No.6 大域照明

Global illumination

担当教員:向川康博·田中賢一郎

Direct and global illuminations

■Direct illumination ■Light source→ Object surface →Observer

■Global (indirect) illumination
 ■Light source → Object surface →
 Object surface →...→Observer

Differences in CG (wikipedia)

mini-report1: What is the difference?

Global illumination

Real global illumination

What is global illumination?

Rendering images considering global illumination
 In CG, necessary to render realistic image
 In CV, necessary to analyze real scene

Types of global illumination □Inter-reflection(相互反射) ■Volume scattering(体積散乱) □Subsurface scattering(表面下散乱) Volume scattering Inter-reflection Subsurface scattering

Report

What is the difference of direct and global components? Explain from the following viewpoints.

- ■Optical phenomena(光学現象)
- ■Spatial frequency(空間的な周波数)
- ■Simplicity for modeling (モデル化の容易さ)

Direct component

Global component

Inter-reflection (相互反射)

Inter-reflection

Diffuse inter-reflection

Radiosity

Describing light passing between object surfaces by finite element method

Only direct illumination

Direct illumination + ambient illumination

Radiosity

wiki.povray.org

Specular inter-reflection
 Expression of caustics(集光模様)
 Monte Carlo ray tracing
 Monte Carlo sampling from ray tracing
 Photon mapping
 Two-pass algorithm of distributing and counting photons

Radiosity

Compute diffuse inter-reflection components
 Developed for heat transfer at first
 Form factor between two patches

ho *i* Reflectance $B_i = E_i + \rho_i \sum_{j} F_{ij} B_j$ Radiation light intensity Direct light source) $F_{ij} = V(x_i, x_j)G(x_i, x_j)$ Geometric attenuation Visibilitv (Can see each other or not) $G(x_i, x_j) = \frac{\cos \theta_i \cos \theta_j}{|x_i - x_j|}$ χ_i χ_i Form factor between two patches [Sillion94]

Scene analysis based on Radiosity

Reflectance estimation considering diffuse inter-reflection

Simple linear solution

$$B_{i} = E_{i} + \rho_{i} \sum_{j} F_{ij} B_{j}$$
$$\rho_{i} = (B_{i} - E_{i}) / \sum_{j} F_{ij} B_{j}$$

[Fournier93] [Drettakis97] [Loscos99] [Loscos00]

Specular inter-reflection

Specular reflection depends on viewing direction

- The radiance of each patch can not be directly observed
- Iterative computation of
 radiance of one-bounce specular reflection
 specular reflectance

Room shape and Camera position (40 places)

Yu et al., Inverse Global Illumination:

Recovering Reflectance Models of Real Scenes from Photographs, SIGGRAPH'99

Specular reflectance

Resynthesis under original illumination

Superimposition of seven virtual objects

Photon mapping (Jensen 1996)

Two-pass algorithm to express global illumination
 1st pass: Construction of photon map
 Distribute many photons from light
 2nd pass: Rendering
 Count photons by ray tracing from viewpoint

http://help.chaosgroup.com/vray/help/200R1/render_params_photonmap.htm

Examples of photon mapping

[Jensen, Global Illumination using Photon Maps, 1996]

Simple ray tracing

Photon mapping

Inter-reflection in complex scene

s<mark>imp</mark>le

- Diffuse inter-reflection
 - Radiosity based on heat transfer

Allowing specular reflection

- Only one-bounce specular reflection
- □Uniform specular reflection

<mark>□S</mark>imple path

□ Light source → Diffuse reflection → Specular reflection → camera

Specular inter-reflection

 Iterative computation to fit input Photon mapping method
 Photon mapping

complex

Volume Scattering (体積散乱)

Scattering in translucent media

How an incident ray repeats scattering and the light propagates in a translucent media?

Multiple bouncesComplex light field

bright

dark

Different scattering due to optical density

Participating media(関与媒質)

Consist of small particles

Collision with particles

Vacuum

Participating media

SIGGRAPH ASIA 2008 Course Note

Light transport in participating media

Absorption :

Collision with particlesDecrease in intensity

Out scattering:
 Scattered to outside
 Decrease in intensity

In scattering:

Ray from outside scatters and joins to traveling direction
 Increase in intensity

Energy decrement

Energy increment

Ω

In scattering

Increment by in scattering

Integrating rays coming from each direction ω' of the spherical surface Ω surrounding point x

$$dL(x,\omega) = \sigma_{s}(x) \left(\iint_{\Omega} p(x,\omega',\omega) L(x,\omega') d\omega' \right) ds$$

Phase function
$$\int_{\Omega} \frac{ds}{dL(x,\omega)} dL(x,\omega') \int_{\Omega} \frac{ds}{dL(x,\omega)} dL(x,\omega') d\omega' ds$$

Phase function

Phase function

Expression of scattering bias \Box depends only on the angle θ between ω and ω' for most media Henyey-Greenstein function $p(\theta) = \frac{1}{4\pi} \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{\frac{3}{2}}}$ □ g: scattering anisotropy ω θ \mathcal{X} ω *g*>0 g < 0g=0Forward scattering **Back scattering** Isotropic scattering g=0 g=0.25 g=-0.25 g=0.5 g=-0.5

Subsurface Scattering (表面下散乱)

Subsurface scattering in translucent objects

Translucent objects are not special

Typical translucent objects:marble, milk, and skin

Most objects except for metal are translucent

Translucent objects in our daily environment

Importance of subsurface scattering in CG

 Representation of realistic skin
 Especially necessary for rendering human image

Jurassic Park (1993)

Gollum of "Lord of the Rings" (2002-2003)

Dobby of " Harry Potter and the Chamber of Secrets " (2002) (The first movie that computed physically accurate subsurface scattering)

Difference in scattering properties

Different distribution

BSSRDF (双方向散乱表面反射分布関数)

(Bidirectional Scattering Surface Reflectance Distribution Function)

- How much the incident light at a point x_i from a direction (θ_i, ϕ_i) outgoes from a point x_r to a direction (θ_r, ϕ_r)
- The difference with BRDF is that the incident and outgoing exit points are different.

