents the likelihood that the pixel belongs to a trans-

parent object region, and a binary graph-cut segmentation

method. While these methods are effective, unsupervised

approaches are unsuitable for region selection for light field

editing because regions of interest differ from user to user.

As for supervised approaches, Wanner et al. [28] propose

a image segmentation method using a 4D light field, which

uses both appearance and disparity cues similar to [16]. To

cope with these inherently different information types, they

train a random forest classifier in order to integrate appear-

ance and disparity and obtain a single likelihood for each

label. While effective, their method only outputs segmenta-

tion results on the center 2D image.

We use GCDL[26] to exploit disparity from light field

data, and use both appearance and disparity to evaluate the

likelihood of each region for each ray. In our method, we

use a support vector machines (SVMs) to integrate the like-

lihoods into a graph-cut algorithm.

3. Light field segmentation

As previously stated, the purpose of our method is to

assign a label to each ray. In the following section, we

show some assumptions based on light field structures, after

which we will formulate the light field segmentation prob-

lem as an energy minimization problem.

3.1. Representation of light field

While there are various ways to represent 4D light

fields [1, 11, 17], we have adopted the Lumigraph
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Figure 3: Overall flow of light field segmentation. The input is a 4D light field and the user specified seeds in the center

viewpoint. SVMs for each label are obtained from the color and estimated disparity distribution. Objectnesses are obtained

from the distance between each of the decision planes. Ultimately, the 4D light field is segmented based on a graph-cut.

method [11] to model rays in 3D space. A ray is defined

by two points of intersections with the u–v and x–y planes

in the 3D coordinate as shown in Fig. 2a. A ray can be rep-

resented as a point in 4D space as p = (u, v, x, y), and the

intensity of p is represented as Ip. The Lumigraph represen-

tation can be converted into a multi-view representation [17]

containing a viewpoint plane and an image plane as shown

in Fig. 2b, and vice versa. In a multi-view, the u–v and x–y

planes respectively correspond to the viewpoint and image

planes. In this paper, we will explain our method using a

multi-view representation to facilitate understandability.

3.2. Framework overview

The overall light field segmentation flow is shown in

Fig. 3. Here, let Oi be the i-th label (i = 1, · · · , n), where

n denotes the number of labels. Our goal is to assign one

of the labels to each ray at p based on user inputs, called

seeds. Besides, we assume that disparity dp is known for

the given light field data, because a number of methods are

available for accurately estimating disparities from a light

field [7, 18, 26].

Similar to [16, 28], our algorithm calculates the likeli-

hood of each label, called objectness, from the intensity and

disparity of the ray. To integrate these inherently different

information types into one objectness measure, we use an

SVM classifier. The objectness is defined as the distance
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Figure 2: Two types of 4D light field representation: (a)

light field representation by Lumigraph[11]. (b) Multi-view

representation. These representations are essentially equiv-

alent [17]. In this paper, we adopt a multi-view representa-

tion.

from the decision hyperplane of the classifier. Additionally,

we consider both the spatial and angular neighborhoods of

a ray in a 4D light field in order to take their similarity

into account. When considering the multi-view represen-

tation, angular neighbors are especially important for main-

taining segmentation consistency among the resulting im-

ages. In a graph-cut segmentation approach, objectness cor-



responds to data term and neighbor similarities correspond

to smoothness term.

3.3. 4D light field segmentation using graph-cut

We formulate the light field segmentation problem as an

energy minimization. The energy function consists of two

kinds of terms, data and smoothness, and is defined as

E(L) =
∑

p∈P

Rp(lp) +
∑

{p,q}∈N

Bp,q · (1− δ(lp, lq)), (1)

where E(L) is a total energy for the label assignment on

a light field L, lp is the assigned label to the ray at p, P

is a set of rays in the light field, N is a set of neighboring

rays, Rp(lp) is the objectness of the label at p, Bp,q is the

similarity between the rays at p and q, and

δ(lp, lq) =

{

1, if lp = lq
0, otherwise

. (2)

A detailed definition of Rp(lp) and Bp,q will be provided in

the following section.

To solve this energy minimization problem, we consider

a graph structure with vertices of rays and terminals for each

label Oi. There are also two edge types; one connects each

ray p and each terminal Oi with a weight Rp(Oi), while the

other connects neighboring rays {p, q} with a weight Bp,q .

Since a light field is irregular, neighboring rays are defined

for both spatial and angular. Spatial neighbors correspond

to the adjacent pixels in the same viewpoint in a multi-view

representation, while angular neighbors correspond pixels

in the adjacent viewpoint depending on its disparity. Fig-

ure 4 shows the graph structure in a corresponding multi-

view representation. In this figure, magenta and orange

lines represent spatial and angular neighbors, respectively.

Using the graph structure, we can apply a graph-cut al-

gorithm to minimize the energy function. Eventually, the

solution provides the optimal label assignment for each ray.

It is noted that the solution becomes near optimal for multi-

label segmentation (n > 2) [6].

