No.6

大域照明

Global illumination

担当教員:向川康博·田中賢一郎

Direct and global illuminations

- Direct illumination
 - □Light source → Object surface → Observer
- Global (indirect) illumination
 - □Light source → Object surface → Object surface →...→Observer

Global illumination

Differences in CG (wikipedia)

Real global illumination

What is global illumination?

- Rendering images considering global illumination
 - □In CG, necessary to render realistic image
 - □In CV, necessary to analyze real scene
- Types of global illumination
 - □Inter-reflection (相互反射)
 - ■Volume scattering(体積散乱)
 - ■Subsurface scattering(表面下散乱)

Inter-reflection (相互反射)

Inter-reflection

- Diffuse inter-reflection
 - Radiosity
 - □ Describing light passing between object surfaces by finite element method

Only direct illumination

Direct illumination

wiki.povray.org

+ ambient illumination

- Specular inter-reflection
 - □Expression of caustics (集光模様)
 - ■Monte Carlo ray tracing
 - Monte Carlo sampling from ray tracing
 - ■Photon mapping
 - ■Two-pass algorithm of distributing and counting photons

Radiosity

- Compute diffuse inter-reflection components
- Developed for heat transfer at first
- Form factor between two patches

$$B_i = E_i +
ho_i \sum_j F_{ij} B_j$$
 $F_{ij} = V(x_i, x_j) G(x_i, x_j)$
Visibility Geometric attenuation (Can see each other or not)
$$G(x_i, x_j) = \frac{\cos \theta_i \cos \theta_j}{|x_i - x_j|}$$

Scene analysis based on Radiosity

- Reflectance estimation considering diffuse inter-reflection
- Simple linear solution

$$B_{i} = E_{i} + \rho_{i} \sum_{j} F_{ij} B_{j}$$

$$\rho_{i} = (B_{i} - E_{i}) / \sum_{j} F_{ij} B_{j}$$

Specular inter-reflection

- Specular reflection depends on viewing direction
- The radiance of each patch can not be directly observed
- Iterative computation of
 - □radiance of one-bounce specular reflection
 - □specular reflectance

Real image

Yu et al., Inverse Global Illumination:

Recovering Reflectance Models of Real Scenes from Photographs, SIGGRAPH'99

Camera position (40 places)

Specular reflectance

Resynthesis under original illumination

Superimposition of seven virtual objects

Photon mapping (Jensen 1996)

Two-pass algorithm to express global illumination

1st pass: Construction of photon map

Distribute many photons from light

2nd pass: Rendering

Count photons by ray tracing from viewpoint

http://help.chaosgroup.com/vray/help/200R1/render_params_photonmap.htm

Examples of photon mapping

[Jensen, Global Illumination using Photon Maps, 1996]

Photon mapping

Inter-reflection in complex scene

simple

- Diffuse inter-reflection
 - Radiosity based on heat transfer
- Allowing specular reflection
 - Only one-bounce specular reflection
 - Uniform specular reflection
 - □Simple path
 - □ Light source → Diffuse reflection → Specular reflection
 → camera
- Specular inter-reflection
 - □Iterative computation to fit input Photon mapping method
 - Photon mapping

Volume Scattering (体積散乱)

Scattering in translucent media

- ■How an incident ray repeats scattering and the light propagates in a translucent media?
 - ■Multiple bounces
 - ■Complex light field

Different scattering due to optical density

Participating media(関与媒質)

- Consist of small particles
- Collision with particles

SIGGRAPH ASIA 2008 Course Note

Light transport in participating media

- ■Absorption:
 - □Collision with particles
 - □Decrease in intensity
- Out scattering:
 - □Scattered to outside
 - □Decrease in intensity
- ■In scattering:
 - ■Ray from outside scatters and joins to traveling direction
 - □Increase in intensity

Energy decrement

Attenuation by absorption

$$dL(x,\omega) = -\sigma_a(x)L(x,\omega)ds$$

 $\sigma_a(x)$: Absorption coefficient [m⁻¹]

Attenuation by out scattering

$$dL(x,\omega) = -\sigma_{s}(x)L(x,\omega)ds$$

 $dL(x,\omega) = -\sigma_{s}(x)L(x,\omega)ds$ $\sigma_{s}(x)$: scattering coefficient [m⁻¹]

