No． 5

反射の物理モデル

Reflection model

担当教員：向川康博•田中賢一郎

3-D Scene and 2-D Image

■ Projection of 3-D scene to 2-D image
םWhere 2-D coordinates?
aWhat colors?

with red ball on white desk

Geometric Relationship
\square Relation between 3－D coordinates（ x, y, z ） of scene and 2－D coordinates（ u, v ）of image
Transformation by perspective projection （透視投影）

Photometric relationship

\square RGB values (intensities) of the object in the image
■Physical model for illumination and reflection
■ No perfect model

3-D scene
transformation

Surface color

Different Images

■Red ball on white desk

mini-report1: What is the difference?

Different images
Red ball on white desk
■Same illumination

mini-report2: What is the difference?

Difference in material

Light transport

■ays emitted from light source reach observer after repeating various optical phenomena such as reflection（反射），scattering（散乱），refraction（屈折）， transmission（透過），interference（干渉），．．．
－Light transport includes geometric and photometric properties of the scene

■Handling of ray rather than image is important
\square Ray：optical information before collected by lens
almage：degenerated ray in 2－D

Accurate modeling of physical phenomenon

■For CG
\square Realistic rendering indistinguishable from real images

- For CV

םScene analysis correctly handling lighting effects
What kind of physical phenomenon occurs
when the object is illuminated?
ageometric model: mathematics
aphotometric model: physics

Today's Topics
\square Reflection
aPhysical quantity of light and light transport
\square Reflection model

■Scattering
aLight transport in scattering media

\square Scattering model
Next
lecture

Final report

Explain advantages and disadvantages to use complex and realistic BRDF model for CG and CV

CG	advantage	disadvantage
		disadvantage

Physical quantity of light and
light transport

Light energy transport

- In order to correctly treat "reflection" as a physical phenomenon,
- Energy emitted from light source
-Energy reaching object surface
-Energy emitted from object surface should be considered.

Light energy on object surface

■Radiant flux（放射束）：Φ
\square Radiant energy per unit time
－Unit ：watt（W）
■ Iradiance（放射照度）：$E(x)$
aLight energy reaching object surface x

－Radiant flux per unit area
Surface area ： $4 \pi r^{2}$
－Unit：W／m²
The received energy becomes smaller，

$$
E(x)=\frac{\Phi \cos \theta}{4 \pi r^{2}}
$$ when the light source is far and／or the surface tilts．

Emitted light energy

Radiance（放射輝度）：$L(x, \omega)$
aLight energy from x to ω direction
\square Radiance flux（放射束）per unit solid angle （立体角）and per unit area
－UUnit： $\mathrm{W} / \mathrm{m}^{2} \mathrm{sr}^{2}$

$$
L(x, \omega)=\frac{d^{2} \Phi}{\cos \theta d A d \omega}
$$

sr ：steradian（unit of solid angle）

Modeling of reflection

－How strongly does the light illuminated from the direction $\left(\theta_{i}, \phi_{i}\right)$ at a certain point x reflects in the direction $\left(\theta_{r}, \phi_{r}\right)$ ？
■Depends on bidirectional（双方向）of illumination and reflection directions

BRDF（双方向反射率分布関数）

■BRDF（Bidirectional Reflection Distribution Function）
Ratio of radiance（出射光輝度）to irradiance（入射光照度）
■Usually，wavelength λ is omitted
\rightarrow In practice，defined by three color channels of RGB．

$$
f_{B R D F}\left(x, \theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)=\frac{L_{r}\left(x, \theta_{r}, \phi_{r}\right)}{L_{i}\left(x, \theta_{i}, \phi_{i}\right) \cos \theta_{i} d \omega}
$$

$$
=\frac{L_{r}\left(x, \theta_{r}, \phi_{r}\right)}{E\left(x, \theta_{i}, \phi_{i}\right) d \omega}
$$

Angle parameters of BRDF

■Anisotropic reflection（異方性反射）

－Four angle parameters

velvet

satin

brushed metal

■Isotropic reflection（等方性反射）
－Three angle parameters

$$
\begin{aligned}
& f_{\text {BRDF }}\left(x, \theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) \\
& f_{B R D F}^{\text {isotropic }}\left(x, \theta_{i}, \theta_{r}, \phi\right)
\end{aligned}
$$

Conditions that BRDF should satisfy

■Condition 1：Helmholtz reciprocity（相反性）

\square Even if illumination direction and reflection direction are exchanged，the value does not change．
\square Base for ray tracing

$$
f_{B R D F}(x, L, V)=f_{B R D F}(x, V, L)
$$

■Condition 2 ：Law of conservation of energy （エネルギー保存の法則）
－Do not emit energy more than entered．

$$
\int_{\Omega^{+}} f_{\text {BRDF }}(x, L, V)(N \cdot L) d L \leq 1
$$

Ω^{+}：Hemispherical surface seen from observation point

Calculation of radiance using BRDF

\square Radiance（放射輝度）of reflected light at a point x on the object surface

$$
\begin{aligned}
& L_{r}\left(x, \theta_{r}, \phi_{r}\right)=\int_{\Omega^{+}} f_{B R D F}\left(x, \theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right) L_{i}\left(x, \theta_{i}, \phi_{i}\right) \cos \theta_{i} d \omega \\
& \text { Radiance } \\
& \text { (放射輝度) } \\
& \text { Reflectance } \\
& \text { (反射率) } \\
& \text { Irradiance } \\
& \text { (放射照度) }
\end{aligned}
$$

Point x is illuminated from every direction on the hemisphere

Reflection Model

Difference in reflection properties

Mat
Glossy

Dichromatic reflection model（Shafer 1985）

 （2色性反射モデル）■Reflected light＝Diffuse reflection＋Specular reflection Diffuse reflection（拡散反射）： \square Reflection inside the surface layer －Object color
■Specular reflection（鏡面反射）： \square Reflection at the border between air and surface layer －Light color

Diffuse reflection

Specular reflection

Sum of both reflection

Model of diffuse reflection（拡散反射）

－Lambert model（1760）
\square Reflection with constant intensity in all directions
\square Reflectance does not depend on
illumination direction and observation direction

$$
\begin{aligned}
& f_{B R D F}\left(\theta_{i}, \phi_{i}, \theta_{r}, \phi_{r}\right)=\rho_{d} \\
& i=\rho_{d} \max \left(0, \cos \theta_{i}\right)
\end{aligned}
$$

$\square \rho_{d}$ ：Diffuse reflectance（拡散反射率）
\square New models such as Oren－Nayar model （SIGGRAPH1994）have also been proposed， but still standard．

Specular Reflection（鏡面反射）

■Strongly observed in mirror direction（正反射方向）
－Due to micro unevenness on the surface， distribution becomes wider near the mirror direction．
■Specular lobe（スペキュラーローブ）is difficult to model accurately．

Phong Model

■Classical reflection model based on experience (SIGGRAPH1975)
alt has a peak in the mirror direction口lt weakens as angle moves away from mirror direction

Phong Model

EFormulation by the power cosine of the angle (β) between the mirror direction $\left(L^{\prime}\right)$ of the light and the observation direction（ \boldsymbol{V} ）

$$
i=\rho_{s} \cos ^{n} \beta
$$

ρ_{s} ：Specular reflectance（鏡面反射率）
■ n ：Coefficient representing surface roughness
■ Notice that it does not satisfy
－Helmholtz reciprocity（相反性）
ロlow of the conservation energy（エネル ギー保存則）

Model based on physical analysis

■Assume that object surface is a set of micro facets（微小面）

1．How normal vector of micro facets varies？
2．How surface point is occluded due to surface roughness？
3．How Fresnel reflection（フレネル反射）effects？

Torrance－Sparrow Model

－A model based on the physical analysis which was developed earliest in the optical field （JOSA1967）
\square Modeling occlusion by micro facets and Fresnel reflection
－Represent off－specular（オフスペキュラ一）
ロThe peak of the specular reflection moves from the mirror direction
－Title is＂Theory for Off－Specular Reflection From Roughened Surfaces＂

Formulation by Blinn（SIGGRAPH1977）

Redefine Torrance－Sparrow model and apply to CG

$$
\frac{D G F}{\boldsymbol{N} \cdot \boldsymbol{V}}
$$

$\square D$ ：Distribution function（法線分布）
\square Representing the variation of the surface normal
■G：Geometrical attenuation factor（幾何減衰）
ロRepresenting self－occulusion
■F：Fresnel reflection（フレネル反射）
ロRepresenting Fresnel reflections at boundary of different refractive indexes（屈折率）

D：Distribution Function（法線分布）

■A probability density function（確率密度関数）of an angle α formed by a half vector (\boldsymbol{H}) and a normal direction（ N ）
\square Half vector：bisector direction of the illumination and the observation directions
\square Assuming a set of micro facets that produce perfect specular reflection
－How much do the normal vary to the half vector？

Smooth surface

Rough surface
\boldsymbol{N} and \boldsymbol{H} tend to coincide
\boldsymbol{N} and \boldsymbol{H} tend not to coincide