3.4. Objectness from intensity and disparity

The energy Rp(Oi) in Eq. (1) depends on the likelihood

(objectness) that the ray p will have the label Oi. As dis-

cussed in Sec. 2, it is important to evaluate similarities be-

tween the ray and seeds in terms of disparity as well as in-

tensity. Machine learning techniques play an important role

in robustly measuring objectness because they can facili-

tate the integration of these inherently different information

types.

To assist data term evaluation, the objectness of the la-

bels should be comparable with each other. We need to

choose a machine learning technique that will satisfy this
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Figure 4: Graph for 4D light field segmentation. The edges

are drawn by three different colors. For improved legibility,

most of the edges are omitted in this figure and only edges

from a single ray p are shown. The blue edges represent

the data term. Magenta edges represent spatial neighbor

rays. Orange edges represent angular neighbors, which can

be determined from the disparity.

requirement while providing good performance. SVM ap-

proach is one of popular methods that satisfy this require-

ment. SVMs maximize the margin between classes hence

they generally achieve higher performance, and there are

many theoretical studies about SVMs. As for the use of

multiple classes in SVMs, comparability between classes is

discussed by Platt [24]. Accordingly, we utilize SVMs to

define the objectness of the labels. For each objectness of

Oi, we train an SVM to treat the seeds of Oi as positive

samples and the seeds of the others Oj(j 6= i) as negative

samples.

Let xp be a feature vector of p derived from Ip and dp.

By training an SVM using the xp of all seeds, we can ob-

tain a weight matrix wi and a bias bi for each label Oi,

which represent a decision hyperplane. For a given ray p,

the SVM calculates the distance between xp and the hyper-

plane, and outputs a decision whether it is positive or nega-

tive. Instead of binary decision, we formulate the likelihood

as [24]

P (Oi|xp) =
1

1 + exp(−afi(xp))
, (3)

where a is a step of sigmoid function, and fi(xp′) represents

the distance calculated as

fi(xp) = w
⊤
i xp + bi. (4)
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bors of a ray (a) are shown. Rays (b) are spatial neighbors,

and rays (c) are angular neighbors.

If p is in a set of seed pixels, we define P (Oj |xp) =
δ(Oi,Oj), exceptionally.

As for the feature vector design, we use a joint vector of

the chroma and the disparity of the ray p as

xp =
[

Crp Cbp dp
]⊤

, (5)

where Crp and Cbp are the elements of the YCrCb color

space of Ip. Chroma is robust to the intensity changes

caused by shading effects. Because chroma and disparity

have different ranges, it is necessary to normalize them so

that the standard deviations become one. We use a Gaussian

kernel and a grid search for the normalization.

For translating likelihood to energy, we adopt log-

likelihood [4] as

Rp(Oj) = − lnP (Oj |xp). (6)

3.5. Smoothness among neighboring rays

In a normal 2D image segmentation problem, smooth-

ness is defined as the color similarity of neighboring pixels.

Extending this idea to a 4D light field, light field redundancy

should be appropriately considered. As shown in Fig. 5,

there are two types of neighboring relationships among the

rays. One is spatial neighbor as shown as rays (a) and (b),

which are the adjacent pixels in the same image in a multi-

view representation. Spatial neighbors of p are obtained as

qs =

{

(u, v, x± 1, y)
(u, v, x, y ± 1)

. (7)

The other one is angular neighbor as illustrated as rays

(a) and (c), which are rays from the same scene point and

observed at adjacent viewpoints. Since all disparities are

known, the angular neighbors of p are easily obtained as

qa =

{

(u± 1, v, x± [dp]X , y)
(u, v ± 1, x, y ± [dp]Y )

, (8)

where [dp]X and [dp]Y are x and y components of dp, re-

spectively.

We define the smoothness term for all neighbors {p, q}
as [4]

Bp,q = α exp (−g(Ip, Iq)) , (9)

where g(Ip, Iq) is the dissimilarity between p and q, and α

is a weight with respect to the data term. In our implemen-

tation, we evaluate the dissimilarity as

g(Ip, Iq) =
(Crp − Crq)

2 + (Cbp − Cbq)
2

2σ2
, (10)

where σ controls the rigor of color similarity.

Since the data and smoothness terms evaluate different

aspects, a weight α is commonly used to balance them. The

dissimilarities between the spatial and angular neighbors

can also be used to evaluate different aspects. We control

the smoothness weight as

α =

{

αs if q is a spatial neighbor of p

αa if q is an angular neighbor of p
(11)

4. Experiments

We evaluated our method using a public synthetic light

field dataset [27], which provides light fields with 9 × 9
viewpoints. Four of them (Papillon, Buddha, StillLife, and

Horses) have brush stroked seeds for several labels at the

center viewpoint image, and the ground-truth labels on the

whole 4D light field. In our experiment, we use 5× 5 view-

points from the 9 × 9 light field in order to reduce the data

size. The accuracy levels of the obtained results are numer-

ically evaluated by comparing them with the ground-truth.

The disparities are estimated using GCDL [26], which is

one of the most well-known disparity estimation method. It

is implemented in cocolib [10] hence it is easy to use. As

previously mentioned, any disparity estimation methods [7,

18, 26] can be used. From these methods, we exploit GCDL

for fairness because compared method [28] is build upon

GCDL.

