No.6 大域照明

Global illumination

担当教員:向川康博・田中賢一郎

Direct and global illuminations

Direct illumination Light source→ Object surface →Observer

■Global (indirect) illumination Light source→ Object surface → Object surface →…→Observer

Differences in CG (wikipedia)

Global illumination

Real global illumination

What is global illumination?

Rendering images considering global illumination \Box In CG, necessary to render realistic image \Box In CV, necessary to analyze real scene

Types of global illumination <u>Olnter-reflection (相互反射)</u> Volume scattering (体積散乱) ■Subsurface scattering (表面下散乱) Inter-reflection Subsurface scattering Volume scattering

Inter-reflection (相互反射)

Inter-reflection

OD Diffuse inter-reflection

□Radiosity

Describing light passing between object surfaces by finite element method

Only direct illumination Direct illumination

+ ambient illumination

Radiosity

wiki.povray.org

Specular inter-reflection ■Expression of caustics (集光模様) **□Monte Carlo ray tracing □** Monte Carlo sampling from ray tracing Photon mapping Two-pass algorithm of distributing and counting photons

Photon mapping by POV-Ray

Radiosity

Exampute diffuse inter-reflection components Developed for heat transfer at first **Form factor between two patches** *Bi*

Radiation light intensity (Direct light source) Form factor between two patches [Sillion94] $B_i = E_i + \rho_i \sum_j F_{ij}B_j$ $\overline{x_i}$ $\overline{x_j}$ ρ *i* Reflectance θ *i* θ *j* $F_{ij} = V(x_i, x_j)G(x_i, x_j)$ $\left| x_{i}-x_{i}\right|$ $\cos \theta$. Cos θ . $(x_i, x_j) =$ $i \sim j$ 1 i \cup \cup j $\left| \mathbf{x} - \mathbf{x} \right|$ $G(x_i, x_j) =$ — — — — — — — — — — — — θ cos θ . Visibility (Can see each other or not) Geometric attenuation

Scene analysis based on Radiosity

Reflectance estimation considering diffuse inter-reflection

Simple linear solution

$$
B_i = E_i + \rho_i \sum_j F_{ij} B_j
$$

$$
\rho_i = (B_i - E_i) / \sum_j F_{ij} B_j
$$

[Fournier93] [Drettakis97] [Loscos99] [Loscos00]

Specular inter-reflection

Specular reflection depends on viewing direction

- **The radiance of each patch can not be directly observed**
- **Interative computation of □**radiance of one-bounce specular reflection specular reflectance

Room shape and Camera position (40 places)

Yu et al., Inverse Global Illumination:

Recovering Reflectance Models of Real Scenes from Photographs, SIGGRAPH'99

Specular reflectance

Resynthesis under original illumination

Superimposition of seven virtual objects

Photon mapping (Jensen 1996)

 Two-pass algorithm to express global illumination **1st pass**: Construction of photon map Distribute many photons from light **2nd pass**: Rendering Count photons by ray tracing from viewpoint

http://help.chaosgroup.com/vray/help/200R1/render_params_photonmap.htm

Examples of photon mapping

[Jensen, Global Illumination using Photon Maps, 1996]

Simple ray tracing

Photon mapping

Inter-reflection in complex scene

simple

Oiffuse inter-reflection

□Radiosity based on heat transfer

Allowing specular reflection

- **Only one-bounce specular reflection**
- **OUniform specular reflection**

OSimple path

 \Box Light source \rightarrow Diffuse reflection \rightarrow Specular reflection \rightarrow camera

Specular inter-reflection

Olterative computation to fit input Photon mapping method **OPhoton mapping**

complex

Volume Scattering (体積散乱)

Scattering in translucent media

E How an incident ray repeats scattering and the light propagates in a translucent media?

