No.7

陰影解析

Shape from intensity

担当教員:向川康博・田中賢一郎

Shape-from-X

Shape estimation from "X" as a clue

Stereo / Motion

Triangulation

Texture

Focus / Defocus

Time

Shape-from-Intensity

Shape estimation with observed intensity as a clue

- **Inverse process of rendering to determine pixel** intensity
	- **Olnverse geometry**

Known :Illuminations and reflectance properties **Unknown**:Scene shape

■Clue

Shading, specular reflection, shadow, etc.

Shape-from-Shading

Shape estimation based on shading

- **Photometric information contains a lot of clues about** geometry.
	- Surface normal

□Depth

Start with a simple problem setting $\Box A$ point light source at infinity (parallel light) Fixed camera and target object Perfect Lambert reflection

(No specular reflection, No shadow) No global illumination

Surface normal

■Partial differential of *z* with *x* and *y* to define the inclination.

$$
-\frac{\partial z}{\partial x} = \frac{A}{C} = p \qquad -\frac{\partial z}{\partial y} = \frac{B}{C} = q
$$

Unit normal vector from the inclination.

¤defined by two parameters

$$
\mathbf{n} = \frac{(p, q, 1)^{\mathrm{T}}}{\sqrt{p^2 + q^2 + 1}}
$$

Illumination and reflection

Parallel illumination

□Ideal illumination coming from a point light source at infinity Every surface point is illuminated with the same irradiance from the same direction T₁

Unit parallel illumination vector

$$
\mathbf{s} = \frac{(p_s, q_s, 1)^1}{\sqrt{p_s^2 + q_s^2 + 1}}
$$

s

n normal

Lambert diffuse reflection

■Ideal reflection that uniformly reflects incident light in all directions illumination

 $(\rho \geq 0)$

 $\Box \rho$: Lambert diffuse reflectance

$$
\boldsymbol{i} = \boldsymbol{\rho} \, \mathbf{s}^{\mathrm{T}} \mathbf{n}
$$

Problem setting

EXALUAGE: Known: illumination and observed intensities **Unknown: normal**

$$
\mathbf{n} = \frac{(p, q, 1)^{\mathrm{T}}}{\sqrt{p^2 + q^2 + 1}} \quad \mathbf{s} = \frac{(p_s, q_s, 1)^{\mathrm{T}}}{\sqrt{p_s^2 + q_s^2 + 1}}
$$

For simplicity, assuming that diffuse reflectance $\rho = 1$

$$
I = \cos \theta_i = \mathbf{n}^T \mathbf{s} = \frac{(pp_s + qq_s + 1)}{\sqrt{p^2 + q^2 + 1}\sqrt{p_s^2 + q_s^2 + 1}} = \frac{R(p,q)}{\text{Reference map}}
$$

\n
$$
\mathbf{s} = \frac{\theta_i}{\sqrt{p^2 + q^2 + 1}\sqrt{p_s^2 + q_s^2 + 1}} = \frac{R(p,q)}{\sqrt{p^2 + q^2 + 1}\sqrt{p^2 + q^2 + 1}}
$$

Shape-from-Shading

The normal (p, q) cannot be uniquely determined from one observed intensity

One equation and two unknown parameters

Need to add some information

Assumption that the object surface is smooth

OPrior knowledge of shape

Increase Illumination directions

Photometric Stereo(照度差ステレオ)

- **Taking multiple images with changing illumination** directions
- **Solving ambiguity in the reflectance map**
- **Examming Lambert diffuse reflection, it can be solved** linearly

Example of Photometric Stereo

Input images Normal map

In the case of two light sources

The intersection of the two solution curves becomes new solution space

In the case of three light sources

Linear solution in the case of three light sources

Assuming that three observation intensities (i_1, i_2, i_3) were obtained for a pixel under three different illumination directions (s_1, s_2, s_3)

 s_3

 S_2

 s_1

Stable because it can be solved linearly. Reflectance (ρ) is also estimated at the same time.