We will now discuss experiments, the quantitative com-

parisons of which are summarized in Table 1. First, we

compare the accuracy of our method with that of [28], here-

after referred to GCMLA. GCMLA is also implemented in

cocolib and we use it for evaluation. The input light field

and seeds are shown in the top part of Fig. 7. Since GCMLA

only creates for the center image, we compare our center

image results with those obtained by GCMLA and found

them comparable, as has been summarized in Table 1 and

Fig. 7. It is notable that our segmented results for the entire

4D light field also achieved high levels of accuracy.

Next, we evaluate the objectness using SVMs. For com-

parison purposes, we implemented an alternative objectness

using a simple color likelihood [25]. The results, portion of



(a) (b) (c)

Figure 6: Segmentation results of the center image of light

field. (a) Our method yields accurate result. (b) Using con-

ventional color likelihood. Some objects are not well sep-

arated. (c) Without smoothness constraints, the result be-

come noisy. These results show both learning-based object-

ness and two smoothness consistencies are effective.

which are shown in Table 1 and Figs. 6a and 6b, indicate

that the accuracy obtained using our SVM objectness is sig-

nificantly higher than the usual color likelihood for all cen-

ter image and 4D light field data. We can say that by con-

sidering disparity differences, our objectness is capable of

effectively assigning different labels, even when they have

similar color distributions.

Finally, we evaluate the effectiveness of the use of

two smoothness constraints. To accomplish this we com-

pared two types of segmentation results (with and without

smoothness constraints). Portion of the results are shown

in Table 1 and Figs. 6a and 6c. The results obtained us-

ing smoothness constraints are more accurate for both the

center image and the 4D light field.

Application Our method can be applied to other light

field editing applications, such as changing the color of the

specific region. After selecting interested region by our

method, the color of the region can be easily manipulated

in the same manner as image editing.

We applied our method to a light field dataset provided

by Jarabo et al. [14]. , which are taken under real environ-

ments using a Lytro R© camera. Figure 8 shows some exper-

imental results of light field editing. Here, we consider a

situation that a user wants to manipulate the color of a toy

bird. All the user has to do is to give seeds to a portion of

the ray as shown in Fig. 8a. After the input, our method

extracts rays from the entire light field as shown in Fig. 8b.

In this example, we can obtain an edited light field by in-

dicating the hue value. Figures 8c and 8d show refocused

images obtained from the edited light field.

5. Conclusion

In this paper, we propose a supervised 4D light field seg-

mentation method that can be used for light field editing.

Based on user input seeds, objectness of each ray is evalu-

ated using SVMs. To retain redundancy of 4D light fields,

(a) Input. (b) Extracted rays.

(c) Refocus to foreground. (d) Refocus to background.

Figure 8: Light field editing application. (a) input: 5 × 5
light field, foreground seed (drawn in red), and background

seed (drawn in blue). (b) Foreground ays extracted by our

method. (c, d) Refocused images after color manipulation.

The toy’s color is changed semi-automatically.

we define two neighbors, spatial and angular, and evaluate

similarities. By constructing a 4D structured graph, 4D light

field can be segmented by a graph-cut algorithm.

The experimental results show that our method achieves

higher accuracy than previous methods using public light

field datasets. Moreover, we applied our method to real-

world light fields and show examples of light field edit-

ing. These results show the efficiency of our method for

light field editing applications. Light field matting meth-

ods [8, 9] can be useful to improve editing quality by

applying between segmentation and light field composite

pipeline, because they reduce boundary artifacts.

Since we did not apply our method to a wide variety of

scenes, one of the future tasks will be validating its effec-

tiveness by applying it to a wider variety of settings, espe-

cially non-Lambertian surfaces. Another problem is com-

putational time. Since the use of a graph-cut algorithm re-

quires significant amounts of computational time when nu-

merous vertices are present, an obvious future goal is to

solve this problem.
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Target 4D light field In central view-point

method GCMLA color likelihood w/o smooth Ours GCMLA color likelihood w/o smooth Ours

Papillon - 79.7 94.0 98.3 97.5 79.8 94.7 98.3

Buddha - 85.6 94.2 97.6 96.4 85.7 94.3 97.7

StillLife - 94.1 95.3 96.6 96.5 94.2 95.4 96.4

Horses - 88.4 87.6 95.7 95.1 82.4 88.4 95.9

Table 1: Quantitative comparison with GCMLA [28], color likelihood objectness, without smoothness consistencies, and

proposed method. The left part is the segmentation result for the entire light field. Because GCMLA creates only the center

image, the segmentation accuracy of the entire light field is not provided. The right part is the segmentation result for the

center image. It shows that our method provides higher accuracy than the other method.
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Figure 7: Input and segmentation results. The 1st row shows the input 5 × 5 light field. The 2nd row shows the user input

seed, which is given in the center image of the input. The 3rd row shows the estimated disparity by GCDL [26]. The 4th and

5th rows show 4D segmentation results. The 6th and 7th rows show center image magnifications of the 4th and 5th rows,

respectively.