Multiple bounces **□Complex light field**

dark bright

Different scattering due to optical density

scattering

Participating media(関与媒質)

Consist of small particles

Collision with particles

Vacuum Participating media

SIGGRAPH ASIA 2008 Course Note

Light transport in participating media

Absorption:

OCollision with particles Decrease in intensity

NOut scattering: □Scattered to outside Decrease in intensity

 \blacksquare In scattering:

□Ray from outside scatters and joins to traveling direction OIncrease in intensity

Energy decrement

Energy increment

Increment by in scattering

On Integrating rays coming from each direction ω' of the spherical surface Ω surrounding point x

$$
dL(x, \omega) = \sigma_s(x) \left(\int_{\Omega} p(x, \omega', \omega) L(x, \omega') d\omega' \right) ds
$$

Phase function

$$
dS
$$

$$
\sigma' = \sigma_s(x) \left(\int_{\Omega} p(x, \omega', \omega) L(x, \omega') d\omega' \right) ds
$$

Phase function
In scattering

Phase function

Expression of scattering bias Odepends only on the angle θ between ω and ω' for most media Henyey-Greenstein function 2 1 1 *g* $=$ $\frac{1}{1}$ $\frac{1}{1}$ θ (θ) *p* **g**: scattering anisotropy 3 4 π 2 θ 2 $(1 + g^2 - 2g \cos \theta)$ $+g^2$ *g g '* θ $x \rightarrow \omega$ $g > 0$ **g** $=0$ *g* $\lt g$ *g* $\lt 0$ Forward scattering Isotropic scattering Back scattering $g=0$ $g=0.25$ $g = -0.25$ $-g=0.5$ $g = -0.5$

Subsurface Scattering (表面下散乱)

Subsurface scattering in translucent objects

Translucent objects are not special

Typical translucent objects: □marble, milk, and skin

Most objects except for metal are translucent

Translucent objects in our daily environment

Importance of subsurface scattering in CG

Representation of realistic skin E Especially necessary for rendering human image

Jurassic Park (1993)

Gollum of **"Lord of the Rings"** (2002-2003)

Dobby of **" Harry Potter and the Chamber of Secrets "** (2002) (The first movie that computed physically accurate subsurface scattering)

Difference in scattering properties

Different distribution

BSSRDF (双方向散乱表面反射分布関数)

(**B**idirectional **S**cattering **S**urface **R**eflectance **D**istribution **F**unction)

- **How** much the incident light at a point x_i from a direction (θ_i, ϕ_i) outgoes from a point x_r to a direction (θ_r, ϕ_r)
- **The difference with BRDF is that the incident and outgoing** exit points are different.

Opaque object

locally defined

$$
f_{BRDF}(x, \theta_i, \phi_i, \theta_r, \phi_r)
$$

Translucent object

globally defined

 $\int_{\mathit{BSSRDF}}\!\!\left(\mathit{x}_{i}, \theta_{i}, \phi_{i}, \mathit{x}_{r}, \theta_{r}, \phi_{r}\right)$

Single scattering and Multiple scattering

Single scattering:

OCOLLISION with a particle only once inside the C medium

□Observed in optically thin medium

 \square such as milky water, fog,...

OHigh directivity and uniquely determined light path

Multiple scattering:

Repeat reflections **many times** inside the medium

□Observed in optically dense medium

 \square such as skin, marble, milk,...

Diffusion approximation

Model of single scattering

Modeling the sequence of attenuation \rightarrow scattering \rightarrow attenuation

$$
f_{BSSRDF}^{single}(x_i, \theta_i, \phi_i, x_r, \theta_r, \phi_r) = \sigma_s p(\theta) e^{-\sigma_t (d_1 + d_2)}
$$

Model of multiple scattering

Direst tracing

□Monte Carlo ray tracing, photon mapping

□High computational cost, since reflections are repeated.