Summing both attenuations by absorption + out scattering

$$dL(x,\omega) = -\sigma_t(x)L(x,\omega)ds \qquad \sigma_t(x) = \sigma_a(x) + \sigma_s(x)$$

$$\vdots \text{ Extinction coefficient [m-1]}$$

$$L(x,\omega) = \frac{ds}{L(x,\omega)} + \frac{dL(x,\omega)}{dL(x,\omega)}$$
Absorption increment
Out scattering

Energy increment

- Increment by in scattering
 - Integrating rays coming from each direction ω' of the spherical surface Ω surrounding point x

$$dL(x,\omega) = \sigma_s(x) \left(\int_{\Omega} p(x,\omega',\omega) L(x,\omega') d\omega' \right) ds$$

Phase function

Phase function

- Expression of scattering bias
 - \blacksquare depends only on the angle θ between ω and ω' for most media
 - ■Henyey-Greenstein function

 $\square g$: scattering anisotropy

$$p(\theta) = \frac{1}{4\pi} \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{\frac{3}{2}}}$$

Subsurface Scattering (表面下散乱)

Subsurface scattering in translucent objects

Translucent objects are not special

- Typical translucent objects:
 - marble, milk, and skin
- ■Most objects except for metal are translucent

Translucent objects in our daily environment

Importance of subsurface scattering in CG

- Representation of realistic skin
- Especially necessary for rendering human image

Jurassic Park (1993)

Dobby of " Harry Potter and the Chamber of Secrets " (2002) (The first movie that computed physically accurate subsurface scattering)

Gollum of "Lord of the Rings" (2002-2003)

Difference in scattering properties

Different distribution

BSSRDF (双方向散乱表面反射分布関数)

(Bidirectional Scattering Surface Reflectance Distribution Function)

- How much the incident light at a point x_i from a direction (θ_i, ϕ_i) outgoes from a point x_r to a direction (θ_r, ϕ_r)
- ■The difference with BRDF is that the incident and outgoing exit points are different.

■Opaque object

□locally defined

$$f_{BRDF}(x,\theta_i,\phi_i,\theta_r,\phi_r)$$

■Translucent object

□globally defined

$$f_{BSSRDF}(x_i, \theta_i, \phi_i, x_r, \theta_r, \phi_r)$$

Single scattering and Multiple scattering

■ Single scattering:

- □Collision with a particle only once inside the medium
- □Observed in optically thin medium
 - □ such as milky water, fog,...
- High directivity and uniquely determined light path

■Multiple scattering:

- ■Repeat reflections many times inside the medium
- Observed in optically dense medium
 - □ such as skin, marble, milk,...
- **□**Diffusion approximation

Model of single scattering

■Modeling the sequence of attenuation→ scattering → attenuation

$$f_{BSSRDF}^{single}(x_i, \theta_i, \phi_i, x_r, \theta_r, \phi_r) = \sigma_s p(\theta) e^{-\sigma_t (d_1 + d_2)}$$

Model of multiple scattering

- Direst tracing
 - ■Monte Carlo ray tracing, photon mapping
 - □High computational cost, since reflections are repeated.
- Approximated parametric function
 - ■Diffusion approximation
 - □Dipole model (Jensen 2001), multipole model (Donner 2005)

Multi-layered model

Dipole

Multi-layer

Dipole Model for BSSRDF (Jensen et al. SIGGRAPH2001)

Decomposition of the BSSRDF

- **The Example 2** Fresnel transmittance: $F_t(\eta, \omega)$
 - $lue{}$ function of relative index of refraction η , incident and reflective angles ω_i and ω_o
- Diffuse BSSRDF: R(d)
 - \blacksquare function of distance d between incident and outgoing points x_i and x_o
 - □ including two inherent parameters of the material
 - \square scattering coefficient: σ s
 - \square absorption coefficient: σa

$$f_{BSSRDF}^{multiple}(x_i, \theta_i, \phi_i, x_r, \theta_r, \phi_r) = \frac{1}{\pi} F_t(\eta, \theta_i, \phi_i) R_d(\|x_i - x_r\|) F_t(\eta, \theta_r, \phi_r)$$
Fresnel transmittance at x_i Fresnel transmittance at x_i