Opaque object

locally defined

$$f_{BRDF}(x,\theta_i,\phi_i,\theta_r,\phi_r)$$

Translucent object

□globally defined

$$f_{BSSRDF}(x_i, \theta_i, \phi_i, x_r, \theta_r, \phi_r)$$

Single scattering and Multiple scattering

Single scattering:

Collision with a particle only once inside the medium

Observed in optically thin medium

such as milky water, fog,...

High directivity and uniquely determined light path

Multiple scattering:

Repeat reflections many times inside the medium

Observed in optically dense medium

□ such as skin, marble, milk,...

Diffusion approximation

Model of single scattering

Modeling the sequence of attenuation $\rightarrow \text{scattering} \rightarrow \text{attenuation}$

$$f_{BSSRDF}^{single}(x_i, \theta_i, \phi_i, x_r, \theta_r, \phi_r) = \sigma_s p(\theta) e^{-\sigma_t(d_1 + d_2)}$$

Model of multiple scattering

Direst tracing

Monte Carlo ray tracing, photon mapping

□High computational cost, since reflections are repeated.

Approximated parametric function Diffusion approximation Dipole model (Jensen 2001), multipole model (Donner 2005)

Dipole

Multi-layered model

Multi-layer

Dipole Model for BSSRDF (Jensen et al. SIGGRAPH2001)

Decomposition of the BSSRDF

DFresnel transmittance: $F_t(\eta, \omega)$

If function of relative index of refraction η , incident and reflective angles ω_i and ω_o Diffuse BSSRDF: R(d)

In function of distance d between incident and outgoing points x_i and x_o

including two inherent parameters of the material

\Box scattering coefficient: σ s

D absorption coefficient: σa

, Diffuse BSSRDF

 $f_{BSSRDF}^{multiple}(x_i, \theta_i, \phi_i, x_r, \theta_r, \phi_r) =$

$$= \frac{1}{\pi} \frac{F_t(\eta, \theta_i, \phi_i) R_d(\parallel x_i - x_r \parallel)}{F_t(\eta, \theta_r, \phi_r)} F_t(\eta, \theta_r, \phi_r)$$

Fresnel transmittance at x_i

Fresnel transmittance at x_o

Diffuse BSSRDF in Dipole model

Assumption of diffusion approximation

A point light source in object

In order to satisfy the boundary condition, a negative light source above the incident point

Rendering example with dipole model

mini-report2: What is the difference?

Decomposition using high-frequency illumination (高周波照明による成分分解)

Decomposition of Global Illumination(Nayar 2006)

Separation of two components

Direct component (diffuse reflection / specular reflection)
 Global components (inter-reflection, volume scattering, subsurface scattering ...)

Using a projector as a light source

Projecting high frequency pattern (fine grid pattern)Utilizing that the global illumination effect acts as a low-pass filter

Principle of high frequency illumination

Decomposition of direct and global components

A: Diffuse Interreflection (Board)
B: Specular Interreflection (Nut)
C: Subsurface Scattering (Marble)
D: Subsurface Scattering (Wax)
E: Translucency (Frosted Glass)
F: Volumetric Scattering (Dil. Milk)
G: Shadow (Fruit on Board)

Direct component

Global component

Decomposition of direct and global components

Subsurface scattering

Original scene

Direct component

Global component

Decomposition of transmissive lights (透過光の分解)

Visualization using IR light

Transmissive image using IR light. Unclear image due to scattering.

Scattered rays

Transmissive high frequency illumination (ICCP2013)

Decomposition of transmissive and scattered rays.

Parallel high frequency illumination

- □When phase change,
 - transmissive : change
 scattered : no change

Decomposition

$$max = transmissive + \frac{1}{2}scattered$$
$$min = \frac{1}{2}scattered$$
$$transmissive = max - min$$
$$scattered = 2 \times mix$$

Overview

Infra-red projector

Transmissive images

Metal object in murky water

Normal image with visible light

Infra-red image

Descattered image

Process of the descattering

Application for Bioimaging

Fish and mouse

Light field camera for descattering (ECCV2010)

Light field camera to record spatial (x, y) and angular (θ, ϕ) information of rays

Clear vein pattern using NIR light

Summary of global Illumination

In our daily environment, there are a lot of volume scattering and subsurface scattering

- In particular, it is difficult to analyze scattering on inhomogeneous materials
- Perfect photometric modeling of real scene is extremely difficult

candle

Report

What is the difference of direct and global components? Explain from the following viewpoints.

- ■Optical phenomena(光学現象)
- ■Spatial frequency(空間的な周波数)
- ■Simplicity for modeling (モデル化の容易さ)

Direct component

Global component