Example 2 Approximated parametric function

Diffusion approximation

Dipole model (Jensen 2001) , multipole model (Donner 2005)

Multi-layered model Dipole Multi-layer

Dipole Model for BSSRDF (Jensen et al. SIGGRAPH2001)

Decomposition of the BSSRDF

\Box **Fresnel transmittance:** $F_t(\eta, \omega)$

 \Box function of relative index of refraction η , incident and reflective angles ω_i and ω_o Diffuse BSSRDF: *R*(*d*)

 \Box function of distance d between incident and outgoing points x_i and x_o

 \Box including two inherent parameters of the material

scattering coefficient: *s*

absorption coefficient: σa Diffuse BSSRDF

 $(\eta, \theta_i, \phi_i)R_{d}(\Vert x_i - x \Vert)F_{t}(\eta, \theta_i, \phi_i)$ 1 $f_{BSSRDF}^{multiple}(x_i, \theta_i, \phi_i, x_r, \theta_r, \phi_r) = -F_t(\eta, \theta_i, \phi_i) R_d (\parallel x_i - x_r \parallel) F_t(\eta, \theta_r, \phi_r)$ π $\theta_i, \phi_i, x_r, \theta_r, \phi_r) = -F_t(\eta, \theta_i, \phi_i) R_d (\parallel x_i -$ Fresnel transmittance at *xⁱ* Fresnel transmittance at *x^o*

$$
\begin{array}{c}\n\omega_i \\
\hline\nx_i\n\end{array}
$$

Diffuse BSSRDF in Dipole model

- **Examption of diffusion approximation**
- ■A point light source in object
- \blacksquare In order to satisfy the boundary condition, a negative light source above the incident point

Rendering example with dipole model

Decomposition using high-frequency illumination (高周波照明による成分分解)

Decomposition of Global Illumination(Nayar 2006)

Separation of two components

Direct component (diffuse reflection / specular reflection) Global components (inter-reflection, volume scattering, subsurface scattering ...)

Using a projector as a light source

Projecting high frequency pattern (fine grid pattern) Utilizing that the global illumination effect acts as a low-pass filter

Principle of high frequency illumination

Decomposition of direct and global components

A: Diffuse Interreflection (Board) **B**: Specular Interreflection (Nut) C: Subsurface Scattering (Marble) D: Subsurface Scattering (Wax) E: Translucency (Frosted Glass) F: Volumetric Scattering (Dil. Milk) G: Shadow (Fruit on Board)

Direct component Global component

Decomposition of direct and global components

Subsurface Subsurfacescattering

Original scene Direct component Global component

Decomposition of transmissive lights (透過光の分解)

Visualization using IR light

The Transmissive image using IR light. Number 14 Theory image due to *scattering*.

Transmissive high frequency illumination (ICCP2013)

Decomposition of transmissive and scattered rays.

Parallel high frequency illumination

□When phase change,

transmissive:change scattered:no change

Decomposition $max = transmissive +$ 1 2 scattered $min =$ 1 2 scattered $transmissue = max - min$ scattered $= 2 \times mix$

Overview

Transmissive images

Metal object in murky water

Normal image with visible light

Infra-red image Descattered image

Process of the descattering

Application for Bioimaging

Fish and mouse

Light field camera for descattering (ECCV2010)

Light field camera to record spatial (x, y) **and angular** (θ,ϕ) information of rays

Clear vein pattern using NIR light

Summary of global Illumination

 \blacksquare In our daily environment, there are a lot of volume scattering and subsurface scattering

- \blacksquare In particular, it is difficult to analyze scattering on inhomogeneous materials
- **Perfect photometric modeling of real scene is extremely** difficult

candle marble

Report

■What is the difference of direct and global components? Explain from the following viewpoints.

- Optical phenomena (光学現象) Spatial frequency (空間的な周波数)
- Simplicity for modeling (モデル化の容易さ)

Direct component Global component

Report

■What is the difference of direct and global illuminations? Explain from the following viewpoints.

Optical phenomena (光学現象)

 \Box It depends on the settings. Generally,

□ Direct: locally defined -> diffuse and specular reflections

□ Global: globally defined -> inter-reflection, volume scattering, subsurface scattering.

Spatial frequency (空間的な周波数)

□ Generally, direct illumination keeps incident frequency. □ Global illumination acts as a low pass filter.

Simplicity for modeling (モデル化の容易さ)

ODirect illumination is easy to model because locally defined.

Global illumination is difficult to model because the intensity cannot be defined at the point. All effect from surrounding environments should be considered.