In the case of more than three light sources

Assumed that observed brightness $(i_1, i_2, ..., i_M)$ was obtained under M (> 3) different illumination directions $(s_1, s_2, ..., s_M)$

Since the illumination matrix S is not a square matrix, calculated using a pseudo inverse matrix

$$
\widetilde{n} = \left(S^T S\right)^{-1} S^T i = S^+ i
$$

Moore Penrose(ムーア・ペンローズ)inverse matrix

Least squares method assuming that observation error is Gaussian distribution

Emore stable and accurate solution

The merit of multiple light sources

E Avoid specular reflection and shadow Assuming that pure Lambert diffuse reflection can be observed in at least three images.

without

with

Estimated reflectance Shading generated from the estimated normal

> Barsky, S, et al, The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows

Photometric Stereo in Parthenon

Near light source photometric stereo.

Two black hemispheres to determine light source positions.

[Per Einarsson et al., Photometric Stereo for Archeological Inscriptions, 2004]

Summary of the number of light sources

1 light source Shape-from-Shading

■2 light sources Photometric Stereo (照度差ステレオ法)

■3 light sources

Uniquely solved Photometric Stereo

Simultaneous estimation of reflectance and normal

Nore light sources

Robust to specular reflection and shadow

3D shape and normal

Even if normals are known, 3D shape cannot be uniquely determined.

□Height ambiguity due to different integral path. Differential is easy, but integration is difficult.

Integrability (可積分性)

■When integrated along a closed loop on a smooth surface, the integral value becomes zero.

 \Box Independent to the integral path.

Minimization of objective function *E*(*Z*)

Estimation of light source direction/position

Use reference object with known shape Estimate light source direction by a black sphere

Estimate near light source position by two or more black spheres

- \Box In the outdoor, high dynamic range measurement is required
	- Mirror sphere for ambient light
	- Black sphere for position of sun
	- Diffuse sphere for brightness of ambient light

When the illumination direction is unknown

Illumination directions and strengths are unknown: Uncalibrated Photometric Stereo (未校正照度差ステレオ)

$$
\begin{bmatrix}\ni_1 & \cdots & i_{1N} \\
\vdots & \ddots & \vdots \\
i_{M1} & \cdots & i_{MN}\n\end{bmatrix} = \begin{bmatrix}\n\mathbf{s}_1^{\mathrm{T}} \\
\vdots \\
\mathbf{s}_M^{\mathrm{T}}\n\end{bmatrix} \begin{bmatrix}\n\rho_1 \mathbf{n}_1 & \cdots & \rho_N \mathbf{n}_N\n\end{bmatrix}
$$

 \blacksquare Singular value decomposition $\mathbf{I} = \mathbf{S}\mathbf{\tilde{N}} = \mathbf{U}\mathbf{\Sigma}V^{\text{T}}$

$$
\begin{cases}\n\mathbf{S} = \mathbf{U}'(\Sigma')^{\frac{1}{2}} & \mathbf{U}' \sum_{\substack{[M \times N] \\ \text{in } N}} \mathbf{V}^T \\
\mathbf{N} = (\Sigma')^{\frac{1}{2}} V^T\n\end{cases}
$$

Bas-Relief Ambiguity (浅浮き彫りの曖昧性)

Decomposition of a matrix is not uniquely determined.

 $\mathbf{I} = \mathbf{S}\widetilde{\mathbf{N}} = (\mathbf{S}'\mathbf{H})(\mathbf{H}^{-1}\widetilde{\mathbf{N}}')$

H is any 3×3 matrix

Linear uncertainty Different incident light and normal pairs produce the same shading

"The Bas-Relief Ambiguity", Belhumeur et al, 1997

Shape-from-Shadow

Limited existing space in the cone Otop vertex: light source bottom surface: shadow region **Logical AND of many cones**

Estimate rough convex hull shape (凸包形状)

Shadow graphs

Restrict the existing space of objects from shadows

[Shadow Graphs, Yu and Chang 2005] A part of the 48 input images Shape estimation

Shape-from-Specularity

Shape estimation based on specular reflection ■Strong specular reflections around the mirror direction

A part of 65 input images Estimated

Camera (12bit, 1300x1030)

Metallic ball for estimating light source position

[Chen et al.,Mesostructure from Specularity (CVPR2006)]

Scatter-Trace Photography

- **Shape estimation based on specular reflection**
- **EXCOMPLEX TRANSPATE:** Complex transparent scene with inhomogeneous interior Observed reference pattern on the transparent object Shape estimation by hypothesis and verification

Example of Scatter-Trace at each point on the surface

Nigel Morris and Kiriakos Kutulakos,

Reconstructing the Surface of Inhomogeneous Transparent Scenes by Scatter-Trace Photography, ICCV2007.

Analysis of Scatter-Trace

 \blacksquare If direct reflection on the surface, Scatter-Trace stripes \blacksquare intersect with the eye and the surface of the object monotonically decrease as the distance increases

 $T_{\mathbf{q}}^{\mathrm{I}}$

depth normal

Removing non-monotonically decreasing component \rightarrow If the direct reflection components remain, the assumed depth is correct.

Example-based Photometric Stereo

[Aaron Hertzmann and Steven M Seitz, 2005]

How to handle any BRDF?

□Reference object whose shape is known and BRDF is same with the target object to be measured.

OUsed as a look up table to find similar reflection properties.

Examples of the input images Estimated normal

 \Box If reference objects can be prepared, any BRDF can be treated.

Separation of reflection components (反射成分の分解)

Real scene

Many phenomena mix in real image.

Use complex model or decompose in advance.

Again

Dichromatic reflection model (Shafer 1985) (2色性反射モデル)

Reflected light = **Diffuse reflection** + **Specular reflection**

- Diffuse reflection (拡散反射): ■Reflection inside the surface layer **□Object color**
- ■Specular reflection (鏡面反射): \blacksquare Reflection at the border between air and surface layer \Box Light color

Diffuse reflection Specular reflection Sum of both reflection

Dichromatic reflection model

Decomposition based of color difference

Viewpoint dependency

Notifuse reflection: independent on viewpoint

Specular reflection: dependent on viewpoint Assume uniform specular reflection characteristics Simultaneous estimation of light source distribution from specular reflection components

Input image (different viewpoint) Diffuse reflection Specular reflection

[Nishino01]

Difference in polarization (偏光)

- **Separate specular reflection components using polarization**
- Simultaneous estimation of specular reflection parameter and near light source position
- **Assuming monochromatic uniform reflection characteristics**

Input image Diffuse reflection component Specular reflection component

RANSAC-based method

Example 20 Convert real image into pure Lambert image based on RANSAC (RANdom SAmple Consensus)

Choose three images randomly from the input image set, converted to fully satisfy Lambert model (linearization)

Remove shadows and specular reflections as outliers

conversion

```
\mathbf{i} = \mathbf{S}^{\mathrm{T}} \widetilde{\mathbf{n}}\overline{\phantom{a}}
```


One of the input image Linearized image

(Negative: red)

Estimation of optical phenomena

Y. Mukaigawa, et al, ``Analysis of photometric factors based on photometric linearization'', JOSA2007

Some approaches to handle more complex scene

Preprocess to extract pure Lambert diffuse reflection component

□Optically or mathematically

Use mode complex model Since the parameter increases, it may become unstable

Solve in the framework of robust estimation Use many input images and consider non-Lambert components as outliers

Solve by deep learning

Summary

- **From the shading information, not only photometric** information such as color and reflection properties, but also geometric information such as normal can be extracted.
- **Photometric stereo cannot estimate depth. It can** estimate surface normal.
- Many traditional methods assume Lambert diffuse reflection, but extended to more complex scene in recent years.