Various Distribution Functions（法線分布）

■ Redefinition of the Phong model using half vector

$$
D_{1}=\cos ^{n_{1}} \alpha \quad \text { mini-report3: Why was } \beta \text { replaced by } \alpha \text { ? }
$$

■Gauss distribution used in Torrance－Sparrow model

$$
D_{2}=e^{-\left(\alpha n_{2}\right)^{2}}
$$

Trowbridge－Reitz model

$$
D_{3}=\left(\frac{\left(n_{3}\right)^{2}}{\cos ^{2} \alpha\left(\left(n_{3}\right)^{2}-1\right)+1}\right)^{2}
$$

■Cook－Torrance model（Beckman distribution）

$$
D_{4}=\frac{1}{\left(n_{4}\right)^{2} \cos ^{4} \alpha} e^{-\left(\frac{\tan ^{2} \alpha}{\left(n_{4}\right)^{2}}\right)}
$$

Examples of distribution function

G：Geometrical Attenuation Factor（幾何減衰）

■Self－masking（自己遮蔽）and self－shadowing（自己陰影）caused by irregularities of micro facets
■As the illumination direction and／or observation direction approach tangent plane，attenuation increases

$$
G=\min \left(1, \frac{2(\mathbf{N} \cdot \mathbf{H})(\mathbf{N} \cdot \mathbf{V})}{\mathbf{V} \cdot \mathbf{H}}, \frac{2(\mathbf{N} \cdot \mathbf{H})(\mathbf{N} \cdot \mathbf{L})}{\mathbf{V} \cdot \mathbf{H}}\right)
$$

Masking：
Reflected light is occluded

Shadowing：
Incident light is occluded

F ：Fresnel Reflection（フレネル反射）

\square Represent Fresnel reflection

\square Reflectance changes with refractive index（屈折率）and angle \square As the illumination direction and／or observation direction approach tangent plane，reflectance becomes higher

$$
\text { Approximate expression: } F=\frac{1}{2}\left\{\frac{\sin ^{2}\left(\theta_{i}-\theta_{r}\right)}{\sin ^{2}\left(\theta_{i}+\theta_{r}\right)}+\frac{\tan ^{2}\left(\theta_{i}-\theta_{r}\right)}{\tan ^{2}\left(\theta_{i}+\theta_{r}\right)}\right\}
$$

Reflection at border with
different refractive indexes

Example of Torrance-Sparrow Model

■When illumination direction $\theta_{i}=45$

Off-specular
 Peak at $\theta_{r}=47$

Diffuse reflection

Specular reflection Sum of both reflection

Ward Model（SIGGRAPH1992）

■Representing anisotropic reflection（異方性反射）
－Extension of distribution function in the Torrance－Sparrow model aDifferent roughness coefficients for parallel and vertical directions to the axis（fiber or brushing direction）

MERL BRDF Database

■Matusik et al., A Data-Driven Reflectance Model, ACM Transactions on Graphics (2003)
■Densely measured BRDFs of 100 different materials aplastic, metal, fabric, rubber, marble, ...
■Spherical target

BRDF sampling devices

- Vertical setup (RCG-1)

- Horizontal setup (RCG-2)

Target material
Plate mirror

Sampled BRDF for CG

Real coin

- isotropic reflection
- per one degree

Sampled BRDF

Geometric shape

Structural color（構造色）

■Complex physical model

Structural color of nature

Multilayer interference （多層膜干渉）

Mexican shell

Sparse sampling + PCA

■PCA of MERL BRDF database
-The BRDF of most objects can be represented by a linear sum of a small number of bases (BRDF is sparse)
\square BRSD measurement is equivalent to estimation of coefficients.

ロany $B R D F=\sum c_{i}$ base $\operatorname{BRDF}(i)$

BRDF sampling from real object

T. Ono, H. Kubo, T. Funatomi, Y. Mukaigawa, `BRDF Reconstruction from Real Object using Reconstructed Geometry of Multi-view Images', Proc. SIGGRAPH Asia2017.
T. Ono, H. Kubo, T. Funatomi, Y. Mukaigawa, ‘’BRDF Reconstruction from Real Object using Reconstructed Geometry of Multi-view Images', Proc. SIGGRAPH Asia2017.

The Result of Simulated Experiment

Summary

■The early papers are still active.
■diffuse reflection: 1760
aspecular reflection: 1967
Recently, complete measurement of BRDF becomes possible.

Light Stage: University of Southern California

Final report

Explain advantages and disadvantages to use complex and realistic BRDF model for CG and CV

CG	advantage	disadvantage
		disadvantage