Diffuse BSSRDF in Dipole model

- Assumption of diffusion approximation
- A point light source in object
- ■In order to satisfy the boundary condition, a negative light source above the incident point

$$R(d) = \frac{\alpha'}{4\pi} \left[z_r \left(\sigma_{tr} d_r + 1 \right) \frac{e^{-\sigma_{tr} d_r}}{\sigma_t' d_r^3} + z_v \left(\sigma_{tr} d_v + 1 \right) \frac{e^{-\sigma_{tr} d_v}}{\sigma_t' d_v^3} \right]$$

Concept of dipole model

Examples of scattering terms

Rendering example with dipole model

Decomposition using high-frequency illumination (高周波照明による成分分解)

Decomposition of Global Illumination(Nayar 2006)

- Separation of two components
 - □Direct component (diffuse reflection / specular reflection)
 - □Global components (inter-reflection, volume scattering, subsurface scattering ...)
- Using a projector as a light source
 - Projecting high frequency pattern (fine grid pattern)
 - □Utilizing that the global illumination effect acts as a low-pass filter

Principle of high frequency illumination

- When not illuminated :
 - □Global component /2
- White pixels and black pixels mixHalf is white in the projection pattern

- ■When illuminated:
 - □Direct component + Global component /2
- Separation of two components

$$\max = \frac{direct}{2} + \frac{1}{2}global$$

$$\min = \frac{1}{2}global$$

 $\frac{direct}{global} = max - min$ global = 2 min

Direct

Global

Decomposition of direct and global components

A: Diffuse Interreflection (Board)

B: Specular Interreflection (Nut)

C: Subsurface Scattering (Marble)

D: Subsurface Scattering (Wax)

E: Translucency (Frosted Glass)

F: Volumetric Scattering (Dil. Milk)

G: Shadow (Fruit on Board)

Direct component

Global component

Decomposition of direct and global components

Inter-reflection

Volume scattering

Subsurface scattering

Original scene

Direct component

Global component

Decomposition of transmissive lights (透過光の分解)

Visualization using IR light

- ■Transmissive image using IR light.
- ■Unclear image due to *scattering*.

Metal object in food

Vein pattern

Transmissive high frequency illumination

(ICCP2013)

Decomposition of transmissive and scattered rays.

Parallel high frequency illumination

■When phase change,

□ transmissive: change

□scattered: no change

Decomposition

$$max = transmissive + \frac{1}{2}scattered$$

$$min = \frac{1}{2}scattered$$

transmissive = max - min

$$scattered = 2 \times mix$$

Overview

Infra-red projector

Transmissive images

Metal object in murky water

Normal image with visible light

Infra-red image

Descattered image

Process of the descattering

Application for Bioimaging

Fish and mouse

Light field camera for descattering (ECCV2010)

Light field camera to record spatial (x, y) and angular (θ, ϕ) information of rays

Clear vein pattern using NIR light

Summary of global Illumination

- ■In our daily environment, there are a lot of volume scattering and subsurface scattering
- ■In particular, it is difficult to analyze scattering on inhomogeneous materials
- Perfect photometric modeling of real scene is extremely difficult

Report

- ■What is the difference of direct and global components? Explain from the following viewpoints.
 - □Optical phenomena(光学現象)
 - ■Spatial frequency (空間的な周波数)
 - □Simplicity for modeling (モデル化の容易さ)

Direct component

Global component

Report

- ■What is the difference of direct and global illuminations? Explain from the following viewpoints.
 - □Optical phenomena(光学現象)
 - It depends on the settings. Generally,
 - □ **Direct**: locally defined -> diffuse and specular reflections
 - □ **Global**: globally defined -> inter-reflection, volume scattering, subsurface scattering.
 - ■Spatial frequency (空間的な周波数)
 - □ Generally, direct illumination keeps incident frequency.
 - □ Global illumination acts as a low pass filter.
 - ■Simplicity for modeling (モデル化の容易さ)
 - □ Direct illumination is easy to model because locally defined.
 - □ Global illumination is difficult to model because the intensity cannot be defined at the point. All effect from surrounding environments should be